Atmel - ATSAM4LC4AA-AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	27
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 3x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atsam4lc4aa-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3-2. 64-pir	GPIO Controller Function Multiplexing (She	et 2 of 3)
-------------------	--	------------

		-									
ATSAM4LC	ATSAM4LS	Pin	GPIO	Supply	GPIO Functions						
QFP	QFP	_	0	้ร							
QFN	QFN				Α	в	с	D	Е	F	G
15	15	PA04	4	VDDANA	ADCIFE AD0	USART0 CLK	EIC EXTINT2	GLOC IN1			CATB SENSE0
16	16	PA05	5	VDDANA	ADCIFE AD1	USART0 RXD	EIC EXTINT3	GLOC IN2	ADCIFE TRIGGER		CATB SENSE1
21	21	PA06	6	VDDANA	DACC VOUT	USART0 RTS	EIC EXTINT1	GLOC IN0	ACIFC ACAN0		CATB SENSE2
22	22	PA07	7	VDDANA	ADCIFE AD2	USART0 TXD	EIC EXTINT4	GLOC IN3	ACIFC ACAP0		CATB SENSE3
26	26	PA08	8	LCDA	USART0 RTS	ТС0 А0	PEVC PAD EVT0	GLOC OUT0		LCDCA SEG23	CATB SENSE4
29	29	PA09	9	LCDA	USART0 CTS	ТС0 В0	PEVC PAD EVT1	PARC PCDATA0		LCDCA COM3	CATB SENSE5
30	30	PA10	10	LCDA	USART0 CLK	TC0 A1	PEVC PAD EVT2	PARC PCDATA1		LCDCA COM2	CATB SENSE6
31	31	PA11	11	LCDA	USART0 RXD	TC0 B1	PEVC PAD EVT3	PARC PCDATA2		LCDCA COM1	CATB SENSE7
32	32	PA12	12	LCDA	USART0 TXD	TC0 A2		PARC PCDATA3		LCDCA COM0	CATB DIS
40	40	PA13	13	LCDA	USART1 RTS	TC0 B2	SPI NPCS1	PARC PCDATA4		LCDCA SEG5	CATB SENSE8
41	41	PA14	14	LCDA	USART1 CLK	TC0 CLK0	SPI NPCS2	PARC PCDATA5		LCDCA SEG6	CATB SENSE9
42	42	PA15	15	LCDA	USART1 RXD	TC0 CLK1	SPI NPCS3	PARC PCDATA6		LCDCA SEG7	CATB SENSE10
43	43	PA16	16	LCDA	USART1 TXD	TC0 CLK2	EIC EXTINT1	PARC PCDATA7		LCDCA SEG8	CATB SENSE11
44	44	PA17	17	LCDA	USART2 RTS	ABDACB DAC0	EIC EXTINT2	PARC PCCK		LCDCA SEG9	CATB SENSE12
49	49	PA18	18	LCDA	USART2 CLK	ABDACB DACN0	EIC EXTINT3	PARC PCEN1		LCDCA SEG18	CATB SENSE13
50	50	PA19	19	LCDA	USART2 RXD	ABDACB DAC1	EIC EXTINT4	PARC PCEN2	SCIF GCLK0	LCDCA SEG19	CATB SENSE14
51	51	PA20	20	LCDA	USART2 TXD	ABDACB DACN1	EIC EXTINT5	GLOC IN0	SCIF GCLK1	LCDCA SEG20	CATB SENSE15
55	55	PA21	21	LCDC	SPI MISO	USART1 CTS	EIC EXTINT6	GLOC IN1	TWIM2 TWD	LCDCA SEG34	CATB SENSE16
56	56	PA22	22	LCDC	SPI MOSI	USART2 CTS	EIC EXTINT7	GLOC IN2	TWIM2 TWCK	LCDCA SEG35	CATB SENSE17
59	59	PA23	23	LCDC	SPI SCK	TWIMS0 TWD	EIC EXTINT8	GLOC IN3	SCIF GCLK IN0	LCDCA SEG38	CATB DIS
60	60	PA24	24	LCDC	SPI NPCS0	TWIMS0 TWCK		GLOC OUT0	SCIF GCLK IN1	LCDCA SEG39	CATB SENSE18
62	62	PA25	25	VDDIO	USBC DM	USART2 RXD					CATB SENSE19
63	63	PA26	26	VDDIO	USBC DP	USART2 TXD					CATB SENSE20

Table 3-8.Signal Descriptions List (Sheet 4 of 4)

Signal Name	Function	Туре	Active Level	Comments
PA31 - PA00	Parallel I/O Controller I/O Port A	I/O		
PB15 - PB00	Parallel I/O Controller I/O Port B	I/O		
PC31 - PC00	Parallel I/O Controller I/O Port C	I/O		

Note: 1. See "Power and Startup Considerations" section.

3.4 I/O Line Considerations

3.4.1 SW/JTAG Pins

The JTAG pins switch to the JTAG functions if a rising edge is detected on TCK low after the RESET_N pin has been released. The TMS, and TDI pins have pull-up resistors when used as JTAG pins. The TCK pin always has pull-up enabled during reset. The JTAG pins can be used as GPIO pins and multiplexed with peripherals when the JTAG is disabled. Refer to Section 3.2.3 "JTAG Port Connections" on page 29 for the JTAG port connections.

For more details, refer to Section 1.1 "Enhanced Debug Port (EDP)" on page 3.

3.4.2 RESET_N Pin

The RESET_N pin is a schmitt input and integrates a permanent pull-up resistor to VDDIN. As the product integrates a power-on reset detector, the RESET_N pin can be left unconnected in case no reset from the system needs to be applied to the product.

3.4.3 TWI Pins

When these pins are used for TWI, the pins are open-drain outputs with slew-rate limitation andinputs with inputs with spike-filtering. When used as GPIO-pins or used for other peripherals, the pins have the same characteristics as GPIO pins.

3.4.4 GPIO Pins

All the I/O lines integrate a pull-up/pull-down resistor and slew rate controller. Programming these features is performed independently for each I/O line through the GPIO Controllers. After reset, I/O lines default as inputs with pull-up and pull-down resistors disabled and slew rate enabled.

3.4.5 High-drive Pins

The six pins PA02, PB00, PB01, PC04, PC05 and PC06 have high-drive output capabilities. Refer to Section 9.6.2 "High-drive I/O Pin : PA02, PC04, PC05, PC06" on page 115 for electrical characteristics.

3.4.6 USB Pins

When these pins are used for USB, the pins are behaving according to the USB specification. When used as GPIO pins or used for other peripherals, the pins have the same behavior as other normal I/O pins, but the characteristics are different. Refer to Section 9.6.3 "USB I/O Pin : PA25, PA26" on page 116 for electrical characteristics.

These pins are compliant to USB standard only when VDDIO power supply is 3.3V nominal.

4.6 Cortex-M4 implementations options

This table provides the specific configuration options implemented in the SAM4L series

Option	Implementation
Inclusion of MPU	yes
Inclusion of FPU	No
Number of interrupts	80
Number of priority bits	4
Inclusion of the WIC	No
Embedded Trace Macrocell	No
Sleep mode instruction	Only WFI supported
Endianness	Little Endian
Bit-banding	No
SysTick timer	Yes
Register reset values	No

 Table 4-1.
 Cortex-M4 implementation options

4.7 Cortex-M4 Interrupts map

The table below shows how the interrupt request signals are connected to the NVIC.

	internape requeet eignal map (encet i ei					
Line	Module	Signal				
0	Flash Controller	HFLASHC				
1	Peripheral DMA Controller	PDCA 0				
2	Peripheral DMA Controller	PDCA 1				
3	Peripheral DMA Controller	PDCA 2				
4	Peripheral DMA Controller	PDCA 3				
5	Peripheral DMA Controller	PDCA 4				
6	Peripheral DMA Controller	PDCA 5				
7	Peripheral DMA Controller	PDCA 6				
8	Peripheral DMA Controller	PDCA 7				
9	Peripheral DMA Controller	PDCA 8				
10	Peripheral DMA Controller	PDCA 9				
11	Peripheral DMA Controller	PDCA 10				

Table 4-2.Interrupt Request Signal Map (Sheet 1 of 3)

Table 4-2.	Interrupt Request Signal Map (Sheet 3 of 3	3)
Line	Module	Signal
48	External Interrupt Controller	EIC 4
49	External Interrupt Controller	EIC 5
50	External Interrupt Controller	EIC 6
51	External Interrupt Controller	EIC 7
52	External Interrupt Controller	EIC 8
53	Inter-IC Sound (I2S) Controller	IISC
54	Serial Peripheral Interface	SPI
55	Timer/Counter	TC00
56	Timer/Counter	TC01
57	Timer/Counter	TC02
58	Timer/Counter	TC10
59	Timer/Counter	TC11
60	Timer/Counter	TC12
61	Two-wire Master Interface	TWIMO
62	Two-wire Slave Interface	TWIS0
63	Two-wire Master Interface	TWIM1
64	Two-wire Slave Interface	TWIS1
65	Universal Synchronous Asynchronous Receiver Transmitter	USART0
66	Universal Synchronous Asynchronous Receiver Transmitter	USART1
67	Universal Synchronous Asynchronous Receiver Transmitter	USART2
68	Universal Synchronous Asynchronous Receiver Transmitter	USART3
69	ADC controller interface	ADCIFE
70	DAC Controller	DACC
71	Analog Comparator Interface	ACIFC
72	Audio Bitstream DAC	ABDACB
73	True Random Number Generator	TRNG
74	Parallel Capture	PARC
75	Capacitive Touch Module B	CATB
77	Two-wire Master Interface	TWIM2
78	Two-wire Master Interface	TWIM3
79	LCD Controller A	LCDCA

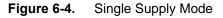
 Table 4-2.
 Interrupt Request Signal Map (Sheet 3 of 3)

ATSAM4L8/L4/L2

5.2 Embedded Memories

- Internal high-speed flash
 - 512Kbytes (ATSAM4Lx8)
 - 256Kbytes (ATSAM4Lx4)
 - 128Kbytes (ATSAM4Lx2)
 - Pipelined flash architecture, allowing burst reads from sequential flash locations, hiding penalty of 1 wait state access
 - Pipelined flash architecture typically reduces the cycle penalty of 1 wait state operation compared to 0 wait state operation
 - 100 000 write cycles, 15-year data retention capability
 - Sector lock capabilities, bootloader protection, security bit
 - 32 fuses, erased during chip erase
 - User page for data to be preserved during chip erase
- Internal high-speed SRAM, single-cycle access at full speed
 - 64Kbytes (ATSAM4Lx8)
 - 32Kbytes (ATSAM4Lx4, ATSAM4Lx2)

5.3 Physical Memory Map


The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even during boot. The 32-bit physical address space is mapped as follows:

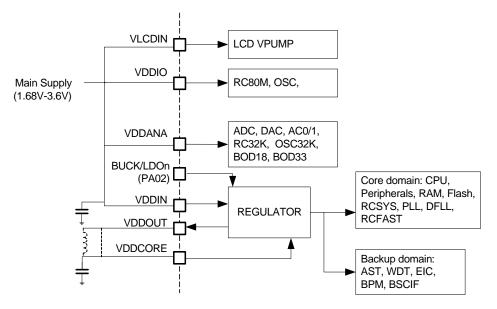

Mamani	Start Address	Size	Size
Memory		ATSAM4Lx4	ATSAM4Lx2
Embedded Flash	0x0000000	256Kbytes	128Kbytes
Embedded SRAM	0x20000000	32Kbytes	32Kbytes
Cache SRAM	0x21000000	4Kbytes	4Kbytes
Peripheral Bridge A	0x4000000	64Kbytes	64Kbytes
Peripheral Bridge B	0x400A0000	64Kbytes	64Kbytes
AESA	0x400B0000	256 bytes	256 bytes
Peripheral Bridge C	0x400E0000	64Kbytes	64Kbytes
Peripheral Bridge D	0x400F0000	64Kbytes	64Kbytes

Table 5-1. ATSAM4L8/L4/L2 Physical Memory Map

Memory	Start Address	Size	
Memory		ATSAM4Lx8	
Embedded Flash	0x0000000	512Kbytes	
Embedded SRAM	0x20000000	64Kbytes	
Cache SRAM	0x21000000	4Kbytes	
Peripheral Bridge A	0x4000000	64Kbytes	
Peripheral Bridge B	0x400A0000	64 Kbytes	

The internal regulator is connected to the VDDIN pin and its output VDDOUT feeds VDDCORE in linear mode or through an inductor in switching mode. Figure 6-4 shows the power schematics to be used. All I/O lines will be powered by the same power ($V_{VDDIN}=V_{VDDIN}=V_{VDDANA}$).

6.2.3 LCD Power Modes

6.2.3.1 Principle

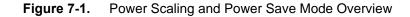
LCD lines is powered using the device internal voltage sources provided by the LCDPWR block. When enabled, the LCDPWR blocks will generate the VLCD, BIASL, BIASH voltages.

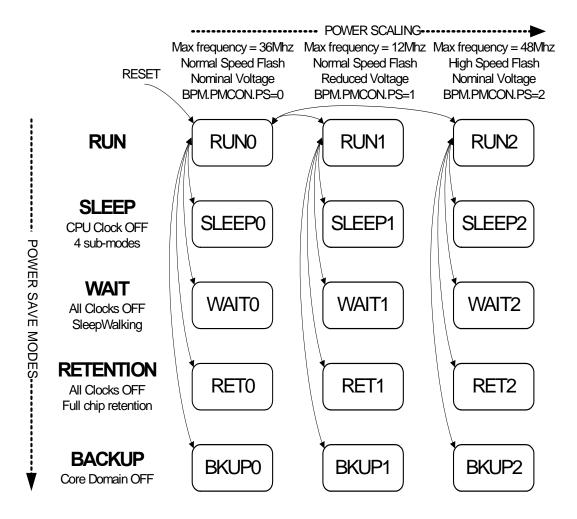
LCD pads are splitted into three clusters that can be powered independently namely clusters A, B and C. A cluster can either be in GPIO mode or in LCD mode.

When a cluster is in GPIO mode, its VDDIO pin must be powered externally. None of its GPIO pin can be used as a LCD line

When a cluster is in LCD mode, each clusters VDDIO pin can be either forced externally (1.8-3.6V) or unconnected (nc). GPIOs in a cluster are not available when it is in LCD mode. A cluster is set in LCD mode by the LCDCA controller when it is enabled depending on the number of segments configured. The LCDPWR block is powered by the VLCDIN pin inside cluster A

When LCD feature is not used, VLCDIN must be always powered (1.8-3.6V). VLCD, CAPH, CAPL, BIASH, BIASL can be left unconnected in this case


Atmel


7. Low Power Techniques

The ATSAM4L8/L4/L2 supports multiple power configurations to allow the user to optimize its power consumption in different use cases. The Backup Power Manager (BPM) implements different solutions to reduce the power consumption:

- The Power Save modes intended to reduce the logic activity and to adapt the power configuration. See "Power Save Modes" on page 55.
- The Power Scaling intended to scale the power configuration (voltage scaling of the regulator). See "Power Scaling" on page 60.

These two techniques can be combined together.

7.1 Power Save Modes

Refer to Section 6. "Power and Startup Considerations" on page 46 to get definition of the core and the backup domains.

Atmel

7.1.3 BACKUP Mode

The BACKUP mode allows achieving the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time.

The Core domain is powered-off. The internal SRAM and register contents of the Core domain are lost. The Backup domain is kept powered-on. The 32kHz clock (RC32K or OSC32K) is kept running if enabled to feed modules that require clocking.

In BACKUP mode, the configuration of the I/O lines is preserved. Refer to Section 9. "Backup Power Manager (BPM)" on page 677 to have more details.

7.1.3.1 Entering BACKUP Mode

The Backup mode is entered by using the WFI instruction with the following settings:

- set the SCR.SLEEPDEEP bit to 1. (See the Power Management section in the ARM Cortex-M4 Processor chapter).
- set the BPM.PSAVE.BKUP bit to 1.

7.1.3.2 Exiting BACKUP Mode

Exit from BACKUP mode happens if a reset occurs or if an enabled wake up event occurs.

The reset sources are:

- BOD33 reset
- BOD18 reset
- WDT reset
- External reset in RESET_N pin

The wake up sources are:

- EIC lines (level transition only)
- BOD33 interrupt
- BOD18 interrupt
- AST alarm, periodic, overflow
- WDT interrupt

The RC32K or OSC32K should be used as clock source for modules if required. The PMCON.CK32S is used to select one of these two 32kHz clock sources.

Exiting the BACKUP mode is triggered by:

- a reset source: an internal reset sequence is performed according to the reset source. Once VDDCORE is stable and has the correct value according to RUN0 mode, the internal reset is released and program execution starts. The corresponding reset source is flagged in the Reset Cause register (RCAUSE) of the PM.
- a wake up source: the Backup domain is not reset. An internal reset is generated to the Core domain, and the system switches back to the previous RUN mode. Once VDDCORE is stable and has the correct value, the internal reset in the Core domain is released and program execution starts. The BKUP bit is set in the Reset Cause register (RCAUSE) of the PM. It allows the user to discriminate between the reset cause and a wake up cause from the BACKUP mode. The wake up cause can be found in the Backup Wake up Cause register (BPM.BKUPWCAUSE).

8.9.6 Security Considerations

In protected state this module may access sensible information located in the device memories. To avoid any risk of sensible data extraction from the module registers, all operations are non interruptible except by a disable command triggered by writing a one to CR.DIS. Issuing this command clears all the interface and internal registers.

Some registers have some special protection:

- It is not possible to read or write the LENGTH register when the part is protected.
- In addition, when the part is protected and an operation is ongoing, it is not possible to read the ADDR and DATA registers. Once an operation has started, the user has to wait until it has terminated by polling the DONE field in the Status Register (SR.DONE).

8.9.7 Chip Erase

The Chip erase operation consists in:

- 1. clearing all the volatile memories in the system
- 2. clearing the whole flash array
- 3. clearing the protected state

No proprietary or sensitive information is left in volatile memories once the protected state is disabled.

This feature is operated by writing a one to the CE bit of the Control Register (CR.CE). When the operation completes, SR.DONE is asserted.

8.9.8 Cortex-M4 Core Reset Source

The SMAP processes the EDP Core hold reset requests (Refer to Section 1.1.8 "SMAP Core Reset Request Source" on page 6). When requested, it instructs the Power Manager to hold the Cortex-M4 core under reset.

The SMAP can de-assert the core reset request if a one is written to the Hold Core Reset bit in the Status Clear Register (SCR.HCR). This has the effect of releasing the CPU from its reset state. To assert again this signal, a new reset sequence with TCK tied low must be issued.

Note that clearing HCR with this module is only possible when it is enabled, for more information refer to Section 8.9.4 "Initializing the Module" on page 78. Also note that asserting RESET_N automatically clears HCR.

8.9.11.8	Chip Identification Regist	er
Name:	CIDR	
Access Ty	e: Read-Only	
Offset:	0xF0	
Reset Valu	: -	

31	30	29	28	27	26	25	24
EXT		NVPTYP	NVPTYP ARCH				
23	22	21	20	19	18	17	16
	ARCH				SRAMSIZ		
15	14	13	12	11	10	9	8
	NVPSIZ2			NVPSIZ			
7	6	5	4	3	2	1	0
EPROC				VERSION			

Note: Refer to section CHIPID for more information on this register.

8.9.11.9 Chip Identification Extension Register Name: EXID								
Access Type:	Access Type: Read-Only							
Offset:	0xF4							
Reset Value:	-							
31	30	29	28	27	26	25	24	
			EXID					
23	22	21	20	19	18	17	16	
			EXID					
15	14	13	12	11	10	9	8	
			EXID					
7	6	5	4	3	2	1	0	
	EXID							

Note: Refer to section CHIPID for more information on this register.

Mode	Conditions	T _A	Typical Wakeup Time	Тур	Max ⁽¹⁾	Unit
SLEEP0	Switching mode	25°C	9 * Main clock	3817	4033	
SLEEPU	Switching mode	85°C	cycles	3934	4174	
		25°C	9 * Main clock	2341	2477	
SLEEP1	Switching mode	85°C	cycles + 500ns	2437	2585	-
		25°C	9 * Main clock	1758	1862	-
SLEEP2	Switching mode	85°C	cycles + 500ns	1847	1971	-
SLEEP3	Linear mode			51	60	
	OSC32K and AST running Fast wake-up enable			5.9	8.7	μA
WAIT	OSC32K and AST stopped Fast wake-up enable		1.5µs	4.7	7.6	•
RETENTION	OSC32K running AST running at 1kHz	25°C	1.5µs	3.1	5.1	
	AST and OSC32K stopped			2.2	4.2	-
BACKUP	OSC32K running AST running at 1 kHz			1.5	3.1	
	AST and OSC32K stopped			0.9	1.7	Ī

 Table 9-6.
 ATSAM4L4/2 Current consumption and Wakeup time for power scaling mode 0 and 2

1. These values are based on characterization. These values are not covered by test limits in production.

Table 9-7.	ATSAM4L8 Current consumption and Wakeup time for power scaling mode 0 and 2

Mode	Conditions	T _A	Typical Wakeup Time	Тур	Max ⁽¹⁾	Unit
	CPU running a Fibonacci algorithm	25°C	NI/A	319	343	
	Linear mode	85°C	N/A	326	350	
	CPU running a CoreMark algorithm Linear mode	25°C	N/A	343	387	
		85°C		351	416	
RUN	CPU running a Fibonacci algorithm	25°C	N/A	181	198	µA/MHz
	Switching mode	85°C		186	203	
	CPU running a CoreMark algorithm	25°C	N/A	192	232	
	Switching mode	85°C		202	239	

- Atmel

9.5.3 Peripheral Power Consumption in Power Scaling mode 0 and 2

The values in Table 9-11 are measured values of power consumption under the following conditions:

- Operating conditions, internal core supply (Figure 9-2)
 - $V_{VDDIN} = 3.3 V$
 - $-V_{VDDCORE}$ supplied by the internal regulator in switching mode
- TA = 25°C
- Oscillators
 - OSC0 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) running with external 32KHz crystal
 - DFLL running at 48 MHz with OSC32K as reference clock

Atmel

- Clocks
 - DFLL used as main clock source
 - CPU, AHB, and PB clocks undivided
- I/Os are inactive with internal pull-up
- Flash enabled in high speed mode
- CPU in SLEEP0 mode
- BOD18 and BOD33 disabled

Consumption active is the added current consumption when the module clock is turned on.

9.6.5

9.6.5 High Drive TWI Pin : PB00, PB01 Table 9-19. High Drive TWI Pin Characteristics in TWI configuration ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
R _{PULLUP}	Pull-up resistance (2)	PB00, PB01		40		kΩ
R _{PULLDOWN}	Pull-down resistance ⁽²⁾			40		kΩ
V _{IL}	Input low-level voltage		-0.3		0.3 * V _{VDD}	
V _{IH}	Input high-level voltage		0.7 * V _{VDD}		V _{VDD} + 0.3	
V _{OL}	Output low-level voltage				0.4	V
V _{OH}	Output high-level voltage		V _{VDD} - 0.4			
		DRIVEL=0			0.5	
		DRIVEL=1			1.0	
		DRIVEL=2			1.6	
		DRIVEL=3			3.1	1
I _{OL}	Output low-level current ⁽³⁾	DRIVEL=4			6.2	mA
		DRIVEL=5			9.3	-
		DRIVEL=6			15.5	
		DRIVEL=7			21.8	
		DRIVEH=0		0.5		
	(2)	DRIVEH=1		1		
I _{CS}	Current Source ⁽²⁾	DRIVEH=2		1.5		mA
		DRIVEH=3		3		
f _{MAX}	Max frequency ⁽²⁾	HsMode with Current source; DRIVEx=3, SLEW=0 Cbus = 400pF, V_{VDD} = 1.68V	3.5	6.4		MHz
t _{RISE}	Rise time ⁽²⁾	HsMode Mode, DRIVEx=3, SLEW=0 Cbus = 400pF, Rp = 440Ohm, V_{VDD} = 1.68V		28	38	ns
	Fall time ⁽²⁾	Standard Mode, DRIVEx=3, SLEW=0 Cbus = 400pF, Rp = 440Ohm, V_{VDD} = 1.68V		50	95	
t _{FALL}		HsMode Mode, DRIVEx=3, SLEW=0 Cbus = 400pF, Rp = 440Ohm, V _{VDD} = 1.68V		50	95	ns

1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

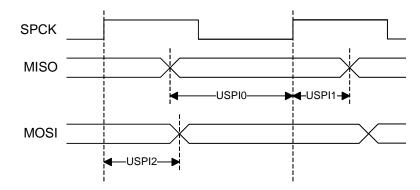
2. These values are based on simulation. These values are not covered by test limits in production or characterization

3. These values are based on characterization. These values are not covered by test limits in production

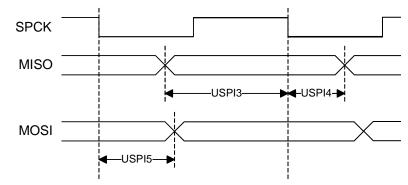
9.10 Timing Characteristics

9.10.1 RESET_N Timing

Table 9-53. RESET_N Waveform Parameters (1)


Symbol	Parameter	Conditions	Min	Max	Units
t _{RESET}	RESET_N minimum pulse length		10		ns

1. These values are based on simulation. These values are not covered by test limits in production.


9.10.2 USART in SPI Mode Timing

9.10.2.1 Master mode

Figure 9-7. USART in SPI Master Mode with (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Figure 9-8. USART in SPI Master Mode with (CPOL= 0 and CPHA= 1) or (CPOL= 1 and CPHA= 0)

ATSAM4L8/L4/L2

Table 9-59. USART1 in SPI mode Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI6	SPCK falling to MISO delay			373.58	
USPI7	MOSI setup time before SPCK rises		$4.16 + t_{SAMPLE}^{(2)} + t_{CLK_USART}$		
USPI8	MOSI hold time after SPCK rises		46.69 -(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART)}		
USPI9	SPCK rising to MISO delay	V _{VDDIO} from		373.54	
USPI10	MOSI setup time before SPCK falls	3.0V to 3.6V, maximum external	$4.16 + (t_{SAMPLE}^{(2)} + t_{CLK_USART})$		ns
USPI11	MOSI hold time after SPCK falls	capacitor = 40pF	46.69 -(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART)}		
USPI12	NSS setup time before SPCK rises		200.43		
USPI13	NSS hold time after SPCK falls		-16.5		
USPI14	NSS setup time before SPCK falls		200.43		
USPI15	NSS hold time after SPCK rises		-16.5		

 Table 9-60.
 USART2 in SPI mode Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI6	SPCK falling to MISO delay			770.02	
USPI7	MOSI setup time before SPCK rises		136.56 + $t_{SAMPLE}^{(2)}$ + t_{CLK_USART}		
USPI8	MOSI hold time after SPCK rises		47.9 -(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART})		
USPI9	SPCK rising to MISO delay	V _{VDDIO} from		570.19	
USPI10	MOSI setup time before SPCK falls	3.0V to 3.6V, maximum external	$136.73 + (t_{SAMPLE}^{(2)} + t_{CLK_USART})$		ns
USPI11	MOSI hold time after SPCK falls	capacitor = 40pF	47.9 -(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART})		
USPI12	NSS setup time before SPCK rises		519.87		
USPI13	NSS hold time after SPCK falls		-1.83		
USPI14	NSS setup time before SPCK falls		519.87		
USPI15	NSS hold time after SPCK rises		-1.83		

Symbol	Parameter	Conditions	Min	Мах	Units
USPI6	SPCK falling to MISO delay			593.9	
USPI7	MOSI setup time before SPCK rises		$45.93 + t_{SAMPLE}^{(2)} + t_{CLK_USART}$		
USPI8	MOSI hold time after SPCK rises		47.03 -(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART)}		
USPI9	SPCK rising to MISO delay	V _{VDDIO} from		593.38	
USPI10	MOSI setup time before SPCK falls	3.0V to 3.6V, maximum external	45.93 +($t_{SAMPLE}^{(2)}$ + t_{CLK_USART})		ns
USPI11	MOSI hold time after SPCK falls	capacitor = 40pF	47.03 -(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART})		
USPI12	NSS setup time before SPCK rises		237.5		
USPI13	NSS hold time after SPCK falls		-1.81		
USPI14	NSS setup time before SPCK falls		237.5		1
USPI15	NSS hold time after SPCK rises		-1.81		

 Table 9-61.
 USART3 in SPI mode Timing, Slave Mode⁽¹⁾

Notes: 1. These values are based on simulation. These values are not covered by test limits in production.

2. Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left\lfloor \frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right\rfloor + \frac{1}{2} \right) \times t_{CLKUSART}$$

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, USPI7 + USPI8 or USPI10 + USPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

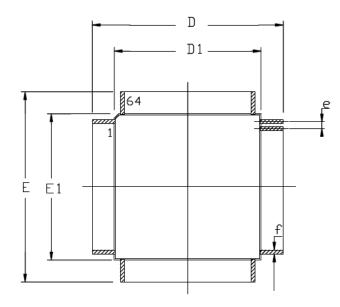
Maximum SPI Frequency, Slave Output Mode

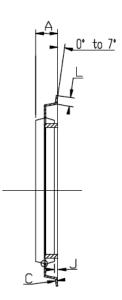
The maximum SPI slave output frequency is given by the following formula:

Atmel

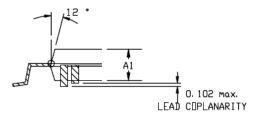
$$f_{SPCKMAX} = MIN(\frac{f_{CLKSPI} \times 2}{9}, f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Where *SPIn* is the MISO delay, USPI6 or USPI9 depending on CPOL and NCPHA. T_{SETUP} is the SPI master setup time. refer to the SPI master datasheet for T_{SETUP} . f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock. f_{PINMAX} is the maximum frequency of the SPI pins. refer to the I/O Pin Characteristics section for the maximum frequency of the pins.


Table 9-66.SWD Timings(1)


Symbol	Parameter	Conditions	Min	Мах	Units
Thigh	SWDCLK High period		10	500 000	
Tlow	SWDCLK Low period	V _{VDDIO} from 3.0V to 3.6V,	10	500 000	
Tos	SWDIO output skew to falling edge SWDCLK	maximum	-5	5	ns
Tis	Input Setup time required between SWDIO	external capacitor =	4	-	10
Tih	Input Hold time required between SWDIO and rising edge SWDCLK	40pF	1	-	1

Note: 1. These values are based on simulation. These values are not covered by test limits in production or characterization.


Figure 10-7. TQFP-64 Package Drawing

COMMON DIMENSIONS IN MM

SYMBOL	Min	Max	NDTES
A		1. 20	
A1	0, 95	1. 05	
С	0. 09	0. 20	
D	12.0	O BSC	
D1	10.0		
E	12.0		
E1	10,0		
J	0, 05	0.15	
L	0, 45	0, 75	
e	0.50 BSC		
f	0.17	0, 27	

Table 10-20. Device and Package Maximum Weight

300	mg

Table 10-21. Package Characteristics

bisture Sensitivity Level	MSL3
---------------------------	------

Table 10-22. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

11. Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range	
ATSAM4LC8CA-AU			TQFP100	Tray			
ATSAM4LC8CA-AUR			IQFFIUU	Reel			
ATSAM4LC8CA-CFU			Tray				
ATSAM4LC8CA-CFUR		VFBGA100	Reel				
ATSAM4LC8BA-AU		64		TOFDCA	Tray		
ATSAM4LC8BA-AUR	512		TQFP64	Reel	Green	Industrial -40°C to 85°C	
ATSAM4LC8BA-MU				Tray			
ATSAM4LC8BA-MUR			QFN64	Reel			
ATSAM4LC8BA-UUR		WLCSP64	Reel				
ATSAM4LC8AA-MU			Tray				
ATSAM4LC8AA-MUR			QFN48	Reel			

 Table 11-1.
 ATSAM4LC8 Sub Serie Ordering Information

 Table 11-2.
 ATSAM4LC4 Sub Serie Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range
ATSAM4LC4CA-AU-ES	256	32	TQFP100	ES	Green	N/A
ATSAM4LC4CA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LC4CA-AUR				Reel		
ATSAM4LC4CA-CFU			VFBGA100	Tray		
ATSAM4LC4CA-CFUR				Reel		Industrial -40°C to 85°C
ATSAM4LC4BA-AU-ES			TQFP64	ES		N/A
ATSAM4LC4BA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LC4BA-AUR				Reel		
ATSAM4LC4BA-MU-ES			QFN64	ES		N/A
ATSAM4LC4BA-MU				Tray		Industrial -40°C to 85°C
ATSAM4LC4BA-MUR				Reel		
ATSAM4LC4BA-UUR			WLCSP64	Reel		Industrial -40°C to 85°C
ATSAM4LC4AA-AU-ES			TQFP48	ES		N/A
ATSAM4LC4AA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LC4AA-AUR				Reel		
ATSAM4LC4AA-MU-ES			QFN48	ES		N/A
ATSAM4LC4AA-MU				Tray		Industrial -40°C to 85°C
ATSAM4LC4AA-MUR				Reel		