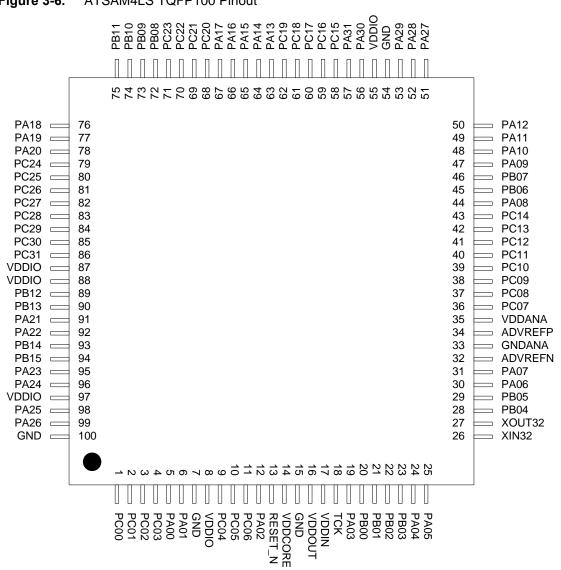


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 7x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4lc2ba-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1.2 ATSAM4LSx Pinout

Atmel

Figure 3-6. ATSAM4LS TQFP100 Pinout

14

3.2 Peripheral Multiplexing on I/O lines

3.2.1 Multiplexed Signals

Each GPIO line can be assigned to one of the peripheral functions. The following tables (Section 3-1 "100-pin GPIO Controller Function Multiplexing" on page 19 to Section 3-4 "48-pin GPIO Controller Function Multiplexing" on page 28) describes the peripheral signals multiplexed to the GPIO lines.

Peripheral functions that are not relevant in some parts of the family are grey-shaded.

For description of differents Supply voltage source, refer to the Section 6. "Power and Startup Considerations" on page 46.

 Table 3-1.
 100-pin GPIO Controller Function Multiplexing (Sheet 1 of 4)

lable	•			0 0011	101101	i unotion	manupion	ng (Oneer	1 01 1)				
	ATSAM4LC		ATSAM4LS	Pin	GPIO	Supply			G	PIO Functio	ns		
QFN	VFBGA	QFN	VFBGA				Α	В	С	D	E	F	G
5	B9	5	B9	PA00	0	VDDIO							
6	B8	6	B8	PA01	1	VDDIO							
12	A7	12	A7	PA02	2	VDDIN	SCIF GCLK0	SPI NPCS0					CATB DIS
19	В3	19	В3	PA03	3	VDDIN		SPI MISO					
24	A2	24	A2	PA04	4	VDDANA	ADCIFE AD0	USART0 CLK	EIC EXTINT2	GLOC IN1			CATB SENSE0
25	A1	25	A1	PA05	5	VDDANA	ADCIFE AD1	USART0 RXD	EIC EXTINT3	GLOC IN2	ADCIFE TRIGGER		CATB SENSE1
30	C3	30	C3	PA06	6	VDDANA	DACC VOUT	USART0 RTS	EIC EXTINT1	GLOC IN0	ACIFC ACAN0		CATB SENSE2
31	D3	31	D3	PA07	7	VDDANA	ADCIFE AD2	USART0 TXD	EIC EXTINT4	GLOC IN3	ACIFC ACAP0		CATB SENSE3
44	G2	44	G2	PA08	8	LCDA	USART0 RTS	TC0 A0	PEVC PAD EVT0	GLOC OUT0		LCDCA SEG23	CATB SENSE4
47	F5	47	F5	PA09	9	LCDA	USART0 CTS	ТС0 В0	PEVC PAD EVT1	PARC PCDATA0		LCDCA COM3	CATB SENSE5
48	H2	48	H2	PA10	10	LCDA	USART0 CLK	TC0 A1	PEVC PAD EVT2	PARC PCDATA1		LCDCA COM2	CATB SENSE6
49	H3	49	H3	PA11	11	LCDA	USART0 RXD	TC0 B1	PEVC PAD EVT3	PARC PCDATA2		LCDCA COM1	CATB SENSE7
50	J2	50	J2	PA12	12	LCDA	USART0 TXD	TC0 A2		PARC PCDATA3		LCDCA COM0	CATB DIS
63	H5	63	H5	PA13	13	LCDA	USART1 RTS	TC0 B2	SPI NPCS1	PARC PCDATA4		LCDCA SEG5	CATB SENSE8
64	K 7	64	K 7	PA14	14	LCDA	USART1 CLK	TC0 CLK0	SPI NPCS2	PARC PCDATA5		LCDCA SEG6	CATB SENSE9
65	G5	65	G5	PA15	15	LCDA	USART1 RXD	TC0 CLK1	SPI NPCS3	PARC PCDATA6		LCDCA SEG7	CATB SENSE10

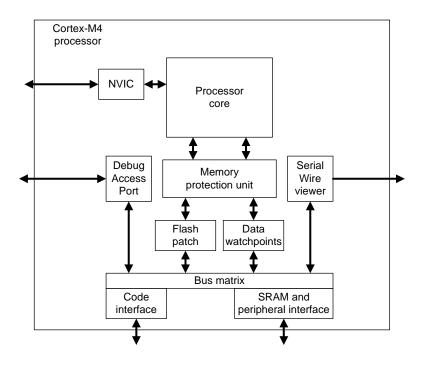
 Table 3-1.
 100-pin GPIO Controller Function Multiplexing (Sheet 4 of 4)

	ATSAM4LC		ATSAM4LS	Pin	GPIO	Supply			G	PIO Functio	ns		
QFN	VFBGA	QFN	VFBGA				Α	В	С	D	E	F	G
59	J6	59	J6	PC16	80	LCDA	TC1 B0			GLOC IN5		LCDCA SEG1	CATB SENSE17
60	H4	60	H4	PC17	81	LCDA	TC1 A1			GLOC IN6		LCDCA SEG2	CATB SENSE18
61	K6	61	K6	PC18	82	LCDA	TC1 B1			GLOC IN7		LCDCA SEG3	CATB SENSE19
62	G4	62	G4	PC19	83	LCDA	TC1 A2			GLOC OUT1		LCDCA SEG4	CATB SENSE20
68	H7	68	H7	PC20	84	LCDA	TC1 B2					LCDCA SEG10	CATB SENSE21
69	К8	69	K8	PC21	85	LCDA	TC1 CLK0			PARC PCCK		LCDCA SEG11	CATB SENSE22
70	J8	70	J8	PC22	86	LCDA	TC1 CLK1			PARC PCEN1		LCDCA SEG12	CATB SENSE23
71	H8	71	H8	PC23	87	LCDA	TC1 CLK2			PARC PCEN2		LCDCA SEG13	CATB DIS
79	J9	79	J 9	PC24	88	LCDB	USART1 RTS	EIC EXTINT1	PEVC PAD EVT0	PARC PCDATA0		LCDCA SEG24	CATB SENSE24
80	H9	80	H9	PC25	89	LCDB	USART1 CLK	EIC EXTINT2	PEVC PAD EVT1	PARC PCDATA1		LCDCA SEG25	CATB SENSE25
81	G9	81	G9	PC26	90	LCDB	USART1 RXD	EIC EXTINT3	PEVC PAD EVT2	PARC PCDATA2	SCIF GCLK0	LCDCA SEG26	CATB SENSE26
82	F6	82	F6	PC27	91	LCDB	USART1 TXD	EIC EXTINT4	PEVC PAD EVT3	PARC PCDATA3	SCIF GCLK1	LCDCA SEG27	CATB SENSE27
83	G10	83	G10	PC28	92	LCDB	USART3 RXD	SPI MISO	GLOC IN4	PARC PCDATA4	SCIF GCLK2	LCDCA SEG28	CATB SENSE28
84	F7	84	F7	PC29	93	LCDB	USART3 TXD	SPI MOSI	GLOC IN5	PARC PCDATA5	SCIF GCLK3	LCDCA SEG29	CATB SENSE29
85	F8	85	F8	PC30	94	LCDB	USART3 RTS	SPI SCK	GLOC IN6	PARC PCDATA6	SCIF GCLK IN0	LCDCA SEG30	CATB SENSE30
86	F9	86	F9	PC31	95	LCDB	USART3 CLK	SPI NPCS0	GLOC OUT1	PARC PCDATA7	SCIF GCLK IN1	LCDCA SEG31	CATB SENSE31

 Table 3-2.
 64-pin GPIO Controller Function Multiplexing (Sheet 1 of 3)

ATSAM4LC	ATSAM4LS	Pin	GPIO	Supply			G	PIO Functio	ns		
QFP	QFP		•	S							
QFN	QFN				Α	В	С	D	E	F	G
1	1	PA00	0	VDDIO							
2	2	PA01	1	VDDIO							
3	3	PA02	2	VDDIN	SCIF GCLK0	SPI NPCS0					CATB DIS
10	10	PA03	3	VDDIN		SPI MISO					

3.4.7 ADC Input Pins


These pins are regular I/O pins powered from the VDDANA.

4. Cortex-M4 processor and core peripherals

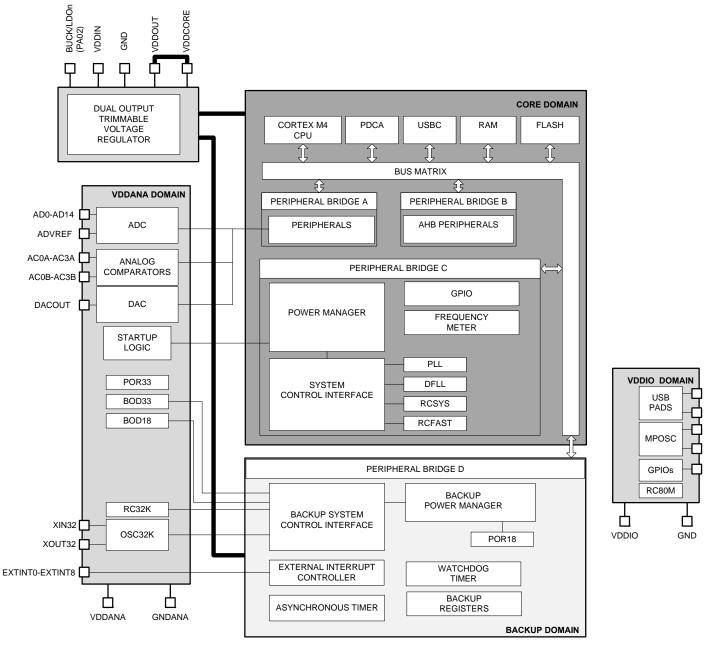
4.1 Cortex-M4

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to developers, including:

- outstanding processing performance combined with fast interrupt handling
- enhanced system debug with extensive breakpoint and trace capabilities
- efficient processor core, system and memories
- ultra-low power consumption with integrated sleep modes
- platform security robustness, with integrated memory protection unit (MPU).

The Cortex-M4 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an efficient instruction set and extensively optimized design, providing high-end processing hardware including a range of single-cycle and SIMD multiplication and multiply-with-accumulate capabilities, saturating arithmetic and dedicated hardware division.

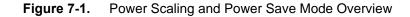
To facilitate the design of cost-sensitive devices, the Cortex-M4 processor implements tightlycoupled system components that reduce processor area while significantly improving interrupt handling and system debug capabilities. The Cortex-M4 processor implements a version of the Thumb[®] instruction set based on Thumb-2 technology, ensuring high code density and reduced program memory requirements. The Cortex-M4 instruction set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.

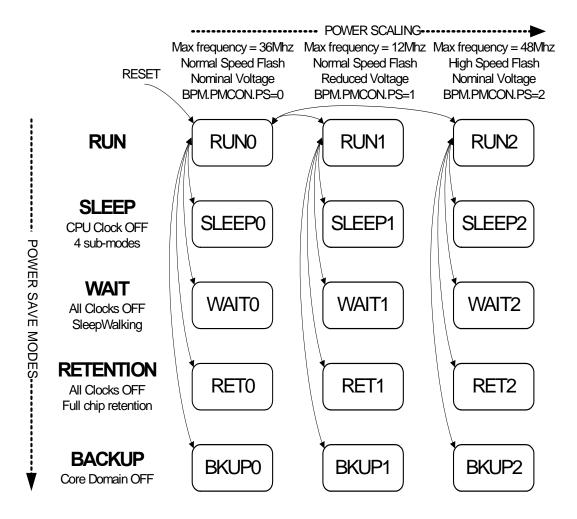

The Cortex-M4 processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC includes a *non-maskable interrupt* (NMI), and provides up to 80 interrupt priority levels. The tight integration of the proces-

6. Power and Startup Considerations

6.1 Power Domain Overview

Figure 6-1. ATSAM4LS Power Domain Diagram




7. Low Power Techniques

The ATSAM4L8/L4/L2 supports multiple power configurations to allow the user to optimize its power consumption in different use cases. The Backup Power Manager (BPM) implements different solutions to reduce the power consumption:

- The Power Save modes intended to reduce the logic activity and to adapt the power configuration. See "Power Save Modes" on page 55.
- The Power Scaling intended to scale the power configuration (voltage scaling of the regulator). See "Power Scaling" on page 60.

These two techniques can be combined together.

7.1 Power Save Modes

Refer to Section 6. "Power and Startup Considerations" on page 46 to get definition of the core and the backup domains.

mechanism can be useful for applications that only require the processor to run when an interrupt occurs.

Before entering the SLEEP mode, the user must configure:

- the SLEEP mode configuration field (BPM.PMCON.SLEEP), Refer to Table 7-1.
- the SCR.SLEEPDEEP bit to 0. (See the Power Management section in the ARM Cortex-M4 Processor chapter).
- the BPM.PMCON.RET bit to 0.
- the BPM.PMCON.BKUP bit to 0.

7.1.1.2 Exiting SLEEP mode

The NVIC wakes the system up when it detects any non-masked interrupt with sufficient priority to cause exception entry. The system goes back to the RUN mode from which the SLEEP mode was entered. The CPU and affected modules are restarted. Note that even if an interrupt is enabled in SLEEP mode, it will not trigger if the source module is not clocked.

7.1.2 WAIT Mode and RETENTION Mode

The WAIT and RETENTION modes allow achieving very low power consumption while maintaining the Core domain powered-on. Internal SRAM and registers contents of the Core domain are preserved.

In these modes, all clocks are stopped except the 32kHz clocks (OSC32K, RC32K) which are kept running if enabled.

In RETENTION mode, the SleepWalking feature is not supported and must not be used.

7.1.2.1 Entering WAIT or RETENTION Mode

The WAIT or RETENTION modes are entered by executing the WFI instruction with the following settings:

- set the SCR.SLEEPDEEP bit to 1. (See the Power Management section in the ARM Cortex-M4 Processor chapter).
- set the BPM.PSAVE.BKUP bit to 0.
- set the BPM.PMCON.RET bit to RETENTION or WAIT mode.

SLEEPONEXIT feature is also available. See "Entering SLEEP mode" on page 56.

7.1.2.2 Exiting WAIT or RETENTION Mode

In WAIT or RETENTION modes, synchronous clocks are stopped preventing interrupt sources from triggering. To wakeup the system, asynchronous wake up sources (AST, EIC, USBC ...) should be enabled in the peripheral (refer to the documentation of the peripheral). The PM.AWEN (Asynchronous Wake Up Enable) register should also be enabled for all peripheral except for EIC and AST.

When the enabled asynchronous wake up event occurs and the system is waken-up, it will generate either:

- an interrupt on the PM WAKE interrupt line if enabled (Refer to Section 9. "Power Manager (PM)" on page 677). In that case, the PM.WCAUSE register indicates the wakeup source.
- or an interrupt directly from the peripheral if enabled (Refer to the section of the peripheral).

When waking up, the system goes back to the RUN mode mode from which the WAIT or RETENTION mode was entered.

ATSAM4L8/L4/L2

8.7 Enhanced Debug Port (EDP)

Rev.: 1.0.0.0

8.7.1 Features

- IEEE1149.1 compliant JTAG debug port
- Serial Wire Debug Port
- Boundary-Scan chain on all digital pins for board-level testing
- Debugger Hot-Plugging
- SMAP core reset request source

8.7.2 Overview

The enhanced debug port embeds a standard ARM debug port plus some specific hardware intended for testability and activation of the debug port features. All the information related to the ARM Debug Interface implementation can be found in the ARM Debug Interface v5.1 Architecture Specification document.

It features:

- A single Debug Port (SWJ-DP), that provides the external physical connection to the interface and supports two DP implementations:
 - the JTAG Debug Port (JTAG-DP)
 - the Serial Wire Debug Port (SW-DP)
- A supplementary JTAG TAP (BSCAN-TAP) connected in parallel with the JTAG-DP that implements the boundary scan instructions detailed in
- A JTAG-FILTER module that monitors TCK and RESET_N pins to handle specific features like the detection of a debugger hot-plugging and the request of reset of the Cortex-M4 at startup.

The JTAG-FILTER module detects the presence of a debugger. When present, JTAG pins are automatically assigned to the Enhanced Debug Port(EDP). If the SWJ-DP is switched to the SW mode, then TDI and TDO alternate functions are released. The JTAG-FILTER also implements a CPU halt mechanism. When triggered, the Cortex-M4 is maintained under reset after the external reset is released to prevent any system corruption during later programmation operations.

8.11.8 Chip erase typical procedure

The chip erase operation is triggered by writing a one in the CE bit in the Control Register (CR.CE). This clears first all volatile memories in the system and second the whole flash array. Note that the User page is not erased in this process. To ensure that the chip erase operation is completed, check the DONE bit in the Status Register (SR.DONE). Also note that the chip erase operation depends on clocks and power management features that can be altered by the CPU. It is important to ensure that it is stopped. The recommended sequence is shown below:

- 1. At power up, RESET_N is driven low by a debugger. The on-chip regulator holds the system in a POR state until the input supply is above the POR threshold. The system continues to be held in this static state until the internally regulated supplies have reached a safe operating.
- PM starts, clocks are switched to the slow clock (Core Clock, System Clock, Flash Clock, and any Bus Clocks that do not have clock gate control). Internal resets are maintained due to the external reset.
 - The debug port and access ports receives a clock and leave the reset state
- 3. The debugger maintains a low level on TCK and release RESET_N.
 - The SMAP asserts the core_hold_reset signal
- 4. The Cortex-M4 core remains in reset state, meanwhile the rest of the system is released.
- 5. The Chip erase operation can be performed by issuing the SMAP Chip Erase command. In this case:
 - volatile memories are cleared first
 - followed by the clearing of the flash array
 - followed by the clearing of the protected state

Atmel

 After operation is completed, the chip must be restarted by either controling RESET_N or switching power off/on. Make sure that the TCK pin is high when releasing RESET_N not to halt the core.

8.11.9 Setting the protected state

This is done by issuing a specific flash controller command, for more information, refer to the Flash Controller chapter and to section 8.11.7Flash Programming typical procedure97. The protected state is defined by a highly secure Flash builtin mechanism. Note that for this programmation to propagate, it is required to reset the chip.

Symbol	Parameter	Description	Мах	Units
f _{CPU}	CPU clock frequency		12	
f _{PBA}	PBA clock frequency		12	
f _{PBB}	PBB clock frequency		12	
f _{PBC}	PBC clock frequency		12	
f _{PBD}	PBD clock frequency		12	
f _{GCLK0}	GCLK0 clock frequency	DFLLIF main reference, GCLK0 pin	16.6	
f _{GCLK1}	GCLK1 clock frequency	DFLLIF dithering and SSGreference, GCLK1 pin	16.6	
f _{GCLK2}	GCLK2 clock frequency	AST, GCLK2 pin	6.6	
f _{GCLK3}	GCLK3 clock frequency	CATB, GCLK3 pin	17.3	
f _{GCLK4}	GCLK4 clock frequency	FLO and AESA	16.6	
f _{GCLK5}	GCLK5 clock frequency	GLOC, TC0 and RC32KIFB_REF	26.6	
f _{GCLK6}	GCLK6 clock frequency	ABDACB and IISC	16.6	MHz
f _{GCLK7}	GCLK7 clock frequency	USBC	16.6	
f _{GCLK8}	GCLK8 clock frequency	TC1 and PEVC[0]	16.6	
f _{GCLK9}	GCLK9 clock frequency	PLL0 and PEVC[1]	16.6	
f _{GCLK10}	GCLK10 clock frequency	ADCIFE	16.6	
f _{GCLK11}	GCLK11 clock frequency	Master generic clock. Can be used as source for other generic clocks	51.2	
	0000 1 11	Oscillator 0 in crystal mode	16	
f _{OSC0}	OSC0 output frequency	Oscillator 0 in digital clock mode	16	
f _{PLL}	PLL output frequency	Phase Locked Loop	N/A	
f _{DFLL}	DFLL output frequency	Digital Frequency Locked Loop	N/A	
f _{RC80M}	RC80M output frequency	Internal 80MHz RC Oscillator	N/A	

Table 9-5.Maximum Clock Frequencies in Power Scaling Mode 1 and RUN Mode

Mode	Conditions	T _A	Typical Wakeup Time	Тур	Max ⁽¹⁾	Unit
	Quuitabing mode	25°C	9 * Main clock	3817	4033	
SLEEP0	Switching mode	85°C	cycles	4050	4507	
	Quitabing mode	25°C	9 * Main clock	2341	2477	
SLEEP1	Switching mode	85°C	cycles + 500ns	2525	2832	
SLEEP2	Quitabing made	25°C	9 * Main clock	1758	1862	
	Switching mode	85°C	cycles + 500ns	1925	1971	
SLEEP3	Linear mode			51	60	
	OSC32K and AST running Fast wake-up enable		4.5	6.7		μΑ
WAIT	OSC32K and AST stopped Fast wake-up enable		1.5µs	5.5		
RETENTION	OSC32K running AST running at 1kHz	25°C	1.5µs	3.9		
	AST and OSC32K stopped			3.0		
BACKUP	OSC32K running AST running at 1 kHz			1.5	3.1	
	AST and OSC32K stopped			0.9	1.7	

 Table 9-7.
 ATSAM4L8 Current consumption and Wakeup time for power scaling mode 0 and 2

1. These values are based on characterization. These values are not covered by test limits in production.

9.5.2 Power Scaling 1

The values in Table 34-7 are measured values of power consumption under the following conditions, except where noted:

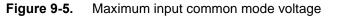
Operating conditions for power scaling mode 1

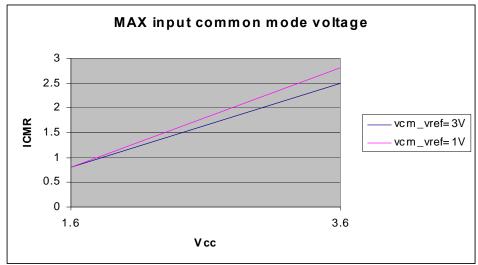
 $-V_{VDDIN} = 3.3V$

- Wake up time from low power modes is measured from the edge of the wakeup signal to the first instruction fetched in flash.
- Oscillators
 - OSC0 (crystal oscillator) and OSC32K (32kHz crystal oscillator) stopped
 - RCFAST Running at 12MHz
- Clocks
 - RCFAST used as main clock source
 - CPU, AHB clocks undivided
 - APBC and APBD clocks divided by 4
 - APBA and APBB bridges off
 - The following peripheral clocks running
 - PM, SCIF, AST, FLASHCALW, APBC and APBD bridges

9.9.4 Analog- to Digital Converter Characteristics

Table 9-45. C	perating conditions
---------------	---------------------


Symbol	Parameter	Conditions	Min	Тур	Max	Units		
	Temperature range		-40		+85	°C		
	Resolution ⁽¹⁾	Мах		12	12 (2)	Bit		
	Sampling clock ⁽³⁾	Differential modes, Gain=1X	5		300			
		Unipolar modes, Gain=1X	5		250	- kHz		
4	ADC clock frequency ⁽³⁾	Differential modes	0.03		1.8			
f _{ADC}	ADC Clock frequency.	Unipolar modes	0.03		1.5	MHz		
-	Sampling time ⁽³⁾	Differential modes	16.5		277	μs		
T _{SAMPLEHOLD}	Sampling time	Unipolar modes	16.5		333			
	Conversion rate ⁽¹⁾	1X gain, differential			300	kSps		
	Internal channel conversion rate ⁽³⁾	V _{VDD} /10, Bandgap and Temperature channels			125	kSps		
		1X gain, (resolution/2)+gain ⁽⁴⁾			6			
		2X and 4X gain			7	_		
	Conversion time (latency) Differential mode (no windowing)	8X and 16X gain			8	Cycles		
		32X and 64X gain			9			
		64X gain and unipolar			10	1		


1. These values are based on characterization. These values are not covered by test limits in production

2. Single ended or using divide by two max resolution: 11 bits

3. These values are based on simulation. These values are not covered by test limits in production

4. See Figure 9-5

ATSAM4L8/L4/L2

Table 9-46. DC Characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Units
VDDANA	Supply voltage ⁽¹⁾		1.6		3.6	V
		Differential mode	1.0		VDDANA -0.6	
	Reference range ⁽²⁾	Unipolar and Window modes	1.0		1.0	V
		Using divide by two function (differential)	2.0		VDDANA	
	Absolute min, max input voltage ⁽²⁾		-0,1		VDDANA +0.1	V
	Start up time ⁽²⁾	ADC with reference already enabled		12	24	Cycles
		No gain compensation Reference buffer			5	μs
		Gain compensation Reference buffer			60	Cycles
R _{SAMPLE}	Input channel source resistance ⁽²⁾				0.5	kΩ
C _{SAMPLE}	Sampling capacitance ⁽²⁾		2.9	3.6	4.3	pF
	Potoronoo input course registence ⁽²⁾	Gain compensation			2	kΩ
	Reference input source resistance ⁽²⁾	No gain compensation			1	MΩ
	ADC reference settling time ⁽²⁾	After changing reference/mode ⁽³⁾		5	60	Cycles

1. These values are based on characterization. These values are not covered by test limits in production

2. These values are based on simulation. These values are not covered by test limits in production

3. Requires refresh/flush otherwise conversion time (latency) + 1

Table 9-47.	Differential mode, gair	∩=1
-------------	-------------------------	-----

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Accuracy without compensation (1)			7		ENOB
	Accuracy after compensation ⁽¹⁾	(INL, gain and offset)			11	ENOB
INL	Integral Non Linearity ⁽²⁾	After calibration, Gain compensation		1.2	1.7	LSBs
DNL	Differential Non Linearity ⁽²⁾	After calibration		0.7	1.0	LSBs
		External reference	-5.0	-1.0	5.0	
	Gain error ⁽²⁾	VDDANA/1.6	-40		40	mV
		VDDANA/2.0	-40		40	
		Bandgap After calibration	-30		30	
	Gain error drift vs voltage ⁽¹⁾	External reference	-2		2	mV/V
	Gain error drift vs temperature ⁽¹⁾	After calibration + bandgap drift If using onchip bandgap			0.08	mV/°K
		External reference	-5.0		5.0	
	O#aat array (2)	VDDANA/1.6	-10		10	
	Offset error ⁽²⁾	VDDANA/2.0	-10		10	– mV
		Bandgap After calibration	-10		10	1
	Offset error drift vs voltage ⁽¹⁾		-4		4	mV/V

Table 9-47. Differential mode, gain=1

Offset error drift vs temperature ⁽¹⁾				0.04	mV/°K	
Conversion range ⁽²⁾	Vin-Vip	-Vref		Vref	V	
ICMR ⁽¹⁾			see Figure 9-5			
PSRR ⁽¹⁾	fvdd=1Hz, ext ADVREFP=3.0V V _{VDD} =3.6V		100		dB	
PORC	fvdd=2MHz, ext ADVREFP=3.0V V _{VDD} =3.6		50		0B	
DC supply surrent ⁽²⁾	VDDANA=3.6V, ADVREFP=3.0V		1.2		mA	
DC supply current ⁽²⁾	VDDANA=1.6V, ADVREFP=1.0V		0.6		IIIA	

1. These values are based on simulation only. These values are not covered by test limits in production or characterization

2. These values are based on characterization and not tested in production, and valid for an input voltage between 10% to 90% of reference voltage.

Table 9-48.	Unipolar mode, gain=	-1
-------------	----------------------	----

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
	Accuracy without compensation (1)			7		ENOB		
	Accuracy after compensation ⁽¹⁾				11	ENOB		
INL	Integral Non Linearity ⁽²⁾	After calibration Dynamic tests No gain compensation			±3			
		After calibration Dynamic tests Gain compensation			±3	– LSBs		
DNL	Differential Non Linearity ⁽²⁾	After calibration			±2.8	LSBs		
		External reference	-15		15			
	– Gain error ⁽²⁾	VDDANA/1.6	-50		50	mV		
		VDDANA/2.0	-30		30			
	_	Bandgap After calibration	-10		10			
	Gain error drift vs voltage ⁽¹⁾	External reference	-8		8	mV/V		
	Gain error drift temperature ⁽¹⁾	+ bandgap drift If using bandgap			0.08	mV/°K		
		External reference	-15		15	mV		
C	– Offset error ⁽²⁾	VDDANA/1.6	-15		15			
		VDDANA/2.0	-15		15			
	_	Bandgap After calibration	-10		10			
	Offset error drift ⁽¹⁾		-4		4	mV/V		
	Offset error drift temperature ⁽¹⁾			0	0.04	mV/°K		
	Conversion range ⁽¹⁾	Vin-Vip	-Vref		Vref	V		
	ICMR ⁽¹⁾			see Figure 9-5				

Table 9-50. Analog Comparator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		V_{ACREFN} =0.1V to VDDIO-0.1V, hysteresis = 1 ⁽²⁾ Fast mode	10		55	mV
		V_{ACREFN} =0.1V to VDDIO-0.1V, hysteresis = 1 ⁽²⁾ Low power mode	10		68	mV
Hysteresis ⁽¹⁾	Libertorrois(1)	$V_{ACREFN} = 0.1V$ to VDDIO-0.1V, hysteresis = $2^{(2)}$ Fast mode	26		83	mV
	$V_{ACREFN} = 0.1V$ to VDDIO-0.1V, hysteresis = $2^{(2)}$ Low power mode	19		91	mV	
	V_{ACREFN} =0.1V to VDDIO-0.1V, hysteresis = $3^{(2)}$ Fast mode	43		106	mV	
		$V_{ACREFN} = 0.1V$ to VDDIO-0.1V, hysteresis = $3^{(2)}$ Low power mode	32		136	mV
	Dranagation dalou(1)	Changes for V _{ACM} =VDDIO/2 100mV Overdrive Fast mode			67	ns
	Propagation delay ⁽¹⁾	Changes for V _{ACM} =VDDIO/2 100mV Overdrive Low power mode			315	ns
	Startup time ⁽¹⁾	Enable to ready delay Fast mode			1.19	μs
t _{STARTUP}		Enable to ready delay Low power mode			3.61	μs
	Channel current	Low power mode, no hysteresis		4.9	8.7	μA
I _{AC}	consumption ⁽³⁾	Fast mode, no hysteresis		63	127	μΑ

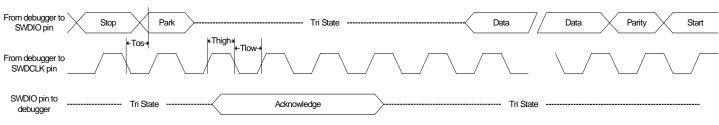
1. These values are based on characterization. These values are not covered by test limits in production

2. HYSTAC.CONFn.HYS field, refer to the Analog Comparator Interface chapter

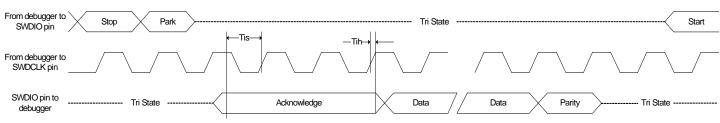
3. These values are based on simulation. These values are not covered by test limits in production or characterization

- Atmel

Table 9-65.JTAG Timings(1)


Symbol	Parameter	Conditions	Min	Max	Units	
JTAG0	TCK Low Half-period		21.8			
JTAG1	TCK High Half-period		8.6			
JTAG2	TCK Period		30.3			
JTAG3	TDI, TMS Setup before TCK High	V _{VDDIO} from	2.0			
JTAG4	TDI, TMS Hold after TCK High	3.0V to 3.6V,	2.3			
JTAG5	TDO Hold Time	maximum external	9.5		ns	
JTAG6	TCK Low to TDO Valid	capacitor =		21.8		
JTAG7	Boundary Scan Inputs Setup Time	40pF	0.6			
JTAG8	Boundary Scan Inputs Hold Time		6.9			
JTAG9	Boundary Scan Outputs Hold Time		9.3			
JTAG10	TCK to Boundary Scan Outputs Valid			32.2		

Note: 1. These values are based on simulation. These values are not covered by test limits in production.


9.10.6 SWD Timing

Read Cycle

Write Cycle

Table 11-3. AT SAM4LOZ SUD Selle Oldening Informatio	Table 11-3.	ATSAM4LC2 Sub Serie Ordering Information
--	-------------	--

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range
ATSAM4LC2CA-AU				Tray		
ATSAM4LC2CA-AUR		TQFP100	Reel			
ATSAM4LC2CA-CFU	128	128 32	VFBGA100	Tray	Green	
ATSAM4LC2CA-CFUR				Reel		Industrial -40°C to 85°C
ATSAM4LC2BA-AU			TQFP64	Tray		
ATSAM4LC2BA-AUR				Reel		
ATSAM4LC2BA-MU			2 QFN64	Tray		
ATSAM4LC2BA-MUR				Reel		
ATSAM4LC2BA-UUR			WLCSP64	Reel		
ATSAM4LC2AA-AU			TQFP48	Tray		
ATSAM4LC2AA-AUR				Reel		
ATSAM4LC2AA-MU			0.71110	Tray		
ATSAM4LC2AA-MUR			QFN48	Reel		

Table 11-4. ATSAM4LS8 Sub Serie Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range	
ATSAM4LS8CA-AU				Tray			
ATSAM4LS8CA-AUR	512	12 64	TQFP100	Reel			
ATSAM4LS8CA-CFU			VFBGA100	Tray	Green		
ATSAM4LS8CA-CFUR				Reel			
ATSAM4LS8BA-AU				Tray		Industrial -40°C to 85°C	
ATSAM4LS8BA-AUR				Reel			
ATSAM4LS8BA-MU				Tray			
ATSAM4LS8BA-MUR			G	QFN64	Reel		
ATSAM4LS8BA-UUR			WLCSP64	Reel			
ATSAM4LS8AA-MU					Tray		
ATSAM4LS8AA-MUR			QFN48	Reel			

12.1.7 FLASHCALW

Corrupted data in flash may happen after flash page write operations.

After a flash page write operation, reading (data read or code fetch) in flash may fail. This may lead to an expectition or to others errors derived from this corrupted read access. **Fix/Workaround**

13.5 Rev. E – 07/13

- 1. Added ATSAM4L8 derivatives and WLCSP packages for ATSAM4L4/2
- 2. Added operating conditions details in Electrical Characteristics Chapter
- 3. Fixed "Supply Rise Rates and Order"
- 4. Added number of USART available in sub-series
- 5. Fixed IO line considerations for USB pins
- 6. Removed useless information about CPU local bus which is not implemented
- 7. Removed useless information about Modem support which is not implemented
- 8. Added information about unsupported features in Power Scaling mode 1
- 9. Fixed SPI timings

13.6 Rev. F- 12/13

- 1. Fixed table 3-6 TDI is connected to pin G3 in WLCSP package
- 2. Changed table 42-48 -ADCIFE Electricals in unipolar mode : PSRR & DC supply current typical values
- 3. Fixed SPI timing characteristics
- 4. Fixed BOD33 typical step size value

13.7 Rev. G- 03/14

- 1. Added WLCSP64 packages for SAM4LC8 and SAM4LS8 sub-series
- 2. Removed unsupported SWAP feature in LCD module
- 3. Added mnimal value for ADC Reference range

13.8 Rev. H- 11/16

1. Fixed AESA configuration in Overview chapter for SAM4LS sub-series