

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	27
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 3x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4lc8aa-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	ATSAM4LS8/4/2C	ATSAM4LS8/4/2B	ATSAM4LS8/4/2A				
Timer/Counter Channels	6	6 3					
Parallel Capture Inputs		8					
Frequency Meter		1					
Watchdog Timer		1					
Power Manager		1					
Glue Logic LUT		2	1				
Oscillators	Phase Crysta Cryst RC RC O RC O	Digital Frequency Locked Loop 20-150MHz (DFLL) Phase Locked Loop 48-240MHz (PLL) Crystal Oscillator 0.6-30MHz (OSC0) Crystal Oscillator 32kHz (OSC32K) RC Oscillator 80MHz (RC80M) RC Oscillator 4,8,12MHz (RCFAST) RC Oscillator 115kHz (RCSYS) RC Oscillator 32kHz (RC32K)					
ADC	15-channel	7-channel	3-channel				
DAC		1-channel					
Analog Comparators	4	2	1				
CATB Sensors	32	32	26				
USB		1					
Audio Bitstream DAC		1					
IIS Controller		1					
Packages	TQFP/VFBGA	TQFP/QFN/ WLCSP	TQFP/QFN				

Table 2-3. ATSAM4LS Configuration Summary

 Table 3-1.
 100-pin GPIO Controller Function Multiplexing (Sheet 3 of 4)

	ATSAM4LC		ATSAM4LS	Pin	GPIO	Supply	GPIO Functions						
QFN	VFBGA	QFN	VFBGA				Α	В	С	D	E	F	G
72	G6	72	G6	PB08	40	LCDA	USART3 CLK		GLOC IN6	ТС0 В0		LCDCA SEG14	CATB SENSE28
73	G7	73	G7	PB09	41	LCDA	USART3 RXD	PEVC PAD EVT2	GLOC IN7	ТС0 А1		LCDCA SEG15	CATB SENSE29
74	G8	74	G8	PB10	42	LCDA	USART3 TXD	PEVC PAD EVT3	GLOC OUT1	TC0 B1	SCIF GCLK0	LCDCA SEG16	CATB SENSE30
75	К9	75	К9	PB11	43	LCDA	USART0 CTS	SPI NPCS2		TC0 A2	SCIF GCLK1	LCDCA SEG17	CATB SENSE31
89	E7	89	E7	PB12	44	LCDC	USART0 RTS	SPI NPCS3	PEVC PAD EVT0	TC0 B2	SCIF GCLK2	LCDCA SEG32	CATB DIS
90	E8	90	E8	PB13	45	LCDC	USART0 CLK	SPI NPCS1	PEVC PAD EVT1	TC0 CLK0	SCIF GCLK3	LCDCA SEG33	CATB SENSE0
93	D7	93	D7	PB14	46	LCDC	USART0 RXD	SPI MISO	TWIM3 TWD	TC0 CLK1	SCIF GCLK IN0	LCDCA SEG36	CATB SENSE1
94	D8	94	D8	PB15	47	LCDC	USART0 TXD	SPI MOSI	TWIM3 TWCK	TC0 CLK2	SCIF GCLK IN1	LCDCA SEG37	CATB SENSE2
1	A10	1	A10	PC00	64	VDDIO	SPI NPCS2	USART0 CLK		TC1 A0			CATB SENSE3
2	C8	2	C8	PC01	65	VDDIO	SPI NPCS3	USART0 RTS		TC1 B0			CATB SENSE4
3	С7	3	C7	PC02	66	VDDIO	SPI NPCS1	USART0 CTS	USART0 RXD	TC1 A1			CATB SENSE5
4	B7	4	B7	PC03	67	VDDIO	SPI NPCS0	EIC EXTINT5	USART0 TXD	TC1 B1			CATB SENSE6
9	C5	9	C5	PC04	68	VDDIO	SPI MISO	EIC EXTINT6		TC1 A2			CATB SENSE7
10	C6	10	C6	PC05	69	VDDIO	SPI MOSI	EIC EXTINT7		TC1 B2			CATB DIS
11	В6	11	B6	PC06	70	VDDIO	SPI SCK	EIC EXTINT8		TC1 CLK0			CATB SENSE8
36	F2	36	F2	PC07	71	VDDANA	ADCIFE AD7	USART2 RTS	PEVC PAD EVT0	TC1 CLK1			CATB SENSE9
37	E3	37	E3	PC08	72	VDDANA	ADCIFE AD8	USART2 CLK	PEVC PAD EVT1	TC1 CLK2	USART2 CTS		CATB SENSE10
38	F1	38	F1	PC09	73	VDDANA	ADCIFE AD9	USART3 RXD	ABDACB DAC0	IISC ISCK	ACIFC ACAN1		CATB SENSE11
39	D4	39	D4	PC10	74	VDDANA	ADCIFE AD10	USART3 TXD	ABDACB DACN0	IISC ISDI	ACIFC ACAP1		CATB SENSE12
40	E4	40	E4	PC11	75	VDDANA	ADCIFE AD11	USART2 RXD	PEVC PAD EVT2				CATB SENSE13
41	F3	41	F3	PC12	76	VDDANA	ADCIFE AD12	USART2 TXD	ABDACB CLK	IISC IWS			CATB SENSE14
42	F4	42	F4	PC13	77	VDDANA	ADCIFE AD13	USART3 RTS	ABDACB DAC1	IISC ISDO	ACIFC ACBN1		CATB SENSE15
43	G1	43	G1	PC14	78	VDDANA	ADCIFE AD14	USART3 CLK	ABDACB DACN1	IISC IMCK	ACIFC ACBP1		CATB DIS
58	J5	58	J5	PC15	79	LCDA	TC1 A0			GLOC IN4		LCDCA SEG0	CATB SENSE16

4LC	4LS			×			GI	PIO Functio	ns		
ATSAM4LC	ATSAM4LS	Pin	GPIO	Supply	A	В	с	D	E	F	G
44	44	PA24	24	LCDC	SPI NPCS0	TWIMS0 TWCK		GLOC OUT0	SCIF GCLK IN1	LCDCA SEG39	CATB SENSE18
46	46	PA25	25	VDDIO	USBC DM	USART2 RXD					CATB SENSE19
47	47	PA26	26	VDDIO	USBC DP	USART2 TXD					CATB SENSE20
	25	PA27	27	LCDA	SPI MISO	IISC ISCK	ABDACB DAC0	GLOC IN4	USART3 RTS		CATB SENSE0
	26	PA28	28	LCDA	SPI MOSI	IISC ISDI	ABDACB DACN0	GLOC IN5	USART3 CTS		CATB SENSE1
	27	PA29	29	LCDA	SPI SCK	IISC IWS	ABDACB DAC1	GLOC IN6	USART3 CLK		CATB SENSE2
	30	PA30	30	LCDA	SPI NPCS0	IISC ISDO	ABDACB DACN1	GLOC IN7	USART3 RXD		CATB SENSE3
	31	PA31	31	LCDA	SPI NPCS1	IISC IMCK	ABDACB CLK	GLOC OUT1	USART3 TXD		CATB DIS

 Table 3-4.
 48-pin GPIO Controller Function Multiplexing (Sheet 2 of 2)

3.2.2 Peripheral Functions

Each GPIO line can be assigned to one of several peripheral functions. The following table describes how the various peripheral functions are selected. The last listed function has priority in case multiple functions are enabled on the same pin.

Table 3-5.	Peripheral Functions
------------	----------------------

Function	Description
GPIO Controller Function multiplexing	GPIO and GPIO peripheral selection A to H
JTAG port connections	JTAG debug port
Oscillators	OSC0

3.2.3 JTAG Port Connections

If the JTAG is enabled, the JTAG will take control over a number of pins, irrespectively of the I/O Controller configuration.

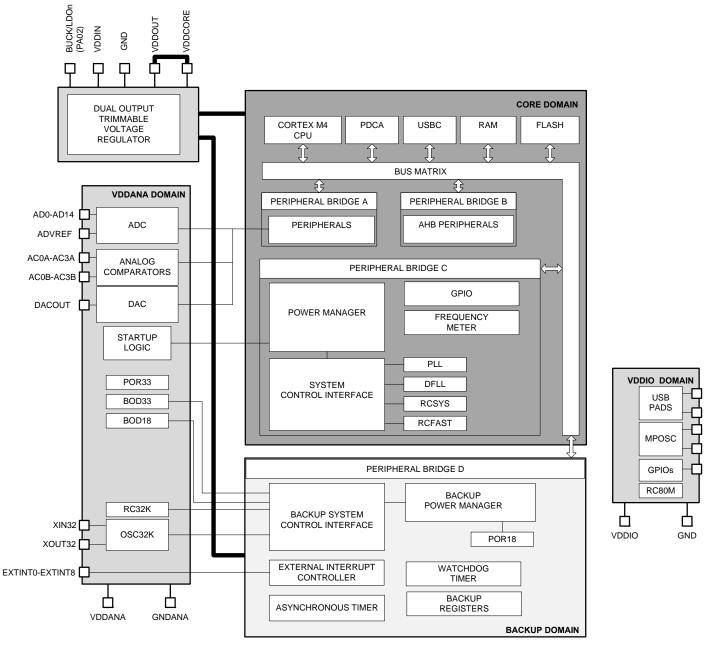

	JIAGEIII	Jui				
48-pin Packages	64-pin QFP/QFN	64-pin WLSCP	100-pin QFN	100-ball VFBGA	Pin Name	JTAG Pin
10	10	E2	19	B3	PA03	TMS
43	59	H3	95	D6	PA23	TDO
44	60	G3	96	D10	PA24	TDI
9	9	F2	18	B4	тск	тск

Table 3-6. JTAG Pinout

6. Power and Startup Considerations

6.1 Power Domain Overview

Figure 6-1. ATSAM4LS Power Domain Diagram

6.2 Power Supplies

The ATSAM4L8/L4/L2 has several types of power supply pins:

- VDDIO: Powers I/O lines, the general purpose oscillator (OSC), the 80MHz integrated RC oscillator (RC80M). Voltage is 1.68V to 3.6V.
- VLCDIN: (ATSAM4LC only) Powers the LCD voltage pump. Voltage is 1.68V to 3.6V.
- VDDIN: Powers the internal voltage regulator. Voltage is 1.68V to 3.6V.
- VDDANA: Powers the ADC, the DAC, the Analog Comparators, the 32kHz oscillator (OSC32K), the 32kHz integrated RC oscillator (RC32K) and the Brown-out detectors (BOD18 and BOD33). Voltage is 1.68V to 3.6V nominal.
- VDDCORE: Powers the core, memories, peripherals, the PLL, the DFLL, the 4MHz integrated RC oscillator (RCFAST) and the 115kHz integrated RC oscillator (RCSYS).
 - VDDOUT is the output voltage of the regulator and must be connected with or without an inductor to VDDCORE.

The ground pins GND are common to VDDCORE, VDDIO, and VDDIN. The ground pin for VDDANA is GNDANA.

For decoupling recommendations for the different power supplies, refer to the schematic document.

6.2.1 Voltage Regulator

An embedded voltage regulator supplies all the digital logic in the Core and the Backup power domains.

The regulator has two functionnal mode depending of BUCK/LDOn (PA02) pin value. When this pin is low, the regulator is in linear mode and VDDOUT must be connected to VDDCORE externally. When this pin is high, it behaves as a switching regulator and an inductor must be placed between VDDOUT and VDDCORE. The value of this pin is sampled during the power-up phase when the Power On Reset 33 reaches V_{POT+} (Section 9.9 "Analog Characteristics" on page 129)

Its output voltages in the Core domain (V_{CORE}) and in the Backup domain (V_{BKUP}) are always equal except in Backup mode where the Core domain is not powered (V_{CORE} =0). The Backup domain is always powered. The voltage regulator features three different modes:

- Normal mode: the regulator is configured as linear or switching regulator. It can support all different Run and Sleep modes.
- Low Power (LP) mode: the regulator consumes little static current. It can be used in Wait modes.
- Ultra Low Power (ULP) mode: the regulator consumes very little static current. It is dedicated to Retention and Backup modes. In Backup mode, the regulator only supplies the backup domain.

6.2.2 Typical Powering Schematics

The ATSAM4L8/L4/L2 supports the Single supply mode from 1.68V to 3.6V. Depending on the input voltage range and on the final application frequency, it is recommended to use the following table in order to choose the most efficient power strategy

	VDDIN Voltage				
	1.68V 1.8	30V 2.00V	v 2.	30V	3.60V
Switching Mode (BUCK/LDOn (PA02) =1)	N,		ossible but ot efficient	Optimal power efficiency	,
Linear Mode (BUCK/LDOn (PA02) =0)	Optin	nal power effi	ciency	Possible but not efficien	t
F _{CPUMAX}	12MHz		U	p to 36MHz In PS0 p to 12MHz in PS1 p to 48MHz in PS2	
PowerScaling	PS1 ⁽¹⁾			ALL	
Typical power consumption in RUN mode		Hz @ F _{CPU} =12MHz(Hz @ F _{CPU} = 48MHz(х 100µA/MHz @ F _{CPU} =12MHz(PS1) @ V _{VD} х 180µA/MHz @ F _{CPU} =48MHz(PS2) @ V _{VD}	
Typical power consumption in RET mode			1	.5μΑ	

Figure 6-3. Efficient power strategy:

Note 1. The SAM4L boots in PS0 on RCSYS(115kHz), then the application must switch to PS1 before running on higher frequency (<12MHz)

- Set the clock frequency to be supported in both power configurations.
- Set the high speed read mode of the FLASH to be supported in both power scaling configurations
 - Only relevant when entering or exiting BPM.PMCON.PS=2
- Configure the BPM.PMCON.PS field to the new power configuration.
- Set the BPM.PMCON.PSCREQ bit to one.
- Disable all the interrupts except the PM WCAUSE interrupt and enable only the PSOK asynchronous event in the AWEN register of PM.
- Execute the WFI instruction.
- WAIT for PM interrupt.

The new power configuration is reached when the system is waken up by the PM interrupt thanks to the PSOK event.

By default, all features are available in all Power Scaling modes. However some specific features are not available in PS1 (BPM.PMCON.PS=1) mode :

- USB
- DFLL
- PLL
- Programming/Erasing in Flash

8.7.3 Block Diagram

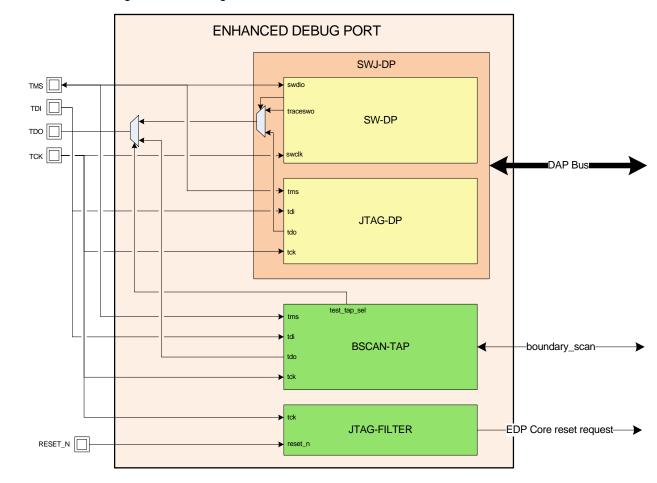


Figure 8-3. Enhanced Debug Port Block Diagram

8.7.4 I/O Lines Description

Table 8-1.	I/O Lines Description
------------	-----------------------

Name		JTAG Debug Port		SWD Debug Port
	Туре	Description	Туре	Description
TCK/SWCLK	I	Debug Clock	I	Serial Wire Clock
TDI	I	Debug Data in	-	NA
TDO/TRACESWO	0	Debug Data Out	0	Trace asynchronous Data Out
TMS/SWDIO	I	Debug Mode Select	I/O	Serial Wire Input/Output
RESET_N	I	Reset	I	Reset

Atmel

8.7.5 Product Dependencies

8.7.5.1 I/O Lines

The TCK pin is dedicated to the EDP. The other debug port pins default after reset to their GPIO functionality and are automatically reassigned to the JTAG functionalities on detection of a debugger. In serial wire mode, TDI and TDO can be used as GPIO functions. Note that in serial wire mode TDO can be used as a single pin trace output.

8.7.5.2 Power Management

When a debugger is present, the connection is kept alive allowing debug operations. As a side effect, the power is never turned off. The hot plugging functionality is always available except when the system is in BACKUP Power Save Mode.

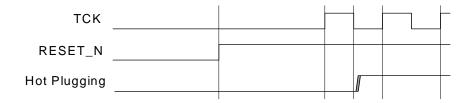
8.7.5.3 Clocks

The SWJ-DP uses the external TCK pin as its clock source. This clock must be provided by the external JTAG master device.

Some of the JTAG Instructions are used to access an Access Port (SMAP or AHB-AP). These instructions require the CPU clock to be running.

If the CPU clock is not present because the CPU is in a Power Save Mode where this clock is not provided, the Power Manager(PM) will automatically restore the CPU clock on detection of a debug access.

The RCSYS clock is used as CPU clock when the external reset is applied to ensure correct Access Port operations.


8.7.6 Module Initialization

This module is enabled as soon as a TCK falling edge is detected when RESET_N is not asserted (refer to Section 8.7.7 below). Moreover, the module is synchronously reseted as long as the TAP machine is in the TEST_LOGIC_RESET (TLR) state. It is advised asserting TMS at least 5 TCK clock periods after the debugger has been detected to ensure the module is in the TLR state prior to any operation. This module also has the ability to maintain the Cortex-M4 under reset (refer to the Section 8.7.8 "SMAP Core Reset Request Source" on page 70).

8.7.7 Debugger Hot Plugging

The TCK pin is dedicated to the EDP. After reset has been released, the EDP detects that a debugger has been attached when a TCK falling edge arises.

Figure 8-4. Debugger Hot Plugging Detection Timings Diagram

Instruction	Description
DR Size	Shows the number of bits in the data register chain when this instruction is active. Example: 32 bits
DR input value	Shows which bit pattern to shift into the data register in the Shift-DR state when this instruction is active.
DR output value	Shows the bit pattern shifted out of the data register in the Shift-DR state when this instruction is active.

 Table 8-4.
 Instruction Description (Continued)

8.7.14 JTAG Instructions

Refer to the ARM Debug Interface v5.1 Architecture Specification for more details on ABORT, DPACC, APACC and IDCODE instructions.

8.7.14.1 EXTEST

This instruction selects the boundary-scan chain as Data Register for testing circuitry external to the chip package. The contents of the latched outputs of the boundary-scan chain is driven out as soon as the JTAG IR-register is loaded with the EXTEST instruction.

Starting in Run-Test/Idle, the EXTEST instruction is accessed the following way:

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. In Update-IR: The data from the boundary-scan chain is applied to the output pins.
- 5. Return to Run-Test/Idle.
- 6. Select the DR Scan path.
- 7. In Capture-DR: The data on the external pins is sampled into the boundary-scan chain.
- 8. In Shift-DR: The boundary-scan chain is shifted by the TCK input.
- 9. In Update-DR: The data from the scan chain is applied to the output pins.
- 10. Return to Run-Test/Idle.

	Table 8	-5.	EXTE	EST	Details
--	---------	-----	------	-----	---------

Instructions	Details
IR input value	0000 (0x0)
IR output value	p00s
DR Size	Depending on boundary-scan chain, see BSDL-file.
DR input value	Depending on boundary-scan chain, see BSDL-file.
DR output value	Depending on boundary-scan chain, see BSDL-file.

8.7.14.2 SAMPLE_PRELOAD

This instruction takes a snap-shot of the input/output pins without affecting the system operation, and pre-loading the scan chain without updating the DR-latch. The boundary-scan chain is selected as Data Register.

Starting in Run-Test/Idle, the Device Identification register is accessed in the following way:

8.9.11.6 Data F Name:	Register DATA					
Access Type:	Read/Write					
Offset:	0x14					
Reset Value:	0x00000000					
31	30	29	28	27	26	25
			DATA			
23	22	21	20	19	18	17
			DATA			
15	14	13	12	11	10	9
			DATA			
7	6	5	4	3	2	1
			DATA			

• DATA: Generic data register

8.9.11.7	Module Version
Name:	VERSION
Access Type	e: Read-Only
Offset:	0x28
Reset Value	-

31	30	29	28	27	26	25	24		
-	-	-	-	-	-	-	-		
23	22	21	20	19	18	17	16		
-	-	-	-		VAR	ANT			
15	14	13	12	11	10	9	8		
-	-	-	-		VER	SION			
7	6	5	4	3	2	1	0		
	VERSION								

• VARIANT: Variant number

Reserved. No functionality associated.

• VERSION: Version number

Version number of the module. No functionality associated.

RCSYS (MCSEL = 0)	Power scaling mode 1		0.115	978	
	Dever eesting mode 4		0.5	354	
OSC0	Power scaling mode 1		12	114	
(MCSEL = 1)	Power scaling mode 0		12	228	
	Power scaling mode 0		30	219	
OSC0	Power scaling mode 1		0.6	292	
(MCSEL = 1)	Power scaling mode 1		12	111	μΑ/MHz
External Clock	Power scaling mode 0		12	193	
(MODE=0)	Power scaling mode 2		50	194	
PLL	Power scaling mode 2	Switching	40	188	
(MCSEL = 2)	Input Freq = 4MHz from OSC0	Mode	50	185	
DFLL	Power scaling mode 0 Input Freq = 32kHz from OSC32K		20	214	
(MCSEL = 3)	Power scaling mode 2 Input Freq = 32kHz from OSC32K		50	195	
RC1M (MCSEL = 4)	C1M MCSEL = 4) Power scaling mode 1		1	267	
RCFAST			4	153	
(MCSEL = 5)	RCFAST frequency is configurable from 4 to 12MHz		12	114	
RC80M (MCSEL = 6)	Power scaling mode 2 f _{CPU} = RC80M / 2 = 40MHz		40	211	

Table 9-10.	Typical Power Consumption running CoreMark on CPU clock sources ⁽¹⁾
	i jpicari enerie enerie ann piciri ranning e erennant en er e ereen eeu

1. These values are based on characterization. These values are not covered by test limits in production.

Table 9-50. Analog Comparator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
		V_{ACREFN} =0.1V to VDDIO-0.1V, hysteresis = 1 ⁽²⁾ Fast mode	10		55	mV
	Hysteresis ⁽¹⁾	V_{ACREFN} =0.1V to VDDIO-0.1V, hysteresis = 1 ⁽²⁾ Low power mode	10		68	mV
		$V_{ACREFN} = 0.1V$ to VDDIO-0.1V, hysteresis = $2^{(2)}$ Fast mode	26		83	mV
		$V_{ACREFN} = 0.1V$ to VDDIO-0.1V, hysteresis = $2^{(2)}$ Low power mode	19		91	mV
		V_{ACREFN} =0.1V to VDDIO-0.1V, hysteresis = $3^{(2)}$ Fast mode	43		106	mV
		$V_{ACREFN} = 0.1V$ to VDDIO-0.1V, hysteresis = $3^{(2)}$ Low power mode	32		136	mV
	Dranagation dalay (1)	Changes for V _{ACM} =VDDIO/2 100mV Overdrive Fast mode			67	ns
	Propagation delay ⁽¹⁾	Changes for V _{ACM} =VDDIO/2 100mV Overdrive Low power mode			315	ns
	Startup time ⁽¹⁾	Enable to ready delay Fast mode			1.19	μs
t _{startup}		Enable to ready delay Low power mode			3.61	μs
	Channel current	Low power mode, no hysteresis		4.9	8.7	μA
I _{AC}	consumption ⁽³⁾	Fast mode, no hysteresis		63	127	μΑ

1. These values are based on characterization. These values are not covered by test limits in production

2. HYSTAC.CONFn.HYS field, refer to the Analog Comparator Interface chapter

3. These values are based on simulation. These values are not covered by test limits in production or characterization

- Atmel

Table 9-54. USART0 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
USPI0	MISO setup time before SPCK rises		123.2 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	24.74 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	 3.0V to 3.6V, maximum 		513.56	
USPI3	MISO setup time before SPCK falls	external	125.99 + t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls	capacitor = 40pF	24.74 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay			516.55	

Table 9-55. USART1 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		69.28 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	25.75 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	3.0 V to 3.6 V, maximum		99.66	
USPI3	MISO setup time before SPCK falls	external	73.12 + t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls	capacitor = 40pF	28.10 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay			102.01	

Table 9-56. USART2 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Max	Units
USPI0	MISO setup time before SPCK rises		69.09 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	26.52 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	3.0V to 3.6V, maximum		542.96	
USPI3	MISO setup time before SPCK falls	external	72.55 + t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls	capacitor = 40pF	28.37 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay			544.80]

Table 9-57. USART3 in SPI Mode Timing, Master Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
USPI0	MISO setup time before SPCK rises		147.24 + t _{SAMPLE} ⁽²⁾		
USPI1	MISO hold time after SPCK rises	V _{VDDIO} from	25.80 -t _{SAMPLE} ⁽²⁾		
USPI2	SPCK rising to MOSI delay	- 3.0V to 3.6V, maximum		88.23	
USPI3	MISO setup time before SPCK falls	external	154.9 + t _{SAMPLE} ⁽²⁾		ns
USPI4	MISO hold time after SPCK falls	 capacitor = 40pF 	26.89 -t _{SAMPLE} ⁽²⁾		
USPI5	SPCK falling to MOSI delay			89.32	

Notes: 1. These values are based on simulation. These values are not covered by test limits in production.

Where:
$$t_{SAMPLE} = t_{SPCK} - \left(\left[\frac{t_{SPCK}}{2 \times t_{CLKUSART}} \right] \frac{1}{2} \right) \times t_{CLKUSART} \right)$$

2.

Where *SPIn* is the MISO delay, SPI6 or SPI9 depending on CPOL and NCPHA. t_{SETUP} is the SPI master setup time. refer to the SPI master datasheet for t_{SETUP} . f_{PINMAX} is the maximum frequency of the SPI pins. refer to the I/O Pin Characteristics section for the maximum frequency of the pins.

9.10.4 TWIM/TWIS Timing

Figure 9-64 shows the TWI-bus timing requirements and the compliance of the device with them. Some of these requirements (t_r and t_f) are met by the device without requiring user intervention. Compliance with the other requirements (t_{HD-STA} , t_{SU-STA} , t_{SU-STO} , t_{HD-DAT} , $t_{SU-DAT-TWI}$, $t_{LOW-TWI}$, t_{HIGH} , and f_{TWCK}) requires user intervention through appropriate programming of the relevant TWIM and TWIS user interface registers. refer to the TWIM and TWIS sections for more information.

			Minim	num	Maximum		
Symbol	Parameter	Mode	Requirement	Device	Requirement	Device	Unit
		Standard ⁽¹⁾	-		10	00	
t _r	TWCK and TWD rise time	Fast ⁽¹⁾	20 + 0	.1C _b	30	00	ns
		Standard	-		30	00	
t _f	TWCK and TWD fall time	Fast	20 + 0	.1C _b	30	00	ns
+	(Dependented) STADT hold time	Standard	4				
t _{HD-STA}	(Repeated) START hold time	Fast	0.6	t _{clkpb}	-		μs
+	(Dependented) STADT act up time	Standard	4.7				
t _{SU-STA}	(Repeated) START set-up time	Fast	0.6	t _{clkpb}	-		μs
+	STOD oot up time	Standard	4.0	4+	-		
t _{SU-STO}	STOP set-up time	Fast	0.6	4t _{clkpb}			μs
+	Dete held time	Standard	- 0.3 ⁽²⁾ 2	2t _{clkpb}	3.45 ⁽⁾	15+ +	
t _{HD-DAT}	Data hold time	Fast			0.9()	15t _{prescaled} + t _{clkpb}	μs
+	Data set-up time	Standard	250	Q+			
t _{SU-DAT-TWI}	Data set-up time	Fast	100	2t _{clkpb}	-		ns
t _{SU-DAT}		-	-	t _{clkpb}	-		-
+	TWCK LOW period	Standard	4.7	<i>/</i> +			
t _{LOW-TWI}	TWOR LOW period	Fast	1.3	4t _{clkpb}	-		μs
t _{LOW}		-	-	t _{clkpb}	-		-
+	TWCK HIGH period	Standard	4.0	Q+			
t _{HIGH}		Fast	0.6	8t _{clkpb}	-		μs
f	TWCK frequency	Standard			100	1	kHz
f _{TWCK}		Fast	-		400	^{12t} clkpb	KIIZ

Table 9-64.TWI-Bus Timing Requirements

Notes: 1. Standard mode: $f_{TWCK} \le 100 \text{ kHz}$; fast mode: $f_{TWCK} > 100 \text{ kHz}$.

10. Mechanical Characteristics

10.1 Thermal Considerations

10.1.1 Thermal Data

 Table 10-1 summarizes the thermal resistance data depending on the package.

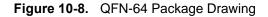
Symbol	Parameter	Condition	Package	Тур	Unit
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP100	48.1	·C/W
θ_{JC}	Junction-to-case thermal resistance		TQFP100	13.3	·C/vv
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	VFBGA100	31.1	CAN
θ_{JC}	Junction-to-case thermal resistance		VFBGA100	6.9	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	WLCSP64	26.9	0.00
θ_{JC}	Junction-to-case thermal resistance		WLCSP64	0.2	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP64	49.6	C 144
θ_{JC}	Junction-to-case thermal resistance		TQFP64	13.5	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	QFN64	22.0	C 144
θ_{JC}	Junction-to-case thermal resistance		QFN64	1.3	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	TQFP48	51.1	0.000
θ_{JC}	Junction-to-case thermal resistance		TQFP48	13.7	·C/W
θ_{JA}	Junction-to-ambient thermal resistance	Still Air	QFN48	24.9	CAN
θ_{JC}	Junction-to-case thermal resistance		QFN48	1.3	·C/W

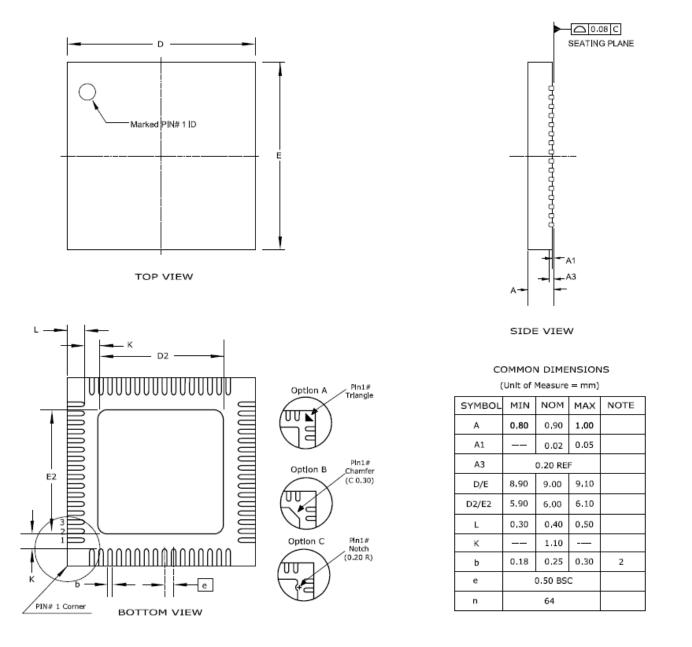
Table 10-1. Thermal Resistance Data

10.1.2 Junction Temperature

The average chip-junction temperature, T_J , in °C can be obtained from the following:

1.
$$T_J = T_A + (P_D \times \theta_{JA})$$


2. $T_J = T_A + (P_D \times (\theta_{HEATSINK} + \theta_{JC}))$ where:


- θ_{JA} = package thermal resistance, Junction-to-ambient (°C/W), provided in Table 10-1.
- θ_{JC} = package thermal resistance, Junction-to-case thermal resistance (°C/W), provided in Table 10-1.
- $\theta_{HEAT SINK}$ = cooling device thermal resistance (°C/W), provided in the device datasheet.

Atmel

- P_D = device power consumption (W) estimated from data provided in Section 9.5 on page 103.
- T_A = ambient temperature (°C).

From the first equation, the user can derive the estimated lifetime of the chip and decide if a cooling device is necessary or not. If a cooling device is to be fitted on the chip, the second equation should be used to compute the resulting average chip-junction temperature T_J in °C.

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

Table 10-23.	Device and Package Max	kimum Weight
--------------	------------------------	--------------

200	mg

Table 10-24. Package Characteristics

Moisture Sensitivity Level MSL3	Moisture Sensitivity Level	MSL3
---------------------------------	----------------------------	------

Table 10-25. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

Table 11-5.	ATSAM4LS4 Sub Serie Ordering Information
	ATOAM4LO4 Oub Oche Ordening Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range
ATSAM4LS4CA-AU-ES		5 32	TQFP100	ES	Green	N/A
ATSAM4LS4CA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LS4CA-AUR				Reel		
ATSAM4LS4CA-CFU			VFBGA100	Tray		
ATSAM4LS4CA-CFUR				Reel		Industrial -40°C to 85°C
ATSAM4LS4BA-AU-ES	256		TQFP64	ES		N/A
ATSAM4LS4BA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LS4BA-AUR				Reel		
ATSAM4LS4BA-MU-ES			QFN64	ES		N/A
ATSAM4LS4BA-MU				Tray		Industrial -40°C to 85°C
ATSAM4LS4BA-MUR				Reel		
ATSAM4LS4BA-UUR			WLCSP64	Reel		Industrial -40°C to 85°C
ATSAM4LS4AA-AU-ES			TQFP48	ES		N/A
ATSAM4LS4AA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LS4AA-AUR				Reel		
ATSAM4LS4AA-MU-ES			QFN48	ES		N/A
ATSAM4LS4AA-MU				Tray		
ATSAM4LS4AA-MUR				Reel		Industrial -40°C to 85°C

Table 11-6. ATSAM4LS2 Sub Serie Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range	
ATSAM4LS2CA-AU				Tray			
ATSAM4LS2CA-AUR	128		TQFP100	Reel			
ATSAM4LS2CA-CFU			VFBGA100	Tray			
ATSAM4LS2CA-CFUR				Reel			
ATSAM4LS2BA-AU				TOFRA	Tray	l I	
ATSAM4LS2BA-AUR			TQFP64	Reel			
ATSAM4LS2BA-MU		128 32	32		Tray	Green	Industrial -40°C to 85°C
ATSAM4LS2BA-MUR			QFN64	Reel			
ATSAM4LS2BA-UUR			WLCSP64	Reel			
ATSAM4LS2AA-AU			TQFP48	Tray			
ATSAM4LS2AA-AUR				Reel			
ATSAM4LS2AA-MU			QFN48	Tray			
ATSAM4LS2AA-MUR				Reel			

13. Datasheet Revision History

Note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

13.1 Rev. A - 09/12

1. Initial revision.

13.2 Rev. B - 10/12

- 1. Fixed ordering code
- 2. Changed BOD18CTRL and BOD33CTRL ACTION field from "Reserved" to 'No action"

13.3 Rev. C – 02/13

- 1. Fixed ball pitch for VFBGA100 package
- 2. Added VFBGA100 and WLCSP64 pinouts
- 3. Added Power Scaling Mode 2 for high frequency support
- 4. Minor update on several modules chapters
- 5. Major update on Electrical characteristics
- 6. Updated errata
- 7. Fixed GPIO multiplexing pin numbers

13.4 Rev. D - 03/13

- 1. Removed WLCSP package information
- 2. Added errata text for detecting whether a part supports PS2 mode or not
- 3. Removed temperature sensor feature (not supported by production flow)
- 4. Fixed MUX selection on Positive ADC input channel table

- 5. Added information about TWI instances capabilities
- 6. Added some details on errata Corrupted data in flash may happen after flash page write operations.171