

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 7x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4lc4ba-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Configuration Summary

Table 2-1.Sub Series Summary

Feature	ATSAM4LC	ATSAM4LS
SEGMENT LCD	Yes	No
AESA	Yes	No
USB	Device + Host	Device Only

 Table 2-2.
 ATSAM4LC Configuration Summary

- Atmel

Feature	ATSAM4LC8/4/2C	ATSAM4LC8/4/2B	ATSAM4LC8/4/2A		
Number of Pins	100	64	48		
Max Frequency	48MHz				
Flash		512/256/128KB			
SRAM		64/32/32KB			
SEGMENT LCD	4x40	4x23	4x13		
GPIO	75	43	27		
High-drive pins	6	3	1		
External Interrupts		8 + 1 NMI			
TWI	2 Masters + 2 Masters/Slaves		1 Master + 1 Master/Slave		
USART	4		3 in LC sub series 4 in LS sub series		
PICOUART		1	0		
Peripheral DMA Channels		16			
AESA		1			
Peripheral Event System		1			
SPI		1			
Asynchronous Timers		1			
Timer/Counter Channels	6		3		
Parallel Capture Inputs		8			
Frequency Meter		1			
Watchdog Timer	1				
Power Manager	1				
Glue Logic LUT	2 1				

Figure 3-3. ATSAM4LC WLCSP64 Pinout

- Atmel

11

Atmel

Figure 3-4. ATSAM4LC TQFP64/QFN64 Pinout

12

3.2 Peripheral Multiplexing on I/O lines

3.2.1 Multiplexed Signals

Each GPIO line can be assigned to one of the peripheral functions. The following tables (Section 3-1 "100-pin GPIO Controller Function Multiplexing" on page 19 to Section 3-4 "48-pin GPIO Controller Function Multiplexing" on page 28) describes the peripheral signals multiplexed to the GPIO lines.

Peripheral functions that are not relevant in some parts of the family are grey-shaded.

For description of differents Supply voltage source, refer to the Section 6. "Power and Startup Considerations" on page 46.

 Table 3-1.
 100-pin GPIO Controller Function Multiplexing (Sheet 1 of 4)

			-										
	ATSAM4LC		ATSAM4LS	Pin	GPIO	Supply	GPIO Functions						
QFN	VFBGA	QFN	VFBGA				Α	В	С	D	E	F	G
5	B9	5	B9	PA00	0	VDDIO							
6	B8	6	B8	PA01	1	VDDIO							
12	A7	12	A7	PA02	2	VDDIN	SCIF GCLK0	SPI NPCS0					CATB DIS
19	В3	19	В3	PA03	3	VDDIN		SPI MISO					
24	A2	24	A2	PA04	4	VDDANA	ADCIFE AD0	USART0 CLK	EIC EXTINT2	GLOC IN1			CATB SENSE0
25	A1	25	A1	PA05	5	VDDANA	ADCIFE AD1	USART0 RXD	EIC EXTINT3	GLOC IN2	ADCIFE TRIGGER		CATB SENSE1
30	C3	30	C3	PA06	6	VDDANA	DACC VOUT	USART0 RTS	EIC EXTINT1	GLOC IN0	ACIFC ACAN0		CATB SENSE2
31	D3	31	D3	PA07	7	VDDANA	ADCIFE AD2	USART0 TXD	EIC EXTINT4	GLOC IN3	ACIFC ACAP0		CATB SENSE3
44	G2	44	G2	PA08	8	LCDA	USART0 RTS	TC0 A0	PEVC PAD EVT0	GLOC OUT0		LCDCA SEG23	CATB SENSE4
47	F5	47	F5	PA09	9	LCDA	USART0 CTS	ТС0 В0	PEVC PAD EVT1	PARC PCDATA0		LCDCA COM3	CATB SENSE5
48	H2	48	H2	PA10	10	LCDA	USART0 CLK	TC0 A1	PEVC PAD EVT2	PARC PCDATA1		LCDCA COM2	CATB SENSE6
49	H3	49	H3	PA11	11	LCDA	USART0 RXD	TC0 B1	PEVC PAD EVT3	PARC PCDATA2		LCDCA COM1	CATB SENSE7
50	J2	50	J2	PA12	12	LCDA	USART0 TXD	TC0 A2		PARC PCDATA3		LCDCA COM0	CATB DIS
63	H5	63	H5	PA13	13	LCDA	USART1 RTS	TC0 B2	SPI NPCS1	PARC PCDATA4		LCDCA SEG5	CATB SENSE8
64	К7	64	К7	PA14	14	LCDA	USART1 CLK	TC0 CLK0	SPI NPCS2	PARC PCDATA5		LCDCA SEG6	CATB SENSE9
65	G5	65	G5	PA15	15	LCDA	USART1 RXD	TC0 CLK1	SPI NPCS3	PARC PCDATA6		LCDCA SEG7	CATB SENSE10

Signal Name	Function	Туре	Active Level	Comments	
	Inter-IC Sound (I2S) Co	ontroller - IIS	C		
IMCK	I2S Master Clock	Output			
ISCK	I2S Serial Clock	I/O			
ISDI	I2S Serial Data In	Input			
ISDO	I2S Serial Data Out	Output			
IWS	I2S Word Select	I/O			
	LCD Controller -	LCDCA			
BIASL	Bias voltage (1/3 VLCD)	Analog			
BIASH	Bias voltage (2/3 VLCD)	Analog			
САРН	High voltage end of flying capacitor	Analog			
CAPL	Low voltage end of flying capacitor	Analog			
COM3 - COM0	Common terminals	Analog			
SEG39 - SEG0	Segment terminals	Analog			
VLCD	Bias voltage	Analog			
	Parallel Capture	- PARC			
PCCK	Clock	Input			
PCDATA7 - PCDATA0	Data lines	Input			
PCEN1	Data enable 1	Input			
PCEN2	Data enable 2	Input			
	Peripheral Event Cont	troller - PEVC	;		
PAD_EVT3 - PAD_EVT0	Event Inputs	Input			
	Power Manage	er - PM			
RESET_N	Reset	Input	Low		
	System Control Inte	rface - SCIF			
GCLK3 - GCLK0	Generic Clock Outputs	Output			
GCLK_IN1 - GCLK_IN0	Generic Clock Inputs	Input			
XINO	Crystal 0 Input	Analog/ Digital			
XOUT0	Crystal 0 Output	Analog			
	Serial Peripheral Int	erface - SPI			
MISO	Master In Slave Out	I/O			
MOSI	Master Out Slave In	I/O			
NPCS3 - NPCS0	SPI Peripheral Chip Selects	I/O	Low		
SCK	Clock	I/O			
Timer/Counter - TC0, TC1					

Table 3-8. Signal Descriptions List (Sheet 2 of 4)

Signal Name	Function	Туре	Active Level	Comments
A0	Channel 0 Line A	I/O		
A1	Channel 1 Line A	I/O		
A2	Channel 2 Line A	I/O		
B0	Channel 0 Line B	I/O		
B1	Channel 1 Line B	I/O		
B2	Channel 2 Line B	I/O		
CLK0	Channel 0 External Clock Input	Input		
CLK1	Channel 1 External Clock Input	Input		
CLK2	Channel 2 External Clock Input	Input		
	Two-wire Interface - TWIMS0, T	WIMS1, TWIN	A2, TWIM3	
TWCK	Two-wire Serial Clock	I/O		
TWD	Two-wire Serial Data	I/O		
Universal S	ynchronous Asynchronous Receiver Trans	smitter - USA	RT0, USART	1, USART2, USART3
CLK	Clock	I/O		
CTS	Clear To Send	Input	Low	
RTS	Request To Send	Output	Low	
RXD	Receive Data	Input		
TXD	Transmit Data	Output		
	USB 2.0 Interface	e - USBC	1	
DM	USB Full Speed Interface Data -	I/O		
DP	USB Full Speed Interface Data +	I/O		
	Power	1	1	
GND	Ground	Ground		
GNDANA	Analog Ground	Ground		
VDDANA	Analog Power Supply	Power Input		1.68V to 3.6V
VDDCORE	Core Power Supply	Power Input		1.68V to 1.98V
VDDIN	Voltage Regulator Input	Power Input		1.68V to 3.6V
VDDIO	I/O Pads Power Supply	Power Input		1.68V to 3.6V. VDDIO must always be equal to or lower than VDDIN.
VDDOUT	Voltage Regulator Output	Power Output		1.08V to 1.98V
	General Purpo	se I/O		

Table 3-8.Signal Descriptions List (Sheet 3 of 4)

3.4.7 ADC Input Pins

These pins are regular I/O pins powered from the VDDANA.

sor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to suspend load-multiple and store-multiple operations. Interrupt handlers do not require wrapping in assembler code, removing any code overhead from the ISRs. A tail-chain optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function enabling the entire device to be rapidly powered down while still retaining program state.

4.2 System level interface

The Cortex-M4 processor provides multiple interfaces using AMBA[®] technology to provide high speed, low latency memory accesses. It supports unaligned data accesses and implements atomic bit manipulation that enables faster peripheral controls, system spinlocks and thread-safe Boolean data handling.

The Cortex-M4 processor has an *memory protection unit* (MPU) that provides fine grain memory control, enabling applications to utilize multiple privilege levels, separating and protecting code, data and stack on a task-by-task basis. Such requirements are becoming critical in many embedded applications such as automotive.

4.3 Integrated configurable debug

The Cortex-M4 processor implements a complete hardware debug solution. This provides high system visibility of the processor and memory through either a traditional JTAG port or a 2-pin *Serial Wire Debug* (SWD) port that is ideal for microcontrollers and other small package devices.

For system trace the processor integrates an *Instrumentation Trace Macrocell* (ITM) alongside data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system events these generate, a *Serial Wire Viewer* (SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin.

The *Flash Patch and Breakpoint Unit* (FPB) provides 8 hardware breakpoint comparators that debuggers can use. The comparators in the FPB also provide remap functions of up to 8 words in the program code in the CODE memory region. This enables applications stored on a nonerasable, ROM-based microcontroller to be patched if a small programmable memory, for example flash, is available in the device. During initialization, the application in ROM detects, from the programmable memory, whether a patch is required. If a patch is required, the application programs the FPB to remap a number of addresses. When those addresses are accessed, the accesses are redirected to a remap table specified in the FPB configuration, which means the program in the non-modifiable ROM can be patched.

A specific Peripheral Debug (PDBG) register is implemented in the Private Peripheral Bus address map. This register allows the user to configure the behavior of some modules in debug mode.

Atmel

8.7.5 Product Dependencies

8.7.5.1 I/O Lines

The TCK pin is dedicated to the EDP. The other debug port pins default after reset to their GPIO functionality and are automatically reassigned to the JTAG functionalities on detection of a debugger. In serial wire mode, TDI and TDO can be used as GPIO functions. Note that in serial wire mode TDO can be used as a single pin trace output.

8.7.5.2 Power Management

When a debugger is present, the connection is kept alive allowing debug operations. As a side effect, the power is never turned off. The hot plugging functionality is always available except when the system is in BACKUP Power Save Mode.

8.7.5.3 Clocks

The SWJ-DP uses the external TCK pin as its clock source. This clock must be provided by the external JTAG master device.

Some of the JTAG Instructions are used to access an Access Port (SMAP or AHB-AP). These instructions require the CPU clock to be running.

If the CPU clock is not present because the CPU is in a Power Save Mode where this clock is not provided, the Power Manager(PM) will automatically restore the CPU clock on detection of a debug access.

The RCSYS clock is used as CPU clock when the external reset is applied to ensure correct Access Port operations.

8.7.6 Module Initialization

This module is enabled as soon as a TCK falling edge is detected when RESET_N is not asserted (refer to Section 8.7.7 below). Moreover, the module is synchronously reseted as long as the TAP machine is in the TEST_LOGIC_RESET (TLR) state. It is advised asserting TMS at least 5 TCK clock periods after the debugger has been detected to ensure the module is in the TLR state prior to any operation. This module also has the ability to maintain the Cortex-M4 under reset (refer to the Section 8.7.8 "SMAP Core Reset Request Source" on page 70).

8.7.7 Debugger Hot Plugging

The TCK pin is dedicated to the EDP. After reset has been released, the EDP detects that a debugger has been attached when a TCK falling edge arises.

Figure 8-4. Debugger Hot Plugging Detection Timings Diagram

Atmel

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. Return to Run-Test/Idle.
- 5. Select the DR Scan path.
- 6. In Capture-DR: The Data on the external pins are sampled into the boundary-scan chain.
- 7. In Shift-DR: The boundary-scan chain is shifted by the TCK input.
- 8. Return to Run-Test/Idle.

Table 8-6. SAMPLE_PRELOAD Details

Instructions	Details
IR input value	0001 (0x1)
IR output value	p00s
DR Size	Depending on boundary-scan chain, see BSDL-file.
DR input value	Depending on boundary-scan chain, see BSDL-file.
DR output value	Depending on boundary-scan chain, see BSDL-file.

8.7.14.3 INTEST

This instruction selects the boundary-scan chain as Data Register for testing internal logic in the device. The logic inputs are determined by the boundary-scan chain, and the logic outputs are captured by the boundary-scan chain. The device output pins are driven from the boundary-scan chain.

Starting in Run-Test/Idle, the INTEST instruction is accessed the following way:

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. In Update-IR: The data from the boundary-scan chain is applied to the internal logic inputs.
- 5. Return to Run-Test/Idle.
- 6. Select the DR Scan path.
- 7. In Capture-DR: The data on the internal logic is sampled into the boundary-scan chain.
- 8. In Shift-DR: The boundary-scan chain is shifted by the TCK input.
- 9. In Update-DR: The data from the boundary-scan chain is applied to internal logic inputs.
- 10. Return to Run-Test/Idle.

Table 8-7. INTEST Details

Instructions	Details
IR input value	0100 (0x4)
IR output value	p001
DR Size	Depending on boundary-scan chain, see BSDL-file.
DR input value	Depending on boundary-scan chain, see BSDL-file.
DR output value	Depending on boundary-scan chain, see BSDL-file.

8.9.11.9 Name:	Chip Identification EXID	n Extension Re	gister				
Access Typ	e: Read-O	nly					
Offset:	0xF4						
Reset Value	: -						
31	30	29	28	27	26	25	24
			E>	(ID			
23	22	21	20	19	18	17	16
			Ε>	KID			
15	14	13	12	11	10	9	8
			Ε>	KID			
7	6	5	4	3	2	1	0
			EΣ	KID			

Note: Refer to section CHIPID for more information on this register.

9.5.3 Peripheral Power Consumption in Power Scaling mode 0 and 2

The values in Table 9-11 are measured values of power consumption under the following conditions:

- Operating conditions, internal core supply (Figure 9-2)
 - $V_{VDDIN} = 3.3 V$
 - $V_{VDDCORE}$ supplied by the internal regulator in switching mode
- TA = 25°C
- Oscillators
 - OSC0 (crystal oscillator) stopped
 - OSC32K (32KHz crystal oscillator) running with external 32KHz crystal
 - DFLL running at 48 MHz with OSC32K as reference clock

Atmel

- Clocks
 - DFLL used as main clock source
 - CPU, AHB, and PB clocks undivided
- I/Os are inactive with internal pull-up
- Flash enabled in high speed mode
- CPU in SLEEP0 mode
- BOD18 and BOD33 disabled

Consumption active is the added current consumption when the module clock is turned on.

9.7 Oscillator Characteristics

9.7.1 Oscillator 0 (OSC0) Characteristics

9.7.1.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN.

Table 9-22. Digital Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN}	XIN clock frequency (1)				50	MHz
t _{CPXIN}	XIN clock duty cycle ⁽¹⁾		40		60	%
t _{STARTUP}	Startup time			N/A		cycles

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

9.7.1.2 Crystal Oscillator Characteristics

The following table describes the characteristics for the oscillator when a crystal is connected between XIN and XOUT as shown in Figure 9-3. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can be found in the crystal datasheet. The capacitance of the external capacitors (C_{LEXT}) can then be computed as follows:

$$C_{LEXT} = 2(C_{L} - C_{STRAY} - C_{SHUNT})$$

where C_{STRAY} is the capacitance of the pins and PCB, C_{SHUNT} is the shunt capacitance of the crystal.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Crystal oscillator frequency (1)		0.6		30	MHz
ESR Cryst		$f = 0.455 MHz$, $C_{LEXT} = 100 pF$ SCIF.OSCCTRL.GAIN = 0			17000	
		$f = 2MHz, C_{LEXT} = 20pF$ SCIF.OSCCTRL.GAIN = 0			2000	
	Crystal Equivalent Series Resistance ⁽²⁾	f = 4MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 1			1500	0
		f = 8MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 2			300	52
		f = 16MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 3			350	
		f = 30MHz, C _{LEXT} = 18pF SCIF.OSCCTRL.GAIN = 4			45	

Atmel

Table 9-23.	Crystal Oscillato	r Characteristics
	oryotal obolilato	- Onalastonotio

9.7.2 32kHz Crystal Oscillator (OSC32K) Characteristics

Figure 9-3 and the equation above also applies to the 32kHz oscillator connection. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can then be found in the crystal datasheet.

 Table 9-24.
 Digital Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN32}	XIN32 clock frequency ⁽¹⁾				6	MHz
	XIN32 clock duty cycle ⁽¹⁾		40		60	%
t _{STARTUP}	Startup time			N/A		cycles

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

Table 9-25. 32 kHz Crystal Oscillator Characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
f _{OUT}	Crystal oscillator frequency				32 768		Hz
t _{STARTUP}	Startup time (1)	$R_{m} = 100 k\Omega, C_{L} = 12.5 pF$			30000 ⁽²⁾		cycles
CL	Crystal load capacitance ⁽¹⁾			6		12.5	
C _{SHUNT}	Crystal shunt capacitance ⁽¹⁾			0.8		1.7	
C _{XIN}	Parasitic capacitor load (3)				3.4		рг
C _{XOUT}	Parasitic capacitor load ⁽³⁾	I QFP100 package			2.72		
I _{OSC32K}	Current consumption ⁽¹⁾				350		nA
	Crystal equivalent series resistance ⁽¹⁾ f=32.768kHz OSCCTRL32.MODE=1 Safety Factor = 3	OSCCTRL32.SELCURR=0				28	kΩ
		OSCCTRL32.SELCURR=4	C _L =6pF			72	
		OSCCTRL32.SELCURR=8				114	
		OSCCTRL32.SELCURR=15				313	
		OSCCTRL32.SELCURR=0				14	
		OSCCTRL32.SELCURR=4				36	- kΩ
ESR _{XTAL}		OSCCTRL32.SELCURR=8	CL=abL			100	
		OSCCTRL32.SELCURR=15				170	
		OSCCTRL32.SELCURR=4				15.2	
	resistance ⁽³⁾	OSCCTRL32.SELCURR=6				61.8	kΩ
	f=32.768kHz	OSCCTRL32.SELCURR=8	C _L =12.5pF			101.8	
	OSCCTRL32.MODE=1	OSCCTRL32.SELCURR=10				138.5	
	Sarety Factor = 3	OSCCTRL32.SELCURR=15				228.5	

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

2. Nominal crystal cycles.

3. These values are based on characterization. These values are not covered by test limits in production.

9.9.2 Power-on Reset 33 Characteristics

 Table 9-41.
 POR33 Characteristics ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{POT+}	Voltage threshold on V_{VDDIN} rising		1.25		1.55	M
V _{POT-}	Voltage threshold on V_{VDDIN} falling		0.95		1.30	v

1. These values are based on characterization. These values are not covered by test limits in production.

Figure 9-4. POR33 Operating Principle

9.9.3 Brown Out Detectors Characteristics

Table 9-42.BOD18 Characteristics (1)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
	Step size, between adjacent values in BSCIF.BOD18LEVEL ⁽¹⁾			10.1		mV	
V _{HYST}	BOD hysteresis ⁽¹⁾	T = 25°C	3		40		
t _{DET}	Detection time ⁽¹⁾	Time with V _{VDDCORE} < BOD18.LEVEL necessary to generate a reset signal	1.2			μs	
-	Current concurrentian(1)	on VDDIN		7.4	14		
BOD		on VDDCORE			7	μΑ	
t _{STARTUP}	Startup time ⁽¹⁾				4.5	μs	

Table 9-54. USART0 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
USPI0	MISO setup time before SPCK rises		123.2 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	24.74 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	maximum		513.56	20
USPI3	MISO setup time before SPCK falls	external	125.99 + t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls	40pF	24.74 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay			516.55	

Table 9-55. USART1 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		69.28 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	25.75 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	a.0 v to a.6 v, maximum		99.66	
USPI3	MISO setup time before SPCK falls	external	73.12 + t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls	40pF	28.10 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay	Ţ		102.01	

Table 9-56. USART2 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		69.09 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	26.52 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	maximum		542.96	
USPI3	MISO setup time before SPCK falls	external	72.55 + t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls	40pF	28.37 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay			544.80	

Table 9-57. USART3 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
USPI0	MISO setup time before SPCK rises		147.24 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	25.80 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	maximum		88.23	
USPI3	MISO setup time before SPCK falls	external	154.9 + t _{SAMPLE} ⁽²⁾		115
USPI4	MISO hold time after SPCK falls	40pF	26.89 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay			89.32	

Notes: 1. These values are based on simulation. These values are not covered by test limits in production.

Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left[\frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right] \frac{1}{2} \right) \times t_{CLKUSART} \right)$$

2.

The maximum SPI master output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI delay, SPI2 or SPI5 depending on CPOL and NCPHA. f_{PINMAX} is the maximum frequency of the SPI pins. refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

Maximum SPI Frequency, Master Input

The maximum SPI master input frequency is given by the following formula:

$$f_{SPCKMAX} = \frac{1}{SPIn + t_{VALID}}$$

Where *SPIn* is the MISO setup and hold time, SPI0 + SPI1 or SPI3 + SPI4 depending on CPOL and NCPHA. t_{VALID} is the SPI slave response time. refer to the SPI slave datasheet for t_{VALID} .

9.10.3.2 Slave mode

Figure 9-14. SPI Slave Mode with (CPOL= 0 and NCPHA= 1) or (CPOL= 1 and NCPHA= 0)

Figure 9-15. SPI Slave Mode with (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

Atmel

10.2 Package Drawings

Figure 10-1. VFBGA-100 package drawing

Notes: 1. No JEDEC Drawing Reference.

2. Array as seen from the bottom of the package.

BOTTOM VIEW

3. Dimension A includes stand-off height A1, package body thickness, and IId height, but does not include attached features. 4. Dimension b is measured at the maximum ball diameter, parallel to primary datum C.

Table 10-2. **Device and Package Maximum Weight**

120		mg
Table 10-3.	Package Characteristics	

Moisture Sensitivity Level	MSL3

Table 10-4. Package Reference

JEDEC Drawing Reference	N/A
JESD97 Classification	E1

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

Table 10-23.	Device and Package Maximum	Weight
--------------	----------------------------	--------

200	mg

Table 10-24. Package Characteristics

Moisture Sensitivity Level	MSL3

Table 10-25. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

Figure 10-11. QFN-48 Package Drawing for ATSAM4LC8 and ATSAM4LS8

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

Table 10-32	Device and Package	Maximum	Weight
	Device and Lackage	Maximum	vveigni

140	mg

Table 10-33. Package Characteristics

|--|

Table 10-34. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3