

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0821ph020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Timer Output Signal Operation 64	
Timer Control Register Definitions	
Timer 0–1 High and Low Byte Registers	
Timer Reload High and Low Byte Registers	
Timer 0–1 PWM High and Low Byte Registers	
Timer 0–3 Control 0 Registers	
Timer 0–1 Control 1 Registers	
Watchdog Timer	
Operation	
Watchdog Timer Refresh	
Watchdog Timer Time-Out Response	
Watchdog Timer Reload Unlock Sequence	
Watchdog Timer Control Register Definitions	
Watchdog Timer Control Register	
Watchdog Timer Reload Upper, High and Low Byte Registers	
Universal Asynchronous Receiver/Transmitter	
Architecture	
Operation	,
Transmitting Data using Polled Method	
Transmitting Data Using Interrupt-Driven Method	
Receiving Data using the Polled Method	
Receiving Data Using Interrupt-Driven Method	,
Clear To Send Operation	
Multiprocessor (9-Bit) Mode	
External Driver Enable	
UART Interrupts	
UART Baud Rate Generator	
UART Control Register Definitions	
UART Transmit Data Register	
UART Receive Data Register 89	
UART Status 0 Register	
UART Status 1 Register	
UART Control 0 and Control 1 Registers	
UART Address Compare Register	
UART Baud Rate High and Low Byte Registers	
Infrared Encoder/Decoder	
Architecture	
Operation	
Transmitting IrDA Data	
Receiving IrDA Data	

ILO G

13

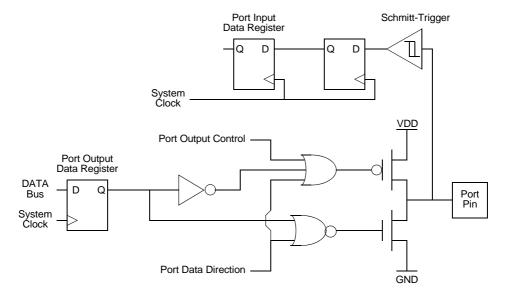

Pin Characteristics

Table 4 provides detailed information about the characteristics for each pin available on Z8 Encore! $XP^{\textcircled{B}}$ F0822 Series products. The data in Table 4 is sorted alphabetically by pin symbol mnemonic.

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tri-State Output	Internal Pull-Up or Pull-Down	Schmitt-Trigger Input	Open Drain Output
AV _{DD}	N/A	N/A	N/A	N/A	No	No	N/A
AV _{SS}	N/A	N/A	N/A	N/A	No	No	N/A
DBG	I/O	I	N/A	Yes	No	Yes	Yes
PA[7:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, pro- grammable
PB[4:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, pro- grammable
PC[5:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, pro- grammable
RESET	I	I	Low	N/A	Pull-up	Yes	N/A
V _{DD}	N/A	N/A	N/A	N/A	No	No	N/A
V _{REF}	Analog	N/A	N/A	N/A	No	No	N/A
V _{SS}	N/A	N/A	N/A	N/A	No	No	N/A
X _{IN}	I	I	N/A	N/A	No	No	N/A
X _{OUT}	0	0	N/A	No	No	No	No

Table 4. Pin Characteristics

Embedded in Life An TIXYS Company 30

Port	Pin	Mnemonic	Alternate Function Description
Port A	PA0 TOIN		Timer 0 Input
	PA1	T0OUT	Timer 0 Output
	PA2	DE	UART 0 Driver Enable
	PA3	CTS0	UART 0 Clear to Send
	PA4	RXD0/IRRX0	UART 0/IrDA 0 Receive Data
	PA5	TXD0/IRTX0	UART 0/IrDA 0 Transmit Data
	PA6	SCL	I ² C Clock (automatically open-drain)
	PA7	SDA	I ² C Data (automatically open-drain)
Port B	PB0	ANA0	ADC Analog Input 0
	PB1	ANA1	ADC Analog Input 1
	PB2	ANA2	ADC Analog Input 2
	PB3	ANA3	ADC Analog Input 3
	PB4	ANA4	ADC Analog Input 4

Table 12. Port Alternate Function Mapping

ilog° Embedded in Life An∎IXYS Company

33

Port A–C Control Registers

The Port A–C Control registers, shown in Table 15, set the GPIO port operation. The value in the corresponding Port A–C Address Register determines the control subregisters accessible using the Port A–C Control Register.

Table 15. Port A–C Control Registers (PxCTL)

Bit	7	7 6 5 4 3 2 1 0						
Field		PCTL						
RESET		00H						
R/W	R/W							
Address	FD1H, FD5H, FD9H							

Bit	Description
[7:0]	Port Control
PCTL	The Port Control Register provides access to all subregisters that configure the GPIO port operation.

Port A–C Data Direction Subregisters

The Port A–C Data Direction Subregister, shown in Table 16, is accessed through the Port A–C Control Register by writing 01H to the Port A–C Address Register.

Table 16. F	Port A–C Data	Direction	Subregisters
-------------	---------------	-----------	--------------

Bit	7	6	5	4	3	2	1	0
Field	DD7	DD6	DD5	DD4	DD3	DD2	DD1	DD0
RESET		1						
R/W	R/W							
Address	See footnote.							
Note: If 01H is written to the Port A–C Address Register, then it is accessible via the Port A–C Control Register.								

Bit	Description
[7:0]	Data Direction
DDx	 These bits control the direction of the associated port pin. Port Alternate Function operation overrides the Data Direction Register setting. 0 = Output. Data in the Port A–C Output Data Register is driven onto the port pin. 1 = Input. The port pin is sampled and the value written into the Port A–C Input Data Register. The output driver is tri-stated.
Note:	x indicates register bits in the range [7:0].

Port A–C High Drive Enable Subregisters

The Port A–C High Drive Enable Subregister, shown in Table 19, is accessed through the Port A–C Control Register by writing 04H to the Port A–C Address Register. Setting the bits in the Port A-C High Drive Enable subregisters to 1 configures the specified port pins for high-output current drive operation. The Port A-C High Drive Enable Subregister affects the pins directly and, as a result, alternate functions are also affected.

Table 19. Port A–C High Drive Enable Subregisters

Bit	7	6	5	4	3	2	1	0
Field	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0
RESET		0						
R/W		R/W						
Address		See footnote.						
Note: If 04	04H is written to the Port A–C Address Register, then it is accessible via the Port A–C Control Register.							
Bit	Descriptio	n						

Description

[7:0] Port High Drive Enabled

PHDEx 0 = The port pin is configured for standard-output current drive. 1 = The port pin is configured for high-output current drive.

Note: x indicates register bits in the range [7:0].

Embedded in Life

53

Interrupt Control Register

The Interrupt Control (IRQCTL) Register, shown in Table 38, contains the master enable bit for all interrupts.

Table 38. Interrupt Control Register (IRQCTL)

Bit	7	6	5	4	3	2	1	0
Field	IRQE		Reserved					
RESET		0						
R/W	R/W	R						
Address		FCFH						

Bit	Description
[7] IRQE	 Interrupt Request Enable This bit is set to 1 by execution of an Enable Interrupts (EI) or Interrupt Return (IRET) instruction, or by a direct register write of a 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, Reset or by a direct register write of a 0 to this bit. 0 = Interrupts are disabled. 1 = Interrupts are enabled.
[6:0]	Reserved These bits are reserved and must be programmed to 000000.

ilog° Embedded in Life An∎IXYS Company 72

To minimize power consumption in STOP Mode, the WDT and its RC oscillator is disabled in STOP Mode. The following sequence configures the WDT to be disabled when the Z8F082x family device enters STOP Mode following execution of a stop instruction:

- 1. Write 55H to the Watchdog Timer Control Register (WDTCTL).
- 2. Write AAH to the Watchdog Timer Control Register (WDTCTL).
- 3. Write 81H to the Watchdog Timer Control Register (WDTCTL) to configure the WDT and its oscillator to be disabled during STOP Mode. Alternatively, write 00H to the WDTCTL as the third step in this sequence to reconfigure the WDT and its oscillator to be enabled during STOP Mode. This sequence only affects WDT operation in STOP Mode.

WDT Reset in Normal Operation

If configured to generate a Reset when a time-out occurs, the WDT forces the device into the Reset state. The WDT status bit in the WDT Control Register is set to 1. For more information about Reset, see the <u>Reset and Stop Mode Recovery</u> chapter on page 21.

WDT Reset in STOP Mode

If enabled in STOP Mode and configured to generate a Reset when a time-out occurs and the device is in STOP Mode, the WDT initiates a Stop Mode Recovery. Both the WDT status bit and the stop bit in the WDT Control Register is set to 1 following WDT time-out in STOP Mode. For more information about Reset, see the <u>Reset and Stop Mode Recovery</u> chapter on page 21. Default operation is for the WDT and its RC oscillator to be enabled during STOP Mode.

WDT RC Disable in STOP Mode

To minimize power consumption in STOP Mode, the WDT and its RC oscillator can be disabled in STOP Mode. The following sequence configures the WDT to be disabled when the Z8F082x family device enters STOP Mode following execution of a stop instruction:

- 1. Write 55H to the Watchdog Timer Control Register (WDTCTL).
- 2. Write AAH to the Watchdog Timer Control Register (WDTCTL).
- 3. Write 81H to the Watchdog Timer Control Register (WDTCTL) to configure the WDT and its oscillator to be disabled during STOP Mode. Alternatively, write 00H to the Watchdog Timer Control Register (WDTCTL) as the third step in this sequence to reconfigure the WDT and its oscillator to be enabled during STOP Mode. This sequence only affects WDT operation in STOP Mode.

Embedded in Life An IXYS Company

UART Control 0 and Control 1 Registers

The UART Control 0 and Control 1 registers, shown in Tables 57 and 58, configure the properties of the UART's transmit and receive operations. The UART Control registers must not been written while the UART is enabled.

Table 57. UART Control 0 Register (U0CTL0)

Bit	7	6	5	4	3	2	1	0					
Field	TEN	REN	CTSE	PEN	PSEL	SBRK	STOP	LBEN					
RESET				()								
R/W				R/	W								
Address				F4	2H								
Bit	Descriptio	n											
[7]	-	Transmit Enable											
TEN	This bit enables or disables the transmitter. The enable is also controlled by the $\overline{\text{CTS}}$ signal												
	and the CTSE bit. If the CTS signal is Low and the CTSE bit is 1, the transmitter is enabled.												
	0 = Transmitter disabled. 1 = Transmitter enabled.												
[6]	1 = Transmitter enabled. Receive Enable												
[6] REN			bles the rec	eiver.									
		This bit enables or disables the receiver. 0 = Receiver disabled.											
	1 = Receiver enabled.												
[5]	CTS Enabl												
CTSE		S signal has				trol from the	a transmitter						
[4]	Parity Ena			Signal as al				•					
PEN		ables or disa	bles parity. I	Even or odd	is determine	ed by the PS	SEL bit. This	bit is over-					
	ridden by th	ne MPEN bit											
	0 = Parity is		da data with	on addition	ol pority bit	and the read		o on oddi					
		nsmitter sen arity bit.	us uala will	an addition	ai panty bit a			s an auui-					
[3]	Parity Sele	-											
PSEL		arity is trans											
	•	rity is transn	nitted and ex	pected on a	all received of	data.							
[2]	Send Brea				(· · · · · · · · · · · · · · · ·		0					
SBRK	This bit pauses or breaks data transmission by forcing the Transmit data output to 0. Sending a break interrupts any transmission in progress, so ensure that the transmitter has finished send-												
		fore setting											
		easserted. S			uration of the	e break and	the duration	of any					
	appropriate 0 = No brea	e stop bit tim ek is sent	e following t	he break.									
		tput of the tr	ansmitter is	zero.									
			-										

Embedded in Life

97

Infrared Encoder/Decoder

Z8 Encore! XP[®] F0822 Series products contain a fully-functional, high-performance UART to Infrared Encoder/Decoder (endec). The infrared endec is integrated with an onchip UART to allow easy communication between the Z8 Encore! XP and IrDA Physical Layer Specification, v1.3-compliant infrared transceivers. Infrared communication provides secure, reliable, low-cost, point-to-point communication between PCs, PDAs, cell phones, printers, and other infrared enabled devices.

Architecture

Figure 17 displays the architecture of the infrared endec.

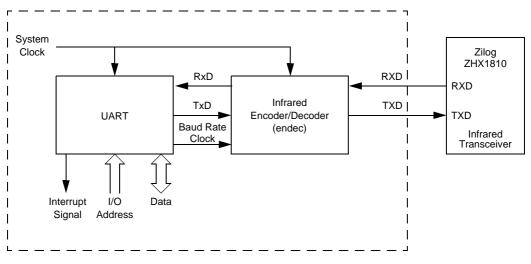


Figure 17. Infrared Data Communication System Block Diagram

Operation

When the infrared endec is enabled, the transmit data from the associated on-chip UART is encoded as digital signals in accordance with the IrDA standard and output to the infrared transceiver through the TXD pin. Similarly, data received from the infrared transceiver is passed to the infrared endec through the RXD pin, decoded by the infrared endec, and

- 1. Software writes 11110B followed by the two address bits and a 0 (write) to the I²C Data Register.
- 2. Software asserts the start and TXI bits of the I²C Control Register.
- 3. The I^2C Controller sends the start condition.
- 4. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register.
- 5. After the first bit has been shifted out, a transmit interrupt is asserted.
- 6. Software responds by writing the lower eight bits of address to the I^2C Data Register.
- 7. The I^2C Controller completes shifting of the two address bits and a 0 (write).
- If the I²C Slave acknowledges the first address byte by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue to <u>Step 9</u>.

If the slave does not acknowledge the first address byte, the I^2C Controller sets the NCKI bit and clears the ACK bit in the I^2C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I^2C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete (ignore following steps).

- 9. The I²C Controller loads the I²C Shift Register with the contents of the I²C Data Register (second address byte).
- 10. The I²C Controller shifts out the second address byte. After the first bit is shifted, the I²C Controller generates a transmit interrupt.
- 11. Software responds by setting the start bit of the I²C Control Register to generate a repeated start and by clearing the TXI bit.
- 12. Software responds by writing 11110B followed by the 2-bit Slave address and a 1 (read) to the I²C Data Register.
- 13. If only one byte is to be read, software sets the NAK bit of the I^2C Control Register.
- 14. After the I²C Controller shifts out the 2nd address byte, the I²C Slave sends an acknowledge by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue to <u>Step 15</u>.

If the slave does not acknowledge the second address byte, the I²C Controller sets the NCKI bit and clears the ACK bit in the I²C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I²C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete; ignore the remainder of this sequence.

15. The I²C Controller sends the repeated start condition.

- 1. Enable the appropriate analog inputs by configuring the GPIO pins for alternate function. This configuration disables the digital input and output drivers.
- 2. Write to the ADC Control Register to configure the ADC and begin the conversion. The following bit fields in the ADC Control Register are written simultaneously:
 - Write to the ANAIN[3:0] field to select one of the 5 analog input sources
 - Clear CONT to 0 to select a single-shot conversion
 - Write to the $\overline{\text{VREF}}$ bit to enable or disable the internal voltage reference generator
 - Set CEN to 1 to start the conversion
- 3. CEN remains 1 while the conversion is in progress. A single-shot conversion requires 5129 system clock cycles to complete. If a single-shot conversion is requested from an ADC powered-down state, the ADC uses 40 additional clock cycles to power-up before beginning the 5129 cycle conversion.
- 4. When the conversion is complete, the ADC control logic performs the following operations:
 - 10-bit data result written to {ADCD_H[7:0], ADCD_L[7:6]}
 - CEN resets to 0 to indicate the conversion is complete
 - An interrupt request is sent to the Interrupt Controller
- 5. If the ADC remains idle for 160 consecutive system clock cycles, it is automatically powered-down.

Continuous Conversion

When configured for continuous conversion, the ADC continuously performs an analog-to-digital conversion on the selected analog input. Each new data value over-writes the previous value stored in the ADC Data registers. An interrupt is generated after each conversion.

Caution: In CONTINUOUS Mode, ensure that ADC updates are limited by the input signal bandwidth of the ADC and the latency of the ADC and its digital filter. Step changes at the input are not seen at the next output from the ADC. The response of the ADC (in all modes) is limited by the input signal bandwidth and the latency.

Observe the following procedure for setting up the ADC and initiating continuous conversion:

1. Enable the appropriate analog input by configuring the GPIO pins for alternate function. This disables the digital input and output driver.

Observe the following procedure to setup the Flash Sector Protect Register from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
- 3. Read and/or write the Flash Sector Protect Register which is now at Register File address FF9H.
- 4. Write 00H to the Flash Control Register to return the Flash Controller to its reset state.

Flash Write Protection Option Bit

The Flash Write Protect option bit can block all program and erase operations from user code. For more information, see the <u>Option Bits</u> chapter on page 155.

Byte Programming

When the Flash Controller is unlocked, writes to Flash memory from user code programs a byte into the Flash if the address is located in the unlocked page. An erased Flash byte contains all 1s (FFH). The programming operation is used to change bits from 1 to 0. To change a Flash bit (or multiple bits) from zero to one requires a Page Erase or Mass Erase operation.

Byte programming is accomplished using the eZ8 CPU's LDC or LDCI instructions. Refer to the <u>eZ8 CPU Core User Manual (UM0128)</u> for a description of the LDC and LDCI instructions.

While the Flash Controller programs the contents of Flash memory, the eZ8 CPU idles but the system clock and on-chip peripherals continue to operate. Interrupts that occur when a programming operation is in progress are serviced after the programming operation is complete. To exit programming mode and lock the Flash Controller, write 00H to the Flash Control Register.

User code cannot program Flash memory on a page that is located in a protected sector. When user code writes memory locations, only addresses located in the unlocked page are programmed. Memory writes outside of the unlocked page are ignored.

Caution: Each memory location must not be programmed more than twice before an erase occurs.

Observe the following procedure to program the Flash from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write the page of memory to be programmed to the Page Select Register.
- 3. Write the first unlock command 73H to the Flash Control Register.

ilog Embedded in Life

DC Characteristics

Table 98 lists the DC characteristics of the Z8 Encore! $XP^{\mbox{\ensuremath{\mathbb{R}}}}$ F0822 Series products. All voltages are referenced to V_{SS} , the primary system ground.

		T _A =	-40°C to 1	105°C						
Symbol	Parameter	Minimum	Typical	Maximum	Units	Conditions				
V _{DD}	Supply Voltage	2.7	_	3.6	V					
V _{IL1}	Low Level Input Voltage	-0.3	-	0.3*V _{DD}	V	For all input pins except RESET, DBG, and X _{IN} .				
V _{IL2}	Low Level Input Voltage	-0.3	-	0.2*V _{DD}	V	For RESET, DBG, and X _{IN} .				
V _{IH1}	High Level Input Voltage	0.7*V _{DD}	-	5.5	V	Ports A and C pins when their programmable pull-ups are disabled.				
V _{IH2}	High Level Input Voltage	0.7*V _{DD}	-	V _{DD} +0.3	V	Port B pins. Ports A and C pins when their programmable pull- ups are enabled.				
V _{IH3}	High Level Input Voltage	0.8*V _{DD}	-	V _{DD} +0.3	V	RESET, DBG, and X _{IN} pins.				
V _{OL1}	Low Level Output Voltage	-	_	0.4	V	I _{OL} = 2 mA; V _{DD} = 3.0V High Output Drive disabled.				
V _{OH1}	High Level Output Voltage	2.4	-	_	V	$I_{OH} = -2 \text{ mA}; V_{DD} = 3.0 \text{ V}$ High Output Drive disabled.				
V _{OL2}	Low Level Output Voltage High Drive	-	_	0.6	V	$I_{OL} = 20 \text{ mA}; V_{DD} = 3.3 \text{ V}$ High Output Drive enabled $T_A = -40^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}$				
V _{OH2}	High Level Output Voltage High Drive	2.4	-	-	V	$I_{OH} = -20$ mA; $V_{DD} = 3.3$ V High Output Drive enabled; $T_A = -40^{\circ}$ C to +70°C				
V _{OL3}	Low Level Output Voltage High Drive	-	-	0.6	V	$I_{OL} = 15$ mA; $V_{DD} = 3.3$ V High Output Drive enabled; $T_A = +70^{\circ}$ C to $+105^{\circ}$ C				
V _{OH3}	High Level Output Voltage High Drive	2.4	_	_	V	I_{OH} = 15 mA; V_{DD} = 3.3V High Output Drive enabled; T_A = +70°C to +105°C				
V _{RAM}	RAM Data Retention	0.7	-	_	V					
I _{IL}	Input Leakage Current	-5	_	+5	μA	$V_{DD} = 3.6 \text{ V};$ $V_{IN} = V_{DD} \text{ or } V_{SS}^{1}$				

Table 98. DC Characteristics

O g

An IXYS Company

192

General Purpose I/O Port Output Timing

X_{IN}

Figure 49 and Table 107 provide timing information for GPIO port pins.

		Dela	ay (ns)		
Parameter	Abbreviation	Minimum	Maximum		
GPIO Port I	Pins				
T ₁	X _{IN} Rise to Port Output Valid Delay	_	15		
T ₂	X _{IN} Rise to Port Output Hold Time	2	_		

Table 107. GPIO Port Output Timing

ilog Embedded in Life An LIXYS Company 203

Condition Codes

The C, Z, S, and V flags control the operation of the conditional jump (JP cc and JR cc) instructions. Sixteen frequently useful functions of the flag settings are encoded in a 4-bit field called the condition code (cc), which forms Bits 7:4 of the conditional jump instructions. The condition codes are summarized in Table 118. Some binary condition codes can be created using more than one assembly code mnemonic. The result of the flag test operation decides if the conditional jump is executed.

Binary	Hex	Assembly Mnemonic	Definition	Flag Test Operation
0000	0	F	Always False	-
0001	1	LT	Less Than	(S XOR V) = 1
0010	2	LE	Less Than or Equal	(Z OR (S XOR V)) = 1
0011	3	ULE	Unsigned Less Than or Equal	(C OR Z) = 1
0100	4	OV	Overflow	V = 1
0101	5	MI	Minus	S = 1
0110	6	Z	Zero	Z = 1
0110	6	EQ	Equal	Z = 1
0111	7	С	Carry	C = 1
0111	7	ULT	Unsigned Less Than	C = 1
1000	8	T (or blank)	Always True	-
1001	9	GE	Greater Than or Equal	(S XOR V) = 0
1010	А	GT	Greater Than	(Z OR (S XOR V)) = 0
1011	В	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1
1100	С	NOV	No Overflow	V = 0
1101	D	PL	Plus	S = 0
1110	Е	NZ	Non-Zero	Z = 0
1110	Е	NE	Not Equal	Z = 0
1111	F	NC	No Carry	C = 0
1111	F	UGE	Unsigned Greater Than or Equal	C = 0

Table 118. Condition Codes

Embedded in Life

211

Assembly	Symbolic	Address Mode		Op ₋ Code(s)			Fla	ıgs	Fetch	Instr.		
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	н	Cycles	Cycles
DECW dst	dst ← dst – 1	RR		80	-	*	*	*	-	-	2	5
		IRR		81	-						2	6
DI	$IRQCTL[7] \leftarrow 0$			8F	-	-	-	-	-	-	1	2
DJNZ dst, RA	$dst \leftarrow dst - 1$ if dst $\neq 0$ PC \leftarrow PC + X	r		0A-FA	-	-	-	-	-	-	2	3
EI	IRQCTL[7] ← 1			9F	-	-	-	-	-	-	1	2
HALT	HALT Mode			7F	-	-	-	-	-	-	1	2
INC dst	dst ← dst + 1	R		20	-	*	*	*	-	-	2	2
		IR		21	-					-	2	3
		r		0E-FE	-					-	1	2
INCW dst	dst ← dst + 1	RR		A0	-	*	*	*	-	-	2	5
		IRR		A1	-					-	2	6
IRET	$\begin{array}{l} FLAGS \leftarrow @SP \\ SP \leftarrow SP + 1 \\ PC \leftarrow @SP \\ SP \leftarrow SP + 2 \\ IRQCTL[7] \leftarrow 1 \end{array}$			BF	*	*	*	*	*	*	1	5
JP dst	PC ← dst	DA		8D	-	-	-	-	-	-	3	2
		IRR		C4	-					-	2	3
JP cc, dst	if cc is true PC \leftarrow dst	DA		0D-FD	-	-	-	-	-	-	3	2
JR dst	$PC \gets PC + X$	DA		8B	-	-	-	-	-	-	2	2
JR cc, dst	if cc is true PC \leftarrow PC + X	DA		0B-FB	-	-	-	-	-	-	2	2

Table 127. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Embedded in Life

214

Assembly	Symbolic	Mor		Address Op Mode Code(s)			Fla	ıgs		Fetch	Instr.	
Mnemonic	Operation	dst	src	(Hex)	С	Ζ	S	۷	D	н	Cycles	Cycles
POPX dst	dst $\leftarrow @SP$ SP \leftarrow SP + 1	ER		D8	-	-	-	-	-	-	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	-	-	-	-	-	-	2	2
	$@SP \leftarrow src$	IR		71	-					-	2	3
PUSHX src	$SP \leftarrow SP - 1$ @SP ← src	ER		C8	-	-	-	-	-	-	3	2
RCF	C ← 0			CF	0	-	-	-	-	-	1	2
RET	$\begin{array}{l} PC \leftarrow @SP \\ SP \leftarrow SP + 2 \end{array}$			AF	-	-	-	-	-	-	1	4
RL dst		R		90	*	*	*	*	-	-	2	2
	□	IR		91	-					-	2	3
RLC dst		R		10	*	*	*	*	-	-	2	2
	C D7D6D5D4D3D2D1D0 dst	IR		11	-					-	2	3
RR dst		R		E0	*	*	*	*	-	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C dst	IR		E1	-					-	2	3
RRC dst		R		C0	*	*	*	*	-	-	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 - C	IR		C1	-					-	2	3
SBC dst, src	$dst \gets dst - src - C$	r	r	32	*	*	*	*	1	*	2	3
		r	Ir	33	_					-	2	4
	_	R	R	34	_					-	3	3
	_	R	IR	35	_					_	3	4
	_	R	IM	36	_					-	3	3
		IR	IM	37							3	4
SBCX dst, src	$dst \leftarrow dst - src - C$	ER	ER	38	*	*	*	*	1	*	4	3
		ER	IM	39							4	3
SCF	C ← 1			DF	1	-	-	-	-	-	1	2
SRA dst	<u> </u>	R		D0	*	*	*	0	-		2	2
	−D7 D6 D5 D4 D3 D2 D1 D0 → C dst	IR		D1							2	3

Table 127. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

– = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Embedded in Life An LIXYS Company 216

Assembly	Symbolic		dress ode	Op Code(s)			Fla	ıgs			Fetch	Instr. Cycles
Mnemonic	Operation	dst	src		С	Ζ	S	۷	D	н	Cycles	
TM dst, src	dst AND src	r	r	72	-	*	*	0	-	-	2	3
		r	lr	73	-						2	4
		R	R	74	-						3	3
		R	IR	75	-						3	4
		R	IM	76	-						3	3
		IR	IM	77	-						3	4
TMX dst, src	dst AND src	ER	ER	78	-	*	*	0	-	-	4	3
		ER	IM	79	-						4	3
TRAP Vector	$SP \leftarrow SP - 2$ @SP \leftarrow PC $SP \leftarrow SP - 1$ @SP \leftarrow FLAGS PC \leftarrow @Vector		Vecto r	F2	-	-	-	-	-	-	2	6
WDT				5F	-	-	-	-	-	-	1	2
XOR dst, src	$dst \gets dst \ XOR \ src$	r	r	B2	-	*	*	0	-	-	2	3
		r	lr	B3	_						2	4
		R	R	B4	-						3	3
		R	IR	B5	-						3	4
		R	IM	B6	-						3	3
		IR	IM	B7	-						3	4
XORX dst, src	$dst \gets dst \ XOR \ src$	ER	ER	B8	-	*	*	0	-	-	4	3
		ER	IM	B9	-						4	3

Table 127. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

221

nbedded in Life

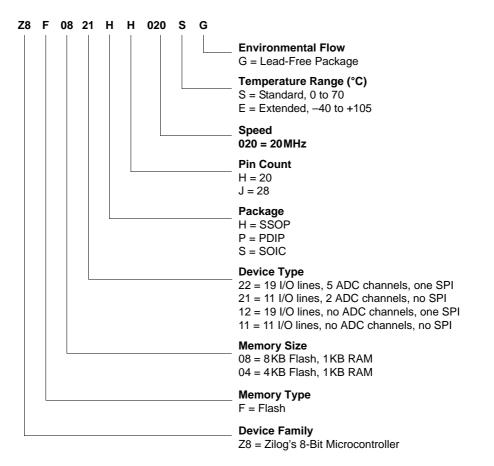
Packaging

Zilog's Z8 Encore! XP[®] F0822 Series of MCUs includes the Z8F0411, Z8F0421, Z8F0811 and Z8F0821 devices, which are available in the following packages:

- 20-pin Small Shrink Outline Package (SSOP)
- 20-pin Plastic Dual-Inline Package (PDIP)

Zilog's Z8 Encore! XP[®] F0822 Series of MCUs also includes the Z8F0412, Z8F0422, Z8F0812 and Z8F0822 devices, which are available in the following packages:

- 28-pin Small Outline Integrated Circuit Package (SOIC)
- 28-pin Plastic Dual-Inline Package (PDIP)


Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

Embedded in Life An IXYS Company 224

Part Number Suffix Designations

Zilog part numbers consist of a number of components, as indicated in the following example.

Example. Part number Z8F0821HH020SG is an 8-bit Flash Motor Controller with 8KB of Program Memory, equipped with 11 I/O lines and 2 ADC channels in a 20-pin SSOP package, operating within a 0°C to +70°C temperature range and built using lead-free solder.

