

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	75
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 15x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4lc4ca-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- PLL up to 240MHz for device clock and for USB
- Digital Frequency Locked Loop (DFLL) with wide input range
- Up to 16 peripheral DMA (PDCA) channels
- Peripherals
 - USB 2.0 Device and Embedded Host: 12 Mbps, up to 8 bidirectional Endpoints and Multi-packet Ping-pong Mode. On-Chip Transceiver
 - Liquid Crystal Display (LCD) Module with Capacity up to 40 Segments and up to 4 Common Terminals
 - One USART with ISO7816, IrDA®, RS-485, SPI, Manchester and LIN Mode
 - Three USART with SPI Mode
 - One PicoUART for extended UART wake-up capabilities in all sleep modes
 - Windowed Watchdog Timer (WDT)
 - Asynchronous Timer (AST) with Real-time Clock Capability, Counter or Calendar Mode Supported
 - Frequency Meter (FREQM) for Accurate Measuring of Clock Frequency
 - Six 16-bit Timer/Counter (TC) Channels with capture, waveform, compare and PWM mode
 - One Master/Slave Serial Peripheral Interface (SPI) with Chip Select Signals
 - Four Master and Two Slave Two-wire Interfaces (TWI), up to 3.4Mbit/s I²C-compatible
 - One Advanced Encryption System (AES) with 128-bit key length
 - One 16-channel ADC 300Ksps (ADC) with up to 12 Bits Resolution
 - One DAC 500Ksps (DACC) with up to 10 Bits Resolution
 - Four Analog Comparators (ACIFC) with Optional Window Detection
 - Capacitive Touch Module (CATB) supporting up to 32 buttons
 - Audio Bitstream DAC (ABDACB) Suitable for Stereo Audio
 - Inter-IC Sound (IISC) Controller, Compliant with Inter-IC Sound (I²S) Specification
 - Peripheral Event System for Direct Peripheral to Peripheral Communication
 - 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)
 - Random generator (TRNG)
 - Parallel Capture Module (PARC)
 - Glue Logic Controller (GLOC)
- I/O
 - Up to 75 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and slew-rate control
 - Up to Six High-drive I/O Pins
- Single 1.68-3.6V Power Supply
- Packages
 - 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball VFBGA, 7x7 mm, pitch 0.65 mm
 - 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-pad QFN 9x9 mm, pitch 0.5 mm
 - 64-ball WLCSP, 4,314x4,434 mm, pitch 0.5 mm for SAM4LC4/2 and SAM4LS4/2 series
 - 64-ball WLCSP, 5,270x5,194 mm, pitch 0.5 mm for SAM4LC8 and SAM4LS8 series
 - 48-lead LQFP, 7 x 7 mm, pitch 0.5 mm/48-pad QFN 7x7 mm, pitch 0.5 mm

3.2 Peripheral Multiplexing on I/O lines

3.2.1 Multiplexed Signals

Each GPIO line can be assigned to one of the peripheral functions. The following tables (Section 3-1 "100-pin GPIO Controller Function Multiplexing" on page 19 to Section 3-4 "48-pin GPIO Controller Function Multiplexing" on page 28) describes the peripheral signals multiplexed to the GPIO lines.

Peripheral functions that are not relevant in some parts of the family are grey-shaded.

For description of differents Supply voltage source, refer to the Section 6. "Power and Startup Considerations" on page 46.

 Table 3-1.
 100-pin GPIO Controller Function Multiplexing (Sheet 1 of 4)

			-										
	ATSAM4LC		ATSAM4LS	Pin	GPIO	Supply			G	PIO Functio	ns		
QFN	VFBGA	QFN	VFBGA				Α	В	С	D	E	F	G
5	B9	5	B9	PA00	0	VDDIO							
6	B8	6	B8	PA01	1	VDDIO							
12	A7	12	A7	PA02	2	VDDIN	SCIF GCLK0	SPI NPCS0					CATB DIS
19	В3	19	В3	PA03	3	VDDIN		SPI MISO					
24	A2	24	A2	PA04	4	VDDANA	ADCIFE AD0	USART0 CLK	EIC EXTINT2	GLOC IN1			CATB SENSE0
25	A1	25	A1	PA05	5	VDDANA	ADCIFE AD1	USART0 RXD	EIC EXTINT3	GLOC IN2	ADCIFE TRIGGER		CATB SENSE1
30	C3	30	C3	PA06	6	VDDANA	DACC VOUT	USART0 RTS	EIC EXTINT1	GLOC IN0	ACIFC ACAN0		CATB SENSE2
31	D3	31	D3	PA07	7	VDDANA	ADCIFE AD2	USART0 TXD	EIC EXTINT4	GLOC IN3	ACIFC ACAP0		CATB SENSE3
44	G2	44	G2	PA08	8	LCDA	USART0 RTS	TC0 A0	PEVC PAD EVT0	GLOC OUT0		LCDCA SEG23	CATB SENSE4
47	F5	47	F5	PA09	9	LCDA	USART0 CTS	ТС0 В0	PEVC PAD EVT1	PARC PCDATA0		LCDCA COM3	CATB SENSE5
48	H2	48	H2	PA10	10	LCDA	USART0 CLK	TC0 A1	PEVC PAD EVT2	PARC PCDATA1		LCDCA COM2	CATB SENSE6
49	H3	49	H3	PA11	11	LCDA	USART0 RXD	TC0 B1	PEVC PAD EVT3	PARC PCDATA2		LCDCA COM1	CATB SENSE7
50	J2	50	J2	PA12	12	LCDA	USART0 TXD	TC0 A2		PARC PCDATA3		LCDCA COM0	CATB DIS
63	H5	63	H5	PA13	13	LCDA	USART1 RTS	TC0 B2	SPI NPCS1	PARC PCDATA4		LCDCA SEG5	CATB SENSE8
64	К7	64	К7	PA14	14	LCDA	USART1 CLK	TC0 CLK0	SPI NPCS2	PARC PCDATA5		LCDCA SEG6	CATB SENSE9
65	G5	65	G5	PA15	15	LCDA	USART1 RXD	TC0 CLK1	SPI NPCS3	PARC PCDATA6		LCDCA SEG7	CATB SENSE10

ATSAM4LC	ATSAM4LS	Pin	GPIO	Supply			Gi	PIO Functio	ns		
WLCSP	WLCSP				Α	В	С	D	E	F	G
G4	G4	PA00	0	VDDIO							
G5	G5	PA01	1	VDDIO							
F3	F3	PA02	2	VDDIN	SCIF GCLK0	SPI NPCS0					CATB DIS
E2	E2	PA03	3	VDDIN		SPI MISO					
D3	D3	PA04	4	VDDANA	ADCIFE AD0	USART0 CLK	EIC EXTINT2	GLOC IN1			CATB SENSE0
C3	C3	PA05	5	VDDANA	ADCIFE AD1	USART0 RXD	EIC EXTINT3	GLOC IN2	ADCIFE TRIGGER		CATB SENSE1
C4	C4	PA06	6	VDDANA	DACC VOUT	USART0 RTS	EIC EXTINT1	GLOC IN0	ACIFC ACAN0		CATB SENSE2
C5	C5	PA07	7	VDDANA	ADCIFE AD2	USART0 TXD	EIC EXTINT4	GLOC IN3	ACIFC ACAP0		CATB SENSE3
В4	B4	PA08	8	LCDA	USART0 RTS	TC0 A0	PEVC PAD EVT0	GLOC OUT0		LCDCA SEG23	CATB SENSE4
A5	A5	PA09	9	LCDA	USART0 CTS	ТС0 В0	PEVC PAD EVT1	PARC PCDATA0		LCDCA COM3	CATB SENSE5
В6	B6	PA10	10	LCDA	USART0 CLK	TC0 A1	PEVC PAD EVT2	PARC PCDATA1		LCDCA COM2	CATB SENSE6
B7	B7	PA11	11	LCDA	USART0 RXD	TC0 B1	PEVC PAD EVT3	PARC PCDATA2		LCDCA COM1	CATB SENSE7
A8	A8	PA12	12	LCDA	USART0 TXD	TC0 A2		PARC PCDATA3		LCDCA COM0	CATB DIS
С7	C7	PA13	13	LCDA	USART1 RTS	TC0 B2	SPI NPCS1	PARC PCDATA4		LCDCA SEG5	CATB SENSE8
D7	D7	PA14	14	LCDA	USART1 CLK	TC0 CLK0	SPI NPCS2	PARC PCDATA5		LCDCA SEG6	CATB SENSE9
E7	E7	PA15	15	LCDA	USART1 RXD	TC0 CLK1	SPI NPCS3	PARC PCDATA6		LCDCA SEG7	CATB SENSE10
F7	F7	PA16	16	LCDA	USART1 TXD	TC0 CLK2	EIC EXTINT1	PARC PCDATA7		LCDCA SEG8	CATB SENSE11
G8	G8	PA17	17	LCDA	USART2 RTS	ABDACB DAC0	EIC EXTINT2	PARC PCCK		LCDCA SEG9	CATB SENSE12
G7	G7	PA18	18	LCDA	USART2 CLK	ABDACB DACN0	EIC EXTINT3	PARC PCEN1		LCDCA SEG18	CATB SENSE13
G6	G6	PA19	19	LCDA	USART2 RXD	ABDACB DAC1	EIC EXTINT4	PARC PCEN2	SCIF GCLK0	LCDCA SEG19	CATB SENSE14
H7	H7	PA20	20	LCDA	USART2 TXD	ABDACB DACN1	EIC EXTINT5	GLOC IN0	SCIF GCLK1	LCDCA SEG20	CATB SENSE15
H5	H5	PA21	21	LCDC	SPI MISO	USART1 CTS	EIC EXTINT6	GLOC IN1	TWIM2 TWD	LCDCA SEG34	CATB SENSE16
F5	F5	PA22	22	LCDC	SPI MOSI	USART2 CTS	EIC EXTINT7	GLOC IN2	TWIM2 TWCK	LCDCA SEG35	CATB SENSE17

 Table 3-3.
 64-pin GPIO Controller Function Multiplexing for WLCSP package (Sheet 1 of 3)

ATSAM4LC	ATSAM4LS	Pin	GPIO	Supply			GI	PIO Functio	ns		
WLCSP	WLCSP				Α	В	С	D	E	F	G
E5	E5	PB13	45	LCDC	USART0 CLK	SPI NPCS1	PEVC PAD EVT1	TC0 CLK0	SCIF GCLK3	LCDCA SEG33	CATB SENSE0
F4	F4	PB14	46	LCDC	USART0 RXD	SPI MISO	TWIM3 TWD	TC0 CLK1	SCIF GCLK IN0	LCDCA SEG36	CATB SENSE1
H4	H4	PB15	47	LCDC	USART0 TXD	SPI MOSI	TWIM3 TWCK	TC0 CLK2	SCIF GCLK IN1	LCDCA SEG37	CATB SENSE2

 Table 3-3.
 64-pin GPIO Controller Function Multiplexing for WLCSP package (Sheet 3 of 3)

4LC	4LS		•	<u>></u>			G	PIO Functio	ns		
ATSAM	ATSAM	Pin	OIdO	gupp	А	В	с	D	E	F	G
44	44	PA24	24	LCDC	SPI NPCS0	TWIMS0 TWCK		GLOC OUT0	SCIF GCLK IN1	LCDCA SEG39	CATB SENSE18
46	46	PA25	25	VDDIO	USBC DM	USART2 RXD					CATB SENSE19
47	47	PA26	26	VDDIO	USBC DP	USART2 TXD					CATB SENSE20
	25	PA27	27	LCDA	SPI MISO	IISC ISCK	ABDACB DAC0	GLOC IN4	USART3 RTS		CATB SENSE0
	26	PA28	28	LCDA	SPI MOSI	IISC ISDI	ABDACB DACN0	GLOC IN5	USART3 CTS		CATB SENSE1
	27	PA29	29	LCDA	SPI SCK	IISC IWS	ABDACB DAC1	GLOC IN6	USART3 CLK		CATB SENSE2
	30	PA30	30	LCDA	SPI NPCS0	IISC ISDO	ABDACB DACN1	GLOC IN7	USART3 RXD		CATB SENSE3
	31	PA31	31	LCDA	SPI NPCS1	IISC IMCK	ABDACB CLK	GLOC OUT1	USART3 TXD		CATB DIS

 Table 3-4.
 48-pin GPIO Controller Function Multiplexing (Sheet 2 of 2)

3.2.2 Peripheral Functions

Each GPIO line can be assigned to one of several peripheral functions. The following table describes how the various peripheral functions are selected. The last listed function has priority in case multiple functions are enabled on the same pin.

Table 3-5.	Peripheral Functions
------------	----------------------

Function	Description
GPIO Controller Function multiplexing	GPIO and GPIO peripheral selection A to H
JTAG port connections	JTAG debug port
Oscillators	OSC0

3.2.3 JTAG Port Connections

If the JTAG is enabled, the JTAG will take control over a number of pins, irrespectively of the I/O Controller configuration.

48-pin Packages	64-pin QFP/QFN	64-pin WLSCP	100-pin QFN	100-ball VFBGA	Pin Name	JTAG Pin		
10	10	E2	19	B3	PA03	TMS		
43	59	H3	95	D6	PA23	TDO		
44	60	G3	96	D10	PA24	TDI		
9	9	F2	18	B4	ТСК	ТСК		

Table 3-6. JTAG Pinout

Line	Module	Signal
12	Peripheral DMA Controller	PDCA 11
13	Peripheral DMA Controller	PDCA 12
14	Peripheral DMA Controller	PDCA 13
15	Peripheral DMA Controller	PDCA 14
16	Peripheral DMA Controller	PDCA 15
17	CRC Calculation Unit	CRCCU
18	USB 2.0 Interface	USBC
19	Peripheral Event Controller	PEVC TR
20	Peripheral Event Controller	PEVC OV
21	Advanced Encryption Standard	AESA
22	Power Manager	PM
23	System Control Interface	SCIF
24	Frequency Meter	FREQM
25	General-Purpose Input/Output Controller	GPIO 0
26	General-Purpose Input/Output Controller	GPIO 1
27	General-Purpose Input/Output Controller	GPIO 2
28	General-Purpose Input/Output Controller	GPIO 3
29	General-Purpose Input/Output Controller	GPIO 4
30	General-Purpose Input/Output Controller	GPIO 5
31	General-Purpose Input/Output Controller	GPIO 6
32	General-Purpose Input/Output Controller	GPIO 7
33	General-Purpose Input/Output Controller	GPIO 8
34	General-Purpose Input/Output Controller	GPIO 9
35	General-Purpose Input/Output Controller	GPIO 10
36	General-Purpose Input/Output Controller	GPIO 11
37	Backup Power Manager	BPM
38	Backup System Control Interface	BSCIF
39	Asynchronous Timer	AST ALARM
40	Asynchronous Timer	AST PER
41	Asynchronous Timer	AST OVF
42	Asynchronous Timer	AST READY
43	Asynchronous Timer	AST CLKREADY
44	Watchdog Timer	WDT
45	External Interrupt Controller	EIC 1
46	External Interrupt Controller	EIC 2
47	External Interrupt Controller	EIC 3

 Table 4-2.
 Interrupt Request Signal Map (Sheet 2 of 3)

The internal regulator is connected to the VDDIN pin and its output VDDOUT feeds VDDCORE in linear mode or through an inductor in switching mode. Figure 6-4 shows the power schematics to be used. All I/O lines will be powered by the same power ($V_{VDDIN}=V_{VDDIN}=V_{VDDANA}$).

6.2.3 LCD Power Modes

6.2.3.1 Principle

LCD lines is powered using the device internal voltage sources provided by the LCDPWR block. When enabled, the LCDPWR blocks will generate the VLCD, BIASL, BIASH voltages.

LCD pads are splitted into three clusters that can be powered independently namely clusters A, B and C. A cluster can either be in GPIO mode or in LCD mode.

When a cluster is in GPIO mode, its VDDIO pin must be powered externally. None of its GPIO pin can be used as a LCD line

When a cluster is in LCD mode, each clusters VDDIO pin can be either forced externally (1.8-3.6V) or unconnected (nc). GPIOs in a cluster are not available when it is in LCD mode. A cluster is set in LCD mode by the LCDCA controller when it is enabled depending on the number of segments configured. The LCDPWR block is powered by the VLCDIN pin inside cluster A

When LCD feature is not used, VLCDIN must be always powered (1.8-3.6V). VLCD, CAPH, CAPL, BIASH, BIASL can be left unconnected in this case

8. Debug and Test

8.1 Features

- IEEE1149.1 compliant JTAG Debug Port
- Serial Wire Debug Port
- · Boundary-Scan chain on all digital pins for board-level testing
- Direct memory access and programming capabilities through debug ports
- Flash Patch and Breakpoint (FPB) unit for implementing breakpoints and code patches
- Data Watchpoint and Trace (DWT) unit for implementing watchpoints, data tracing, and system profiling
- Instrumentation Trace Macrocell (ITM) for support of printf style debugging
- Chip Erase command and status
- Unlimited Flash User page read access
- Cortex-M4 core reset source
- CRC32 of any memory accessible through the bus matrix
- Debugger Hot Plugging

8.2 Overview

Debug and test features are made available to external tools by:

- The Enhanced Debug Port (EDP) embedding:
 - a Serial Wire Debug Port (SW-DP) part of the ARM coresight architecture
 - an IEEE 1149.1 JTAG Debug Debug Port (JTAG-DP) part of the ARM coresight architecture
 - a supplementary IEEE 1149.1 JTAG TAP machine that implements the boundary scan feature
- The System Manager Acces Port (SMAP) providing unlimited flash User page read access, CRC32 of any memory accessible through the bus matrix and Cortex-M4 core reset services
- The AHB Access Port (AHB-AP) providing Direct memory access, programming capabilities and standard debugging functions
- The Instrumentation Trace macrocell part of the ARM coresight architecture

For more information on ARM debug components, please refer to:

- ARMv7-M Architecture Reference Manual
- ARM Debug Interface v5.1 Architecture Specification document

- ARM CoreSight Architecture Specification
- ARM ETM Architecture Specification v3.5
- ARM Cortex-M4 Technical Reference Manual

8.7.13 Security Restrictions

The SAM4L provide a security restrictions mechanism to lock access to the device. The device in the protected state when the Flash Security Bit is set. Refer to section Flash Controller for more details.

When the device is in the protected state the AHB-AP is locked. Full access to the AHB-AP is reenabled when the protected state is released by issuing a Chip Erase command. Note that the protected state will read as programmed only after the system has been reseted.

8.7.13.1 Notation

Table 8-4 on page 73 shows bit patterns to be shifted in a format like "**p01**". Each character corresponds to one bit, and eight bits are grouped together for readability. The least significant bit is always shifted first, and the most significant bit shifted last. The symbols used are shown in Table 8-3.

Symbol	Description
0	Constant low value - always reads as zero.
1	Constant high value - always reads as one.
р	The chip protected state.
x	A don't care bit. Any value can be shifted in, and output data should be ignored.
е	An error bit. Read as one if an error occurred, or zero if not.
b	A busy bit. Read as one if the SMAP was busy, or zero if it was not.
S	Startup done bit. Read as one if the system has started-up correctly.

Table 8-3. Symbol Description

In many cases, it is not required to shift all bits through the data register. Bit patterns are shown using the full width of the shift register, but the suggested or required bits are emphasized using **bold** text. I.e. given the pattern "**01010101** xxxxxxx xxxxxxxx xxxxxxxx", the shift register is 32 bits, but the test or debug unit may choose to shift only 8 bits "**01010101**".

The following describes how to interpret the fields in the instruction description tables:

Table 8-4.Instruction Description

Instruction	Description
IR input value	Shows the bit pattern to shift into IR in the Shift-IR state in order to select this instruction. The pattern is show both in binary and in hexadecimal form for convenience. Example: 1000 (0x8)
IR output value	Shows the bit pattern shifted out of IR in the Shift-IR state when this instruction is active. Example: p00s

8.9.9 Unlimited Flash User Page Read Access

The SMAP can access the User page even if the protected state is set. Prior to operate such an access, the user should check that the module is not busy by checking that SR.STATE is equal to zerp. Once the offset of the word to access inside the page is written in ADDR.ADDR, the read operation can be initiated by writing a one in CR.FSPR. The SR.STATE field will indicate the FSPR state. Addresses written to ADDR.ADDR must be world aligned. Failing to do so will result in unpredictable behavior. The result can be read in the DATA register as soon as SR.DONE rises. The ADDR field is used as an offset in the page, bits outside a page boundary will be silently discarded. The ADDR register is automatically incremented at the end of the read operation making possible to dump consecutive words without writing the next offset into ADDR.ADDR.

8.9.10 32-bit Cyclic Redundancy Check (CRC)

The SMAP unit provides support for calculating a Cyclic Redundancy Check (CRC) value for a memory area. The algorithm used is the industry standard CRC32 algorithm using the generator polynomial 0xEDB88320.

8.9.10.1 Starting CRC Calculation

To calculate CRC for a memory range, the start address must be written into the ADDR register, and the size of the memory range into the LENGTH register. Both the start address and the length must be word aligned.

The initial value used for the CRC calculation must be written to the DATA register. This value will usually be 0xFFFFFFF, but can be e.g. the result of a previous CRC calculation if generating a common CRC of separate memory blocks.

Once completed, the calculated CRC value can be read out of the DATA register. The read value must be inverted to match standard CRC32 implementations, or kept non-inverted if used as starting point for subsequent CRC calculations.

If the device is in protected state, it is only possible to calculate the CRC of the whole flash array. In most cases this area will be the entire onboard nonvolatile memory. The ADDR, LENGTH, and DATA registers will be forced to predefined values once the CRC operation is started, and user-written values are ignored. This allows the user to verify the contents of a protected device.

The actual test is started by writing a one in CR.CRC. A running CRC operation can be cancelled by disabling the module (write a one in CR.DIS). This has the effect of resetting the module. The module has to be restarted by issuing an enable command (write a one in CR.EN).

8.9.10.2 Interpreting the Results

The user should monitor the SR register (Refer to Section 8.9.11.2 "Status Register" on page 83). When the operation is completed SR.DONE is set. Then the SR.BERR and SR.FAIL must be read to ensure that no bus error nor functional error occured.

8.9.11.8	Chip	Identification Register
Name:		CIDR
Access Ty	pe:	Read-Only
Offset:		0xF0
Reset Valu	ie:	-

31	30	29	28	27	26	25	24
EXT		NVPTYP			AR	CH	
23	22	21	20	19	18	17	16
	ARCH				SRAMSIZ		
15	14	13	12	11	10	9	8
NVPSIZ2				NVPSIZ			
7	6	5	4	3	2	1	0
EPROC				VERSION			

Note: Refer to section CHIPID for more information on this register.

Symbol	Parameter	Description	Мах	Units
f _{CPU}	CPU clock frequency		12	
f _{PBA}	PBA clock frequency		12	
f _{PBB}	PBB clock frequency		12	
f _{PBC}	PBC clock frequency		12	
f _{PBD}	PBD clock frequency		12	
f _{GCLK0}	GCLK0 clock frequency	DFLLIF main reference, GCLK0 pin	16.6	
f _{GCLK1}	GCLK1 clock frequency	DFLLIF dithering and SSGreference, GCLK1 pin	16.6	
f _{GCLK2}	GCLK2 clock frequency	AST, GCLK2 pin	6.6	
f _{GCLK3}	GCLK3 clock frequency	CATB, GCLK3 pin	17.3	
f _{GCLK4}	GCLK4 clock frequency	FLO and AESA	16.6	
f _{GCLK5}	GCLK5 clock frequency	GLOC, TC0 and RC32KIFB_REF	26.6	
f _{GCLK6}	GCLK6 clock frequency	ABDACB and IISC	16.6	MHz
f _{GCLK7}	GCLK7 clock frequency	USBC	16.6	
f _{GCLK8}	GCLK8 clock frequency	TC1 and PEVC[0]	16.6	
f _{GCLK9}	GCLK9 clock frequency	PLL0 and PEVC[1]	16.6	
f _{GCLK10}	GCLK10 clock frequency	ADCIFE	16.6	
f _{GCLK11}	GCLK11 clock frequency	Master generic clock. Can be used as source for other generic clocks	51.2	
	0000 1 11	Oscillator 0 in crystal mode	16	
T _{OSC0}	OSC0 output frequency	Oscillator 0 in digital clock mode	16	
f _{PLL}	PLL output frequency	Phase Locked Loop	N/A	
f _{DFLL}	DFLL output frequency	Digital Frequency Locked Loop	N/A	
f _{RC80M}	RC80M output frequency	Internal 80MHz RC Oscillator	N/A	

Table 9-5.Maximum Clock Frequencies in Power Scaling Mode 1 and RUN Mode

Figure 9-1. Typical Power Consumption running Coremark (from above table)

Note: For variable frequency oscillators, linear interpolation between high and low settings

Figure 9-2. Measurement Schematic, Switching Mode

Table 9-27. Digital Frequency Locked Loop Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{STARTUP}	Startup time ⁽¹⁾	Within 90% of final values			100	μs
		$f_{REF} = 32 \text{ kHz}$, FINE lock, SSG disabled ⁽²⁾		600		
t _{LOCK}	Lock time ⁽¹⁾	f_{REF} = 32 kHz, ACCURATE lock, dithering clock = RCSYS/2, SSG disabled ⁽²⁾		1100		

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

2. Spread Spectrum Generator (SSG) is disabled by writing a zero to the EN bit in the SCIF.DFLL0SSG register.

9.7.5 32kHz RC Oscillator (RC32K) Characteristics

Table 9-28. 32 kHz RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency ⁽¹⁾	Calibrated against a 32.768kHz reference Temperature compensation disabled	20	32.768	44	kHz
1	Current concurrention (2)	Without temperature compensation		0.5		μA
IRC32K		Temperature compensation enabled		2		μA
t _{STARTUP}	Startup time ⁽¹⁾			1		cycle

1. These values are based on characterization. These values are not covered by test limits in production.

2. These values are based on simulation. These values are not covered by test limits in production or characterization.

9.7.6 System RC Oscillator (RCSYS) Characteristics

Table 9-29. System RC Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency (1)	Calibrated at 85°C	110	113.6	116	kHz
I _{RCSYS}	Current consumption (2)				12	μA
t _{STARTUP}	Startup time ⁽¹⁾		25	38	63	μs
Duty	Duty cycle ⁽¹⁾		49.6	50	50.3	%

1. These values are based on characterization. These values are not covered by test limits in production.

2. These values are based on simulation. These values are not covered by test limits in production or characterization.

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

The values in Table 9-43 describe the values of the BOD33.LEVEL in the flash User Page fuses.

BOD33.LEVEL Value	Min	Тур	Max	Units
16		2.08		
20		2.18		
24		2.33		
28		2.48		
32		2.62		V
36		2.77		
40		2.92		
44		3.06		
48		3.21		

Table 9-43. BOD33.LEVEL Values

Table 9-44. BOD33 Characteristics ⁽¹⁾

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Step size, between adjacent values in BSCIF.BOD33LEVEL ⁽¹⁾			34.4		mV
V _{HYST}	Hysteresis ⁽¹⁾		45		170	
t _{DET}	Detection time ⁽¹⁾	Time with VDDIN < V_{TH} necessary to generate a reset signal				μs
I _{BOD33}	Current consumption ⁽¹⁾	Normal mode			36	μA
t _{STARTUP}	Startup time ⁽¹⁾	Normal mode			6	μs

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

Maximum SPI Frequency, Master Output

The maximum SPI master output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn}, \frac{f_{CLKSPI} \times 2}{9})$$

Where *SPIn* is the MOSI delay, USPI2 or USPI5 depending on CPOL and NCPHA. f_{PINMAX} is the maximum frequency of the SPI pins. refer to the I/O Pin Characteristics section for the maximum frequency of the pins. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Master Input

The maximum SPI master input frequency is given by the following formula:

USPI6-

MOSI

$$f_{SPCKMAX} = MIN(\frac{1}{SPIn + t_{VALID}}, \frac{f_{CLKSPI} \times 2}{9})$$

Where *SPIn* is the MISO setup and hold time, USPI0 + USPI1 or USPI3 + USPI4 depending on CPOL and NCPHA. T_{VALID} is the SPI slave response time. refer to the SPI slave datasheet for T_{VALID} . f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

9.10.2.2 Slave mode

Figure 9-9.

9-9. USART in SPI Slave Mode with (CPOL= 0 and CPHA= 1) or (CPOL= 1 and CPHA= 0)

Table 9-66.SWD Timings(1)

Symbol	Parameter	Conditions	Min	Max	Units
Thigh	SWDCLK High period		10	500 000	
Tlow	SWDCLK Low period	V_{VDDIO} from 3.0V to 3.6V	10	500 000	
Tos	SWDIO output skew to falling edge SWDCLK	ling edge SWDCLK maximum		5	ns
Tis	Input Setup time required between SWDIO	external capacitor =	4	-	
Tih	Input Hold time required between SWDIO and rising edge SWDCLK	40pF	1	-	

Note: 1. These values are based on simulation. These values are not covered by test limits in production or characterization.

COMMON DIMENSIONS (Unit of Measure = mm)

BALL	SIGNAL	X COORD	Y COORD
A1	PB04	1.746	1.683
A2	GNDANA	1.246	1.683
A3	ADVREFP	0.746	1.683
A4	VDDANA	0.246	1.683
A5	PA09	-0.254	1.683
A6	PA28	-0.754	1.683
A7	PA27	-1.254	1.683
A8	PA12	-1.754	1.683
B1	PB03	1.746	1.183
B2	XIN32	1.246	1.183
B3	XOUT32	0.746	1.183
B4	PA08	0.246	1.183
B5	PB06	-0.254	1.183
B6	PA10	-0.754	1.183
B7	PA11	-1.254	1.183
B8	PA29	-1.754	1.183
C1	VDDIN	1.746	0.683
C2	PB01	1.246	0.683
C3	PA05	0.746	0.683
C4	PA06	0.246	0.683
C5	PA07	-0.254	0.683
C6	PB07	-0.754	0.683

 SIGNAL
 X COORD
 Y COORD

 PA13
 -1.254
 0.683

 GNDIO0
 -1.754
 0.683

 VDDOUT
 1.746
 0.183

 PB00
 1.246
 0.183

 PA00
 1.246
 0.183
 CE DI D 0.746 D PA04 0.18 PB05 0.1 PB12 PB08 PA14 VLCDIN GNDIN D5 D6 -0.254 0.18 -1.254 D7 D8 0.1 1 746 E1 E2 E3 PA03 PB02 RESET_N PB13 PB09 PA15 1.246 0.746 0.246 -0.254 E4 E5 -0 E6 F7 0.254 -0.754 -1.254 -1.754 1.746 PA30 VDDCORE TCK E8 -0.317 -0.81 .246 -0.8 PA02 PB14 F3 F4 0.746

BALL	SIGNAL	X COORD	Y COORD
F5	PA22	-0.254	-0.817
F6	PB10	-0.754	-0.817
F7	PA16	-1.254	-0.817
F8	PA31	-1.754	-0.817
G1	GNDIO1	1.746	-1.317
G2	PA26	1.246	-1.317
G3	PA24	0.746	-1.317
G4	PA00	0.246	-1.317
G5	PA01	-0.254	-1.317
G6	PA19	-0.754	-1.317
G7	PA18	-1.254	-1.317
G8	PA17	-1.754	-1.317
H1	VDDI01	1.746	-1.817
H2	PA25	1.246	-1.817
H3	PA23	0.746	-1.817
H4	PB15	0.246	-1.817
H5	PA21	-0.254	-1.817
H6	VDDI00	-0.754	-1.817
H7	PA20	-1.254	-1.817
H8	PB11	-1.754	-1.817

Notes : 1. Dimension "b" is measured at the maximum ball diameter in a plane to the seating plane.

2. Applied to whole wafer.

Table 10-11. Device and Package Maximum Weight

14.8	mg	
Table 10-12. Package Characteristics		
Moisture Sensitivity Level	MSL3	

Table 10-13. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E1

Figure 10-7. TQFP-64 Package Drawing

COMMON DIMENSIONS IN MM

SYMBOL	Min	Max	NUTES
А		1. 20	
A1	0, 95	1. 05	
С	C 0. 09 0. 20		
D	12.0		
D1	10.0		
E	12.0		
E1	10,0		
J	0, 05	0.15	
L	0, 45	0, 75	
е	0. 5		
f	0.17	0, 27	

Table 10-20. Device and Package Maximum Weight

300	mg

Table 10-21. Package Characteristics

Moisture Sensitivity Level	MSL3
----------------------------	------

Table 10-22. Package Reference

JEDEC Drawing Reference	MS-026	
JESD97 Classification	E3	

Table of Contents

	Summary1				
	Featur	1			
1	Descr	iption	3		
2	Overv	iew	5		
	2.1	Block Diagram	5		
	2.2	Configuration Summary	6		
3	Packa	ge and Pinout	9		
	3.1	Package	9		
	3.2	Peripheral Multiplexing on I/O lines	19		
	3.3	Signals Description	31		
	3.4	I/O Line Considerations	34		
4	Cortex	x-M4 processor and core peripherals	36		
	4.1	Cortex-M4			
	4.2	System level interface	37		
	4.3	Integrated configurable debug	37		
	4.4	Cortex-M4 processor features and benefits summary	38		
	4.5	Cortex-M4 core peripherals			
	4.6	Cortex-M4 implementations options			
	4.7	Cortex-M4 Interrupts map			
	4.8	Peripheral Debug	42		
5	Memo	ries	43		
	5.1	Product Mapping	43		
	5.2	Embedded Memories	44		
	5.3	Physical Memory Map	44		
6	Power	and Startup Considerations	46		
	6.1	Power Domain Overview	46		
	6.2	Power Supplies			
	6.3	Startup Considerations	53		
	6.4	Power-on-Reset, Brownout and Supply Monitor	53		
7	Low P	ower Techniques	55		
	7.1	Power Save Modes	55		
	7.2	Power Scaling	60		

