

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, IrDA, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	11
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 2x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f0821ph020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.	Z8 Encore! XP [®] F0822 Series Block Diagram
Figure 2.	The Z8F0821 and Z8F0421 MCUs in 20-Pin SSOP and PDIP Packages 8
Figure 3.	The Z8F0822 and Z8F0422 MCUs in 28-Pin SOIC and PDIP Packages 8
Figure 4.	The Z8F0811 and Z8F0411 MCUs in 20-Pin SSOP and PDIP Packages 9
Figure 5.	The Z8F0812 and Z8F0412 MCUs in 28-Pin SOIC and PDIP Packages $\ldots 9$
Figure 6.	Power-On Reset Operation
Figure 7.	Voltage Brown-Out Reset Operation
Figure 8.	GPIO Port Pin Block Diagram
Figure 9.	Interrupt Controller Block Diagram
Figure 10.	Timer Block Diagram 55
Figure 11.	UART Block Diagram
Figure 12.	UART Asynchronous Data Format without Parity
Figure 13.	UART Asynchronous Data Format with Parity
Figure 14.	UART Asynchronous Multiprocessor Mode Data Format
Figure 15.	UART Driver Enable Signal Timing (with 1 Stop Bit and Parity) 85
Figure 16.	UART Receiver Interrupt Service Routine Flow
Figure 17.	Infrared Data Communication System Block Diagram
Figure 18.	Infrared Data Transmission
Figure 19.	Infrared Data Reception
Figure 20.	SPI Configured as a Master in a Single Master, Single Slave System 101
Figure 21.	SPI Configured as a Master in a Single Master, Multiple Slave System 102
Figure 22.	SPI Configured as a Slave 102
Figure 23.	SPI Timing When PHASE is 0 105
Figure 24.	SPI Timing When PHASE is 1 106
Figure 25.	I ² C Controller Block Diagram 116
Figure 26.	7-Bit Address Only Transaction Format 120
Figure 27.	7-Bit Addressed Slave Data Transfer Format
Figure 28.	10-Bit Address Only Transaction Format
Figure 29.	10-Bit Addressed Slave Data Transfer Format 123
Figure 30.	Receive Data Transfer Format for a 7-Bit Addressed Slave 125
Figure 31.	Receive Data Format for a 10-Bit Addressed Slave
Figure 32.	Analog-to-Digital Converter Block Diagram
Figure 33.	Flash Memory Arrangement 144

Figure 34.	On-Chip Debugger Block Diagram 158
Figure 35.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #1 of 2
Figure 36.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #2 of 2
Figure 37.	OCD Data Format
Figure 38.	Recommended 20MHz Crystal Oscillator Configuration 173
Figure 39.	Connecting the On-Chip Oscillator to an External RC Network 174
Figure 40.	Typical RC Oscillator Frequency as a Function of External Capacitance with a $45k\Omega$ Resistor 175
Figure 41.	Typical Active Mode IDD vs. System Clock Frequency 179
Figure 42.	Maximum Active Mode IDD vs. System Clock Frequency 180
Figure 43.	Typical HALT Mode IDD vs. System Clock Frequency 181
Figure 44.	Maximum HALT Mode ICC vs. System Clock Frequency 182
Figure 45.	Maximum STOP Mode I _{DD} with VBO Enabled vs. Power Supply Voltage
Figure 46.	Maximum STOP Mode IDD with VBO Disabled vs. Power Supply
	Voltage
Figure 47.	Analog-to-Digital Converter Frequency Response 189
Figure 48.	Port Input Sample Timing 191
Figure 49.	GPIO Port Output Timing 192
Figure 50.	On-Chip Debugger Timing 193
Figure 51.	SPI MASTER Mode Timing 194
Figure 52.	SPI SLAVE Mode Timing 195
Figure 53.	I ² C Timing
Figure 54.	UART Timing with CTS 197
Figure 55.	UART Timing without CTS 198
Figure 56.	Flags Register
Figure 57.	Op Code Map Cell Description 218
Figure 58.	First Op Code Map
Figure 59.	Second Op Code Map after 1FH 220

ilog Embedded in Life

2

 0°C to +70°C standard temperature and -40°C to +105°C extended temperature operating ranges

Part Selection Guide

Table 1 identifies the basic features and package styles available for each device within the Z8 Encore! $XP^{\textcircled{B}}$ F0822 Series.

				16-bit Timers					Packa Cou	ige Pin unts
Part Number	Flash (KB)	RAM (KB)	I/O	with PWM	ADC Inputs	UARTs with IrDA	I ² C	SPI	20	28
Z8F0822	8	1	19	2	5	1	1	1		Х
Z8F0821	8	1	11	2	2	1	1		Х	
Z8F0812	8	1	19	2	0	1	1	1		Х
Z8F0811	8	1	11	2	0	1	1		Х	
Z8F0422	4	1	19	2	5	1	1	1		Х
Z8F0421	4	1	11	2	2	1	1		Х	
Z8F0412	4	1	19	2	0	1	1	1		Х
Z8F0411	4	1	11	2	0	1	1		Х	

Table 1. Z8 Encore! XP[®] F0822 Series Part Selection Guide

ilog° Embedded in Life An∎IXYS Company

7

Signal and Pin Descriptions

Z8 Encore! XP[®] F0822 Series products are available in a variety of packages, styles, and pin configurations. This chapter describes the signals and available pin configurations for each of the package styles. For information regarding the physical package specifications, see the <u>Packaging</u> chapter on page 221.

Available Packages

Table 2 identifies the package styles available for each device within the Z8 Encore! XP^{\circledast} F0822 Series.

	00 Din 000D	
10-Bit ADC	and PDIP	28-Pin SOIC and PDIP
Yes		Х
Yes	Х	
No		Х
No	Х	
Yes		Х
Yes	Х	
No		Х
No	Х	
	10-Bit ADC Yes No No Yes Yes No No	10-Bit ADCand PDIPYesXYesXNoXYesXYesXYesXNoXNoXNoX

Table 2. Z8 Encore! XP[®] F0822 Series Package Options

Pin Configurations

Figures 2 through 5 display the pin configurations for all of the packages available in the Z8 Encore! $XP^{\textcircled{B}}$ F0822 Series. See <u>Table 4</u> on page 13 for a description of the signals.

Note: The analog input alternate functions (ANAx) are not available on Z8 Encore! XP[®] F0822 Series devices.

Figure 4. The Z8F0811 and Z8F0411 MCUs in 20-Pin SSOP and PDIP Packages

Figure 5. The Z8F0812 and Z8F0412 MCUs in 28-Pin SOIC and PDIP Packages

Embedded in Life

Bit	Description
[7:0]	Pulse-Width Modulator High and Low Bytes
PWMH, PWML	These two bytes, {PWMH[7:0], PWML[7:0], form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control (TxCTL) Register. The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in CAPTURE or CAPTURE/COMPARE modes.

Timer 0–3 Control 0 Registers

The Timer 0–3 Control 0 (TxCTL0) registers, shown in Table 45, allow cascading of the Timers.

Bit	7	6	5	4	3	2	1	0
Field		Reserved		CSC		Rese	erved	
RESET				()			
R/W				R/	W			
Address		F06H, F0EH, F16H, F1EH						
Bit	Descriptio	Description						
[7:5]	Reserved These bits are reserved and must be programmed to 000.							
[4] CSC	 Cascade Timers 0 = Timer Input signal comes from the pin. 1 = For Timer 0, input signal is connected to Timer 1 output. For Timer 1, the input signal is connected to the Timer 0 output. 							
[3:0]	Reserved These bits are reserved and must be programmed to 0000.							

Table 45. Timer 0–3 Control 0 Registers (TxCTL0)

67

Operation

The UART always transmits and receives data in an 8-bit data format, least-significant bit first. An even or odd parity bit is optionally added to the data stream. Each character begins with an active Low start bit and ends with either 1 or 2 active High stop bits. Figures 12 and 13 display the asynchronous data format used by the UART without parity and with parity, respectively.

ILO G nbedded in Life

80

- Set or clear the CTSE bit to enable or disable control from the remote receiver using the CTS pin.
- 5. Check the TDRE bit in the UART Status 0 Register to determine if the Transmit Data Register is empty (indicated by a 1). If empty, continue to <u>Step 6</u>. If the Transmit Data Register is full (indicated by a 0), continue to monitor the TDRE bit until the Transmit Data Register becomes available to receive new data.
- 6. Write the UART Control 1 Register to select the outgoing address bit:
 - Set the Multiprocessor Bit Transmitter (MPBT) if sending an address byte, clear it if sending a data byte.
- 7. Write data byte to the UART Transmit Data Register. The transmitter automatically transfers data to the Transmit Shift Register and then transmits the data.
- 8. If required, and multiprocessor mode is enabled, make any changes to the Multiprocessor Bit Transmitter (MPBT) value.
- 9. To transmit additional bytes, return to <u>Step 5</u>.

Transmitting Data Using Interrupt-Driven Method

The UART Transmitter interrupt indicates the availability of the Transmit Data Register to accept new data for transmission. Follow the below steps to configure the UART for interrupt-driven data transmission:

- 1. Write to the UART Baud Rate High and Low Byte registers to set the required baud rate.
- 2. Enable the UART pin functions by configuring the associated GPIO port pins for alternate function operation.
- 3. Execute a DI instruction to disable interrupts.
- 4. Write to the Interrupt Control registers to enable the UART Transmitter interrupt and set the required priority.
- 5. If MULTIPROCESSOR Mode is required, write to the UART Control 1 Register to enable MULTIPROCESSOR (9-Bit) Mode functions:
 - Set the Multiprocessor Mode Select (MPEN) to enable MULTIPROCESSOR Mode.
- 6. Write to the UART Control 0 Register to:
 - Set the transmit enable (TEN) bit to enable the UART for data transmission
 - Enable parity, if required, and if MULTIPROCESSOR Mode is not enabled, and select either even or odd parity.

The UART is now configured for interrupt-driven data reception. When the UART Receiver Interrupt is detected, the associated ISR performs the following operations:

- 1. Check the UART Status 0 Register to determine the source of the interrupt, whether error, break or received data.
- 2. If the interrupt was due to data available, read the data from the UART Receive Data Register. If operating in MULTIPROCESSOR (9-Bit) Mode, further actions may be required depending on the Multiprocessor Mode bits MPMD[1:0].
- 3. Clear the UART Receiver Interrupt in the applicable Interrupt Request Register.
- 4. Execute the IRET instruction to return from the ISR and await more data.

Clear To Send Operation

The CTS pin, if enabled by the CTSE bit of the UART Control 0 Register, performs flow control on the outgoing transmit datastream. The Clear To Send ($\overline{\text{CTS}}$) input pin is sampled one system clock before beginning any new character transmission. To delay transmission of the next data character, an external receiver must deassert $\overline{\text{CTS}}$ at least one system clock cycle before a new data transmission begins. For multiple character transmissions, this would be done during stop bit transmission. If $\overline{\text{CTS}}$ deasserts in the middle of a character transmission, the current character is sent completely.

Multiprocessor (9-Bit) Mode

The UART features a MULTIPROCESSOR (9-Bit) Mode that uses an extra (9th) bit for selective communication when a number of processors share a common UART bus. In MULTIPROCESSOR Mode (also referred to as 9-bit mode), the multiprocessor bit is transmitted following the 8 bits of data and immediately preceding the stop bit(s); this character format is shown in Figure 14.

Figure 14. UART Asynchronous Multiprocessor Mode Data Format

83

00

SPI Control Register

The SPI Control Register, shown in Table 65, configures the SPI for transmit and receive operations.

Table 65. SPI Control Register (SPICTL)

Bit	7	6	5	4	3	2	1	0
Field	IRQE	STR	BIRQ	PHASE	CLKPOL	WOR	MMEN	SPIEN
RESET				()			
R/W				R/	W			
Address				F6	1H			
Bit	Descriptio	n						
[7] IRQE	Interrupt R 0 = SPI inte 1 = SPI inte	e quest Ena errupts are d errupts are e	ible isabled. No nabled. Inte	interrupt rec rrupt reques	quests are se sts are sent t	ent to the Int o the Interru	errupt Contr pt Controlle	oller. r.
[6] STR	 Start an SPI Interrupt Request 0 = No effect. 1 = Setting this bit to 1 also sets the IRQ bit in the SPI Status Register to 1. Setting this bit forces the SPI to send an interrupt request to the Interrupt Control. This bit can be used by software for a function similar to transmit buffer empty in a UART. Writing a 1 to the IRQ bit in the SPI Status Register clears this bit to 0. 							
[5] BIRQ	BRG Timer Interrupt Request If the SPI is enabled, this bit has no effect. If the SPI is disabled: 0 = BRG timer function is disabled. 1 = BRG timer function and time-out interrupt are enabled.							
[4] PHASE	Phase Sele Sets the ph the PHASE	ect ase relation bit, see the	ship of the d SPI Clock F	lata to the cl Phase and F	lock. For mo Polarity Cont	re information o	on about ope n page 104.	eration of
[3] CLKPOL	Clock Pola 0 = SCK idl 1 = SCK idl	r ity es Low (0). e High (1).						
[2] WOR	 Wire-OR (Open-Drain) Mode Enabled 0 = SPI signal pins not configured for open-drain. 1 = All four SPI signal pins (SCK, SS, MISO, MOSI) configured for open-drain function. This setting is typically used for multimaster and/or multislave configurations. 						ion. This	
[1] MMEN	SPI MASTE 0 = SPI cor 1 = SPI cor	SPI MASTER Mode Enable 0 = SPI configured in SLAVE Mode. 1 = SPI configured in MASTER Mode.						
[0] SPIEN	SPI Enable 0 = SPI disa 1 = SPI ena	e abled. abled.						

ilog[®] Embedded in Life

An IXYS Company

> ilog Embedded in Life

An IXYS Company

111

SPI Status Register

The SPI Status Register, shown in Table 66, indicates the current state of the SPI. All bits revert to their reset state if the SPIEN bit in the SPICTL Register equals 0.

Table 66. SPI Status Register (SPISTAT)

Bit	7	6	5	4	3	2	1	0	
Field	IRQ	OVR	COL	ABT	Rese	erved	TXST	SLAS	
RESET		0 1							
R/W		R/	W*			F	२		
Address				F6	2H				
Note: *R/V	N = read acce	ess; write a 1	to clear the b	it to 0.					
Bit	Descriptio	n							
[7] IRQ	Interrupt Request If SPIEN = 1, this bit is set if the STR bit in the SPICTL Register is set, or upon completion of an SPI Master or Slave transaction. This bit does not set if SPIEN = 0 and the SPI Baud Rate Generator is used as a timer to generate the SPI interrupt. 0 = No SPI interrupt request pending. 1 = SPI interrupt request is pending.						npletion of Baud Rate		
[6] OVR	Overrun 0 = An over 1 = An over	Overrun 0 = An overrun error has not occurred. 1 = An overrun error has been detected.							
[5] COL	Collision 0 = A multir 1 = A multir	master collis master collis	sion (mode f sion (mode f	ault) has no ault) has be	t occurred. en detected.				
[4] ABT	SLAVE Mode Transaction Abort This bit is set if the SPI is configured in SLAVE Mode, a transaction is occurring and \overline{SS} deasserts before all bits of a character have been transferred as defined by the NUMBITS field of the SPIMODE Register. The IRQ bit also sets, indicating the transaction has completed. 0 = A SLAVE Mode transaction abort has not occurred. 1 = A SLAVE Mode transaction abort has been detected.						d SS deas- rS field of eted.		
[3:2]	Reserved These bits	are reserved	d and must l	be programr	ned to 00.				
[1] TXST	Transmit S 0 = No data 1 = Data tra	Transmit Status 0 = No data transmission currently in progress. 1 = Data transmission currently in progress.							
[0] SLAS	 1 = Data transmission currently in progress. Slave Select If SPI is enabled as a Slave, then the following bit settings are true: 0 = <u>SS</u> input pin is asserted (Low) 1 = <u>SS</u> input is not asserted (High). If SPI is enabled as a Master, this bit is not applicable. 								

- 12. The I²C Controller loads the contents of the I²C Shift Register with the contents of the I²C Data Register.
- 13. The I²C Controller shifts the data out of using the SDA signal. After the first bit is sent, the transmit interrupt is asserted.
- 14. If more bytes remain to be sent, return to Step 9.
- 15. Software responds by setting the stop bit of the I²C Control Register (or start bit to initiate a new transaction). In the STOP case, software clears the TXI bit of the I²C Control Register at the same time.
- 16. The I²C Controller completes transmission of the data on the SDA signal.
- 17. The slave can either Acknowledge or Not Acknowledge the last byte. Because either the stop or start bit is already set, the NCKI interrupt does not occur.
- 18. The I²C Controller sends the stop (or restart) condition to the I²C bus. The stop or start bit is cleared.

Address-Only Transaction with a 10-Bit Address

In situations in which software must determine if a slave with a 10-bit address is responding without sending or receiving data, a transaction is performed which only consists of an address phase. Figure 28 displays this *address only* transaction to determine if a slave with a 10-bit address will acknowledge.

As an example, this transaction is used after a write has been executed to an EEPROM to determine when the EEPROM completes its internal write operation and is again responding to I^2C transactions. If the slave does not acknowledge, the transaction is repeated until the slave is able to acknowledge.

S	Slave Address 1st Seven Bits	W = 0	A/A	Slave Address 2nd Byte	A/A
---	---------------------------------	-------	-----	---------------------------	-----

Figure 28. 10-Bit Address Only Transaction Format

Observe the following procedure for an address-only transaction to a 10-bit addressed slave:

- 1. Software asserts the IEN bit in the I^2C Control Register.
- 2. Software asserts the TXI bit of the I^2C Control Register to enable transmit interrupts.
- 3. The I²C interrupt asserts, because the I²C Data Register is empty (TDRE = 1).
- 4. Software responds to the TDRE interrupt by writing the first slave address byte. The least-significant bit must be 0 for the write operation.
- 5. Software asserts the start bit of the I^2C Control Register.

16. If the I²C Slave sends an acknowledge by pulling the SDA signal Low during the next High period of SCL, the I²C Controller sets the ACK bit in the I²C Status Register. Continue to <u>Step 17</u>.

If the slave does not acknowledge the second address byte or one of the data bytes, the I²C Controller sets the NCKI bit and clears the ACK bit in the I²C Status Register. Software responds to the Not Acknowledge interrupt by setting the stop and flush bits and clearing the TXI bit. The I²C Controller sends the stop condition on the bus and clears the stop and NCKI bits. The transaction is complete; ignore the remainder of this sequence.

- 17. The I²C Controller shifts the data out by the SDA signal. After the first bit is sent, the transmit interrupt is asserted.
- 18. If more bytes remain to be sent, return to Step 14.
- 19. If the last byte is currently being sent, software sets the stop bit of the I²C Control Register (or start bit to initiate a new transaction). In the stop case, software simultaneously clears the TXI bit of the I²C Control Register.
- 20. The I²C Controller completes transmission of the last data byte on the SDA signal.
- 21. The slave can either Acknowledge or Not Acknowledge the last byte. Because either the stop or start bit is already set, the NCKI interrupt does not occur.
- 22. The I²C Controller sends the stop (or restart) condition to the I²C bus and clears the stop (or start) bit.

Read Transaction with a 7-Bit Address

Figure 30 displays the data transfer format for a read operation to a 7-bit addressed slave. The shaded regions indicate data transferred from the I^2C Controller to slaves and unshaded regions indicate data transferred from the slaves to the I^2C Controller.

S	Slave Address	R = 1	А	Data	А	Data	А	P/S
---	---------------	-------	---	------	---	------	---	-----

Figure 30. Receive Data Transfer Format for a 7-Bit Addressed Slave

Observe the following procedure for a read operation to a 7-bit addressed slave:

- 1. Software writes the I^2C Data Register with a 7-bit Slave address plus the read bit (=1).
- 2. Software asserts the start bit of the I²C Control Register.
- If this transfer is a single byte transfer, Software asserts the NAK bit of the I²C Control Register so that after the first byte of data has been read by the I²C Controller, a Not Acknowledge is sent to the I²C Slave.
- 4. The I^2C Controller sends the start condition.

134

Bit	Description (0	Continued)					
[4:0]	Internal State	Internal State					
TXRXSTATE	Value of the internal I ² C state machine.						
	TXRXSTATE	State Description					
	0_000	Idle State.					
	0_0001	Start State.					
	0_0010	Send/Receive data bit 7.					
	0_0011	Send/Receive data bit 6.					
	0_0100	Send/Receive data bit 5.					
	0_0101	Send/Receive data bit 4.					
	0_0110	Send/Receive data bit 3.					
	0_0111	Send/Receive data bit 2.					
	0_1000	Send/Receive data bit 1.					
	0_1001	Send/Receive data bit 0.					
	0_1010	Data Acknowledge State.					
	0_1011	Second half of data Acknowledge State used only for not acknowledge.					
	0_1100	First part of stop state.					
	0_1101	Second part of stop state.					
	0_1110	10-bit addressing: Acknowledge State for 2nd address byte;					
		7-bit addressing: Address Acknowledge State.					
	0_1111	10-bit address: Bit 0 (Least significant bit) of 2nd address byte;					
		7-bit address: Bit 0 (Least significant bit) (R/W) of address byte.					
	1_0000	10-bit addressing: Bit 7 (Most significant bit) of 1st address byte.					
	1_0001	10-bit addressing: Bit 6 of 1st address byte.					
	1_0010	10-bit addressing: Bit 5 of 1st address byte.					
	1_0011	10-bit addressing: Bit 4 of 1st address byte.					
	1_0100	10-bit addressing: Bit 3 of 1st address byte.					
	1_0101	10-bit addressing: Bit 2 of 1st address byte.					
	1_0110	10-bit addressing: Bit 1 of 1st address byte.					
	1_0111	10-bit addressing: Bit 0 (R/W) of 1st address byte.					
	1_1000	10-bit addressing: Acknowledge state for 1st address byte.					
	1_1001	10-bit addressing: Bit 7 of 2nd address byte;					
		7-bit addressing: Bit 7 of address byte.					
	1_1010	10-bit addressing: Bit 6 of 2nd address byte;					
		7-bit addressing: Bit 6 of address byte.					
	1_1011	10-bit addressing: Bit 5 of 2nd address byte;					
		7-bit addressing: Bit 5 of address byte.					
	1_1100	10-bit addressing: Bit 4 of 2nd address byte;					
		7-bit addressing: Bit 4 of address byte.					
	1_1101	10-bit addressing: Bit 3 of 2nd address byte;					
		7-bit addressing: Bit 3 of address byte.					
	1_1110	10-bit addressing: Bit 2 of 2nd address byte;					
		7-bit addressing: Bit 2 of address byte.					
	1_1111	10-bit addressing: Bit 1 of 2nd address byte;					
		7-bit addressing: Bit 1 of address byte.					

ilog Embedded in Life An TIXYS Company 149

For more information about bypassing the Flash Controller, refer to the <u>Third Party Flash</u> <u>Programming Support for Z8 Encore! MCU Application Note (AN0117)</u>, available for download at <u>www.zilog.com</u>.

Flash Controller Behavior in Debug Mode

The following changes in behavior of the Flash Controller occur when the Flash Controller is accessed using the OCD:

- The Flash Write Protect option bit is ignored
- The Flash Sector Protect Register is ignored for programming and erase operations
- Programming operations are not limited to the page selected in the Page Select Register
- Bits in the Flash Sector Protect Register can be written to 1 or 0
- The second write of the Page Select Register to unlock the Flash Controller is not necessary
- The Page Select Register is written when the Flash Controller is unlocked
- The Mass Erase command is enabled

Flash Control Register Definitions

This section defines the features of the following Flash Control registers.

Flash Control Register: see page 150

Flash Status Register: see page 151

Page Select Register: see page 152

Flash Sector Protect Register: see page 152

Flash Frequency High and Low Byte Registers: see page 153

Embedded in Life

System Clock Frequency (MHz)	Recommended Maximum Baud Rate (Kbps)	Minimum Baud Rate (Kbps)		
20.0	2500	39.1		
1.0	125.0	1.96		
0.032768 (32kHz)	4.096	0.064		

Table 92. OCD Baud-Rate Limits

If the OCD receives a serial break (nine or more continuous bits Low) the Autobaud Detector/Generator resets. The Autobaud Detector/Generator can then be reconfigured by sending 80H.

OCD Serial Errors

The OCD can detect any of the following error conditions on the DBG pin:

- Serial break (a minimum of nine continuous bits Low)
- Framing error (received stop bit is Low)
- Transmit collision (OCD and host simultaneous transmission detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a serial break that is 4096 system clock cycles in duration to the host, and resets the Autobaud Detector/Generator. A framing error or transmit collision can be caused by the host sending a serial break to the OCD. Because of the open-drain nature of the interface, returning a serial break back to the host only extends the length of the serial break if the host releases the serial break early.

The host transmits a serial break on the DBG pin when first connecting to the Z8 Encore! $XP^{\textcircled{0}}$ F0822 Series device or when recovering from an error. A serial break from the host resets the Autobaud Generator/Detector but does not reset the OCD Control Register. A serial break leaves the device in DEBUG Mode if that is the current mode. The OCD is held in Reset until the end of the serial break when the DBG pin returns High. Because of the open-drain nature of the DBG pin, the host can send a serial break to the OCD even if the OCD is transmitting a character.

Breakpoints

Execution breakpoints are generated using the BRK instruction (Op Code 00H). When the eZ8 CPU decodes a BRK instruction, it signals the OCD. If breakpoints are enabled, the OCD idles the eZ8 CPU and enters DEBUG Mode. If breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as a NOP instruction.

ILO G Embedded in Life IXYS Company
163

If breakpoints are enabled, the OCD can be configured to automatically enter DEBUG Mode, or to loop on the break instruction. If the OCD is configured to loop on the BRK instruction, then the CPU is still enabled to service DMA and interrupt requests.

The loop on a BRK instruction can be used to service interrupts in the background. For interrupts to be serviced in the background, there cannot be any breakpoints in the ISR. Otherwise, the CPU stops on the breakpoint in the interrupt routine. For interrupts to be serviced in the background, interrupts must also be enabled. Debugging software should not automatically enable interrupts when using this feature, because interrupts are typically disabled during critical sections of code where interrupts should not occur (such as adjusting the stack pointer or modifying shared data).

Software can poll the IDLE bit of the OCDSTAT Register to determine if the OCD is looping on a BRK instruction. When software wants to stop the CPU on the BRK instruction it is looping on, software should not set the DBGMODE bit of the OCDCTL Register. The CPU can have vectored to and be in the middle of an ISR when this bit gets set. Instead, software must clear the BRKLP bit. This allows the CPU to finish the ISR it is in and return the BRK instruction. When the CPU returns to the BRK instruction it was previously looping on, it automatically sets the DBGMODE bit and enter DEBUG Mode.

Software should also note that the majority of the OCD commands are still disabled when the eZ8 CPU is looping on a BRK instruction. The eZ8 CPU must be stopped and the part must be in DEBUG Mode before these commands can be issued.

Breakpoints in Flash Memory

The BRK instruction is Op Code 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a Breakpoint, write 00H to the appropriate address, overwriting the current instruction. To remove a Breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

OCDCNTR Register

The OCD contains a multipurpose 16-bit counter register. It can be used for the following:

- Count system clock cycles between breakpoints
- Generate a BRK when it counts down to zero
- Generate a BRK when its value matches the Program Counter

When configured as a counter, the OCDCNTR Register starts counting when the OCD leaves DEBUG Mode and stops counting when it enters DEBUG Mode again or when it reaches the maximum count of FFFFH. The OCDCNTR Register automatically resets itself to 0000H when the OCD exits DEBUG Mode if it is configured to count clock cycles between breakpoints.

Z8 Encore! XP [®]	F0822 Series
Product	Specification
	iloa

196

Embedded in Life

An IXYS Company

I²C Timing

Figure 53. I²C Timing

Table	111.	I ² C	Timing
-------	------	------------------	--------

		Delay (ns)			
Parameter	Abbreviation	Minimum	Maximum		
l ² C					
T ₁	SCL Fall to SDA output delay	SCL period/4			
T ₂	SDA Input to SCL rising edge Setup Time	0			
T ₃	SDA Input to SCL falling edge Hold Time	0			

00

217

Flags Register

The Flags Register contains the status information regarding the most recent arithmetic, logical, bit manipulation or rotate and shift operation. The Flags Register contains six bits of status information that are set or cleared by CPU operations. Four of the bits (C, V, Z and S) can be tested with conditional jump instructions. Two flags (H and D) cannot be tested and are used for Binary-Coded Decimal (BCD) arithmetic.

The two remaining bits, User Flags (F1 and F2), are available as general-purpose status bits. User Flags are unaffected by arithmetic operations and must be set or cleared by instructions. The User Flags cannot be used with conditional Jumps. They are undefined at initial power-up and are unaffected by Reset. Figure 56 illustrates the flags and their bit positions in the Flags Register.

Figure 56. Flags Register

Interrupts, the Software Trap (TRAP) instruction, and Illegal Instruction Traps all write the value of the Flags Register to the stack. Executing an Interrupt Return (IRET) instruction restores the value saved on the stack into the Flags Register.

Hex Address: F0F

Table 145. Timer 0–1 Control Registers (TxCTL)

Bit	7	6	5	4	3	2	1	0	
Field	TEN	TPOL		PRES		TMODE			
RESET		0							
R/W	R/W								
Address	F07H, F0FH								

Hex Addresses: F10–F3F

This address range is reserved.

UART Control Registers

For more information about the UART registers, see the <u>UART Control Register Defini-</u> tions section on page 88.

Hex Address: F40

Bit	7	6	5	4	3	2	1	0	
Field	TXD								
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	W	W	W	W	W	W	W	W	
Address	F40H								

Table 146. UART Transmit Data Register (U0TXD)

Table 147. UART Receive Data Register (U0RXD)

Bit	7	6	5	4	3	2	1	0	
Field	RXD								
RESET	Х								
R/W	R								
Address	F40H								