

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	43
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 7x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4lc8ba-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2 Configuration Summary

Table 2-1.Sub Series Summary

Feature	ATSAM4LC	ATSAM4LS
SEGMENT LCD	Yes	No
AESA	Yes	No
USB	Device + Host	Device Only

 Table 2-2.
 ATSAM4LC Configuration Summary

- Atmel

Feature	ATSAM4LC8/4/2C	ATSAM4LC8/4/2B	ATSAM4LC8/4/2A		
Number of Pins	100 64		48		
Max Frequency	48MHz				
Flash		512/256/128KB			
SRAM		64/32/32KB			
SEGMENT LCD	4x40	4x23	4x13		
GPIO	75	43	27		
High-drive pins	6	3	1		
External Interrupts		8 + 1 NMI			
TWI	2 Masters + 2 Masters/Slaves		1 Master + 1 Master/Slave		
USART	4		3 in LC sub series 4 in LS sub series		
PICOUART		0			
Peripheral DMA Channels		16			
AESA		1			
Peripheral Event System		1			
SPI		1			
Asynchronous Timers		1			
Timer/Counter Channels	6		3		
Parallel Capture Inputs	8				
Frequency Meter	1				
Watchdog Timer	1				
Power Manager	1				
Glue Logic LUT	2 1				

Feature	ATSAM4LC8/4/2C ATSAM4LC8/4/2B ATSAM4LC8/4/2A				
	Digital Frequency Locked Loop 20-150MHz (DFLL)				
	Phase	Locked Loop 48-240M	Hz (PLL)		
	Crysta	l Oscillator 0.6-30MHz	(OSC0)		
Oscillators	Cryst	al Oscillator 32kHz (O	SC32K)		
	RC	Oscillator 80MHz (RC	80M)		
	RC O	scillator 4,8,12MHz (R	CFAST)		
	RC	Oscillator 115kHz (RC	SYS)		
	RC Oscillator 32kHz (RC32K)				
ADC	15-channel 7-channel 3-channel				
DAC		1-channel			
Analog Comparators	4	2	1		
CATB Sensors	32	32	26		
USB		1			
Audio Bitstream DAC	1				
IIS Controller		1			
Packages	TQFP/VFBGA TQFP/QFN/ WLCSP TQFP		TQFP/QFN		

Table 2-2. ATSAM4LC Configuration Summary

 Table 2-3.
 ATSAM4LS Configuration Summary

•

Feature	ATSAM4LS8/4/2C	ATSAM4LS8/4/2B	ATSAM4LS8/4/2A	
Number of Pins	100 64		48	
Max Frequency		48MHz		
Flash		512/256/128KB		
SRAM		64/32/32KB		
SEGMENT LCD		NA		
GPIO	80	48	32	
High-drive pins	6 3		1	
External Interrupts	8 + 1 NMI			
TWI	2 Masters + 2 Masters/Slaves 1 Master + 7 Master/Slav			
USART	4 3i 4i		3 in LC sub series 4 in LS sub series	
PICOUART		1	0	
Peripheral DMA Channels		16		
AESA	NA			
Peripheral Event System	1			
SPI	1			
Asynchronous Timers	1			

3. Package and Pinout

3.1 Package

The device pins are multiplexed with peripheral functions as described in Section 3.2 "Peripheral Multiplexing on I/O lines" on page 19.

3.1.1 ATSAM4LCx Pinout

Atmel

Figure 3-1. ATSAM4LC TQFP100 Pinout

5.2 Embedded Memories

- Internal high-speed flash
 - 512Kbytes (ATSAM4Lx8)
 - 256Kbytes (ATSAM4Lx4)
 - 128Kbytes (ATSAM4Lx2)
 - Pipelined flash architecture, allowing burst reads from sequential flash locations, hiding penalty of 1 wait state access
 - Pipelined flash architecture typically reduces the cycle penalty of 1 wait state operation compared to 0 wait state operation
 - 100 000 write cycles, 15-year data retention capability
 - Sector lock capabilities, bootloader protection, security bit
 - 32 fuses, erased during chip erase
 - User page for data to be preserved during chip erase
- Internal high-speed SRAM, single-cycle access at full speed
 - 64Kbytes (ATSAM4Lx8)
 - 32Kbytes (ATSAM4Lx4, ATSAM4Lx2)

5.3 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even during boot. The 32-bit physical address space is mapped as follows:

Momory	Start Address	Size	Size
wemory		ATSAM4Lx4	ATSAM4Lx2
Embedded Flash	0x0000000	256Kbytes	128Kbytes
Embedded SRAM	0x20000000	32Kbytes	32Kbytes
Cache SRAM	0x21000000	4Kbytes	4Kbytes
Peripheral Bridge A	0x4000000	64Kbytes	64Kbytes
Peripheral Bridge B	0x400A0000	64Kbytes	64Kbytes
AESA	0x400B0000	256 bytes	256 bytes
Peripheral Bridge C	0x400E0000	64Kbytes	64Kbytes
Peripheral Bridge D	0x400F0000	64Kbytes	64Kbytes

 Table 5-1.
 ATSAM4L8/L4/L2 Physical Memory Map

Momony	Start Address	Size
Memory		ATSAM4Lx8
Embedded Flash	0x0000000	512Kbytes
Embedded SRAM	0x20000000	64Kbytes
Cache SRAM	0x21000000	4Kbytes
Peripheral Bridge A	0x4000000	64Kbytes
Peripheral Bridge B	0x400A0000	64 Kbytes

The internal regulator is connected to the VDDIN pin and its output VDDOUT feeds VDDCORE in linear mode or through an inductor in switching mode. Figure 6-4 shows the power schematics to be used. All I/O lines will be powered by the same power ($V_{VDDIN}=V_{VDDIN}=V_{VDDANA}$).

6.2.3 LCD Power Modes

6.2.3.1 Principle

LCD lines is powered using the device internal voltage sources provided by the LCDPWR block. When enabled, the LCDPWR blocks will generate the VLCD, BIASL, BIASH voltages.

LCD pads are splitted into three clusters that can be powered independently namely clusters A, B and C. A cluster can either be in GPIO mode or in LCD mode.

When a cluster is in GPIO mode, its VDDIO pin must be powered externally. None of its GPIO pin can be used as a LCD line

When a cluster is in LCD mode, each clusters VDDIO pin can be either forced externally (1.8-3.6V) or unconnected (nc). GPIOs in a cluster are not available when it is in LCD mode. A cluster is set in LCD mode by the LCDCA controller when it is enabled depending on the number of segments configured. The LCDPWR block is powered by the VLCDIN pin inside cluster A

When LCD feature is not used, VLCDIN must be always powered (1.8-3.6V). VLCD, CAPH, CAPL, BIASH, BIASL can be left unconnected in this case

Atmel

7.1.3 BACKUP Mode

The BACKUP mode allows achieving the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time.

The Core domain is powered-off. The internal SRAM and register contents of the Core domain are lost. The Backup domain is kept powered-on. The 32kHz clock (RC32K or OSC32K) is kept running if enabled to feed modules that require clocking.

In BACKUP mode, the configuration of the I/O lines is preserved. Refer to Section 9. "Backup Power Manager (BPM)" on page 677 to have more details.

7.1.3.1 Entering BACKUP Mode

The Backup mode is entered by using the WFI instruction with the following settings:

- set the SCR.SLEEPDEEP bit to 1. (See the Power Management section in the ARM Cortex-M4 Processor chapter).
- set the BPM.PSAVE.BKUP bit to 1.

7.1.3.2 Exiting BACKUP Mode

Exit from BACKUP mode happens if a reset occurs or if an enabled wake up event occurs.

The reset sources are:

- BOD33 reset
- BOD18 reset
- WDT reset
- External reset in RESET_N pin

The wake up sources are:

- EIC lines (level transition only)
- BOD33 interrupt
- BOD18 interrupt
- AST alarm, periodic, overflow
- WDT interrupt

The RC32K or OSC32K should be used as clock source for modules if required. The PMCON.CK32S is used to select one of these two 32kHz clock sources.

Exiting the BACKUP mode is triggered by:

- a reset source: an internal reset sequence is performed according to the reset source. Once VDDCORE is stable and has the correct value according to RUN0 mode, the internal reset is released and program execution starts. The corresponding reset source is flagged in the Reset Cause register (RCAUSE) of the PM.
- a wake up source: the Backup domain is not reset. An internal reset is generated to the Core domain, and the system switches back to the previous RUN mode. Once VDDCORE is stable and has the correct value, the internal reset in the Core domain is released and program execution starts. The BKUP bit is set in the Reset Cause register (RCAUSE) of the PM. It allows the user to discriminate between the reset cause and a wake up cause from the BACKUP mode. The wake up cause can be found in the Backup Wake up Cause register (BPM.BKUPWCAUSE).

- Set the clock frequency to be supported in both power configurations.
- Set the high speed read mode of the FLASH to be supported in both power scaling configurations
 - Only relevant when entering or exiting BPM.PMCON.PS=2
- Configure the BPM.PMCON.PS field to the new power configuration.
- Set the BPM.PMCON.PSCREQ bit to one.
- Disable all the interrupts except the PM WCAUSE interrupt and enable only the PSOK asynchronous event in the AWEN register of PM.
- Execute the WFI instruction.
- WAIT for PM interrupt.

The new power configuration is reached when the system is waken up by the PM interrupt thanks to the PSOK event.

By default, all features are available in all Power Scaling modes. However some specific features are not available in PS1 (BPM.PMCON.PS=1) mode :

- USB
- DFLL
- PLL
- Programming/Erasing in Flash

Atmel

8.9 System Manager Access Port (SMAP)

Rev.: 1.0.0.0

8.9.1 **Features**

- Chip Erase command and status
- Cortex-M4 core reset source
- 32-bit Cyclic Redundancy check of any memory accessible through the bus matrix
- Unlimited Flash User page read access
- Chip identification register

8.9.2 **Overview**

The SMAP provides memory-related services and also Cortex-M4 core reset control to a debugger through the Debug Port. This makes possible to halt the CPU and program the device after reset.

8.9.3 **Block Diagram**

SMAP Block Diagram Figure 8-7.

8.9.4 Initializing the Module

The SMAP can be accessed only if the CPU clock is running and the SWJ-DP has been activated by issuing a CDBGPWRUP request. For more details, refer to the ARM Debug Interface v5.1 Architecture Specification.

Then it must be enabled by writing a one to the EN bit of the CR register (CR.EN) before writing or reading other registers. If the SMAP is not enabled it will discard any read or write operation.

Stopping the Module 8.9.5

To stop the module, the user must write a one to the DIS bit of the CR register (CR.DIS). All the user interface and internal registers will be cleared and the internal clock will be stopped.

8.9.11.2	Status	Register
Name:		SR
Access Typ	be:	Read-Only
Offset:		0x04
Reset Valu	e:	0x0000000

31	30	29	28	27	26	25	24	
-	-	-	-	-	STATE			
23	22	21	20	19	18	17	16	
-	-	-	-	-	-	-	-	
15	14	13	12	11	10	9	8	
-	-	-	-	-	DBGP	PROT	EN	
7	6	5	4	3	2	1	0	
-	-	-	LCK	FAIL	BERR	HCR	DONE	

STATE: State

Value	State	Description
0	IDLE	Idle state
1	CE	Chip erase operation is ongoing
2	CRC32	CRC32 operation is ongoing
3	FSPR	Flash User Page Read
4-7	-	reserved

• DBGP: Debugger present

- 1: A debugger is present (TCK falling edge detected)
- 0: No debugger is present

PROT: Protected

- 1: The protected state is set. The only way to overcome this is to issue a Chip Erase command.
- 0: The protected state is not set

EN: Enabled

- 1: The block is in ready for operation
- 0: the block is disabled. Write operations are not possible until the block is enabled by writing a one in CR.EN.
- LCK: Lock
 - 1: An operation could not be performed because chip protected state is on.
 - 0: No security issues have been detected sincle last clear of this bit
- FAIL: Failure
 - 1: The requested operation failed
 - 0: No failure has been detected sincle last clear of this bit
- BERR: Bus Error
 - 1: A bus error occured due to the unability to access part of the requested memory area.

8.10 Available Features in Protected State

Table 8-10. Features availablility when in protected state

Feature	Provider	Availability when protected
Hot plugging	EDP	yes
System bus R/W Access	AHB-AP	no
Flash User Page read access	SMAP	yes
Core Hold Reset clear from the SMAP interface	SMAP	no
CRC32 of any memory accessible through the bus matrix	SMAP	restricted (limited to the entire flash array)
Chip Erase	SMAP	yes
IDCODE	SMAP	yes

instruction for the first time. SAMPLE/PRELOAD can also be used for taking a snapshot of the external pins during normal operation of the part.

When using the JTAG interface for Boundary-Scan, the JTAG TCK clock is independent of the internal chip clock, which is not required to run.

NOTE: For pins connected to 5V lines care should be taken to not drive the pins to a logic one using boundary scan, as this will create a current flowing from the 3,3V driver to the 5V pullup on the line. Optionally a series resistor can be added between the line and the pin to reduce the current.

8.11.7 Flash Programming typical procedure

Flash programming is performed by operating Flash controller commands. The Flash controller is connected to the system bus matrix and is then controllable from the AHP-AP. The AHB-AP cannot write the FLASH page buffer while the core_hold_reset is asserted. The AHB-AP cannot be accessed when the device is in protected state. It is important to ensure that the CPU is halted prior to operating any flash programming operation to prevent it from corrupting the system configuration. The recommended sequence is shown below:

- 1. At power up, RESET_N is driven low by a debugger. The on-chip regulator holds the system in a POR state until the input supply is above the POR threshold. The system continues to be held in this static state until the internally regulated supplies have reached a safe operating.
- 2. PM starts, clocks are switched to the slow clock (Core Clock, System Clock, Flash Clock, and any Bus Clocks that do not have clock gate control). Internal resets are maintained due to the external reset.
 - The Debug Port (DP) and Access Ports (AP) receives a clock and leave the reset state,
- 3. The debugger maintains a low level on TCK and release RESET_N.
 - The SMAP asserts the core_hold_reset signal
- 4. The Cortex-M4 core remains in reset state, meanwhile the rest of the system is released.
- 5. The debugger then configures the NVIC to catch the Cortex-M4 core reset vector fetch. For more information on how to program the NVIC, refer to the ARMv7-M Architecture Reference Manual.
- 6. The debugger writes a one in the SMAP SCR.HCR to release the Cortex-M4 core reset to make the system bus matrix accessible from the AHB-AP.
- 7. The Cortex-M4 core initializes the SP, then read the exception vector and stalls
- 8. Programming is available through the AHB-AP

Atmel

9. After operation is completed, the chip can be restarted either by asserting RESET_N or switching power off/on or clearing SCR.HCR. Make sure that the TCK pin is high when releasing RESET_N not to halt the core.

Mode	Conditions	T₄	Typical Wakeup Time	Тур	Max ⁽¹⁾	Unit
	CPU running a Fibonacci algorithm	25°C		222	240	
	Linear mode	85°C	N/A	233	276	-
	CPU running a CoreMark algorithm	25°C	N/A	233	276	-
	Linear mode	85°C		230	270	. /b 41 1
RUN	CPU running a Fibonacci algorithm	25°C	N/A	100	112	µA/MHz
	Switching mode	85°C		100	119	-
	CPU running a CoreMark algorithm	25°C	N/A	104	128	
	Switching mode	85°C		107	138	
	Switching mode	25°C	9 * Main clock	527	627	
SLEEPU	Switching mode	85°C	cycles	579	739	
	Switching mode	25°C	9 * Main clock cycles + 500ns	369	445	-
SLEEPT	Switching mode	85°C		404	564	
		25°C	9 * Main clock	305	381	
SLEEP2	Switching mode	85°C	cycles + 500ns	334	442	
SLEEP3	Linear mode			46	55	
	OSC32K and AST running Fast wake-up enable		1.5µs	5.5		μA
WAII	OSC32K and AST stopped Fast wake-up enable			4.3		
RETENTION	OSC32K running AST running at 1kHz	25°C	1.5µs	3.4		
	AST and OSC32K stopped			2.3		-
BACKUP	OSC32K running AST running at 1kHz			1.5	3.1	
	AST and OSC32K stopped			0.9	1.7	

1. These values are based on characterization. These values are not covered by test limits in production.

- Atmel

Table 9-10. Typical Power Consumption running CoreMark on CPU clock sources⁽¹⁾

Clock Source	Conditions	Regulator	Frequency (MHz)	Тур	Unit
					1

Symbol	Parameter	Conditions		Min	Тур	Мах	Units	
R _{PULLUP}	Pull-up resistance (2)				40		kΩ	
R _{PULLDOWN}	Pull-up resistance ⁽²⁾				40		kΩ	
V _{IL}	Input low-level voltage			-0.3		0.2 * V _{VDD}		
V _{IH}	Input high-level voltage			0.8 * V _{VDD}		V _{VDD} + 0.3	V	
V _{OL}	Output low-level voltage					0.4	v	
V _{OH}	Output high-level voltage			V _{VDD} - 0.4				
			1.68V <v<sub>VDD<2.7V</v<sub>			3.4	m۸	
	Output low loval current ⁽³⁾		2.7V <v<sub>VDD<3.6V</v<sub>			6	IIIA	
I _{OL}	Output low-level current (1.68V <v<sub>VDD<2.7V</v<sub>			5.2	m۸
				ODCR0=1	2.7V <v<sub>VDD<3.6V</v<sub>			8
	Output high-level current ⁽³⁾			1.68V <v<sub>VDD<2.7V</v<sub>			3.4	m۸
		ODCI(0=0	2.7V <v<sub>VDD<3.6V</v<sub>			6	11// \	
ЮН			1.68V <v<sub>VDD<2.7V</v<sub>			5.2	m۵	
		ODCR0=1	2.7V <v<sub>VDD<3.6V</v<sub>			8	ША	
		OSRR0=0	ODCR0=0		18			
	-	OSRR0=1	1.68V <v<sub>VDD<2.7V, Cload = 25pF</v<sub>		110		ns	
RISE	Rise line 7	OSRR0=0	ODCR0=0		10			
		OSRR0=1	2.7V <v<sub>VDD<3.6V, Cload = 25pF</v<sub>		50		ns	
		OSRR0=0	ODCR0=0		19			
	– u.v. (2)	OSRR0=1	1.68V <v<sub>VDD<2.7V, Cload = 25pF</v<sub>		140		ns	
^L FALL		OSRR0=0	ODCR0=0		12			
		OSRR0=1	$2.7V < V_{VDD} < 3.6V,$ Cload = 25pF		63		ns	

Table 9-20. High Drive TWI Pin Characteristics in GPIO configuration ⁽¹⁾

1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

2. These values are based on simulation. These values are not covered by test limits in production or characterization

3. These values are based on characterization. These values are not covered by test limits in production

Table 9-21. Common High Drive TWI Pin Characteris	tics
---	------

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{LEAK}	Input leakage current (1)	Pull-up resistors disabled		0.01	2	μA
C _{IN}	Input capacitance ⁽¹⁾			10		pF

1. These values are based on simulation. These values are not covered by test limits in production or characterization

- Atmel

9.7 Oscillator Characteristics

9.7.1 Oscillator 0 (OSC0) Characteristics

9.7.1.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN.

Table 9-22. Digital Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN}	XIN clock frequency (1)				50	MHz
t _{CPXIN}	XIN clock duty cycle ⁽¹⁾		40		60	%
t _{STARTUP}	Startup time			N/A		cycles

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

9.7.1.2 Crystal Oscillator Characteristics

The following table describes the characteristics for the oscillator when a crystal is connected between XIN and XOUT as shown in Figure 9-3. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can be found in the crystal datasheet. The capacitance of the external capacitors (C_{LEXT}) can then be computed as follows:

$$C_{LEXT} = 2(C_{L} - C_{STRAY} - C_{SHUNT})$$

where C_{STRAY} is the capacitance of the pins and PCB, C_{SHUNT} is the shunt capacitance of the crystal.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Crystal oscillator frequency (1)		0.6		30	MHz
ESR		$f = 0.455 MHz$, $C_{LEXT} = 100 pF$ SCIF.OSCCTRL.GAIN = 0			17000	
	Crystal Equivalent Series Resistance ⁽²⁾	$f = 2MHz, C_{LEXT} = 20pF$ SCIF.OSCCTRL.GAIN = 0			2000	
		f = 4MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 1			1500	0
		f = 8MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 2			300	52
		f = 16MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 3			350	
		f = 30MHz, C _{LEXT} = 18pF SCIF.OSCCTRL.GAIN = 4			45	

Atmel

Table 9-23.	Crystal Oscillato	r Characteristics
	oryotal obolilato	- Onaraotonotiou

9.7.3 Phase Locked Loop (PLL) Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency (1)	PLL is not availabe in PS1	48		240	N 41 1-
f _{IN}	Input frequency ⁽¹⁾		4		16	MHZ
I _{PLL}	Current consumption ⁽¹⁾	fout=80MHz			200	μA
		fout=240MHz			500	
	Startup time, from enabling	Wide Bandwidth mode disabled			8	
t _{STARTUP}	the PLL until the PLL is locked ⁽¹⁾	Wide Bandwidth mode enabled			30	μs

 Table 9-26.
 Phase Locked Loop Characteristics

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

9.7.4 Digital Frequency Locked Loop (DFLL) Characteristics

Table 9-27.	Digital Frequency Locked Loop Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency (1)	DFLL is not availabe in PS1	20		150	MHz
f _{REF}	Reference frequency ⁽¹⁾		8		150	kHz
		FINE lock, $f_{REF} = 32$ kHz, SSG disabled ⁽²⁾		0.1	0.5	
	Accuracy ⁽¹⁾	ACCURATE lock, f _{REF} = 32kHz, dither clk RCSYS/2, SSG disabled ⁽²⁾		0.06	0.5	
		FINE lock, f _{REF} = 8-150kHz, SSG disabled ⁽²⁾		0.2	1	%
		ACCURATE lock, $f_{REF} = 8-150 \text{ kHz}$, dither clk RCSYS/2, SSG disabled ⁽²⁾		0.1	1	
		RANGE 0 96 to 220MHz COARSE=0, FINE=0, DIV=0	430	509	545	
I _{DFLL}	Power consumption ⁽¹⁾	RANGE 0 96 to 220MHz COARSE=31, FINE=255, DIV=0	1545	1858	1919	
		RANGE 1 50 to 110MHz COARSE=0, FINE=0, DIV=0	218	271	308	
		RANGE 1 50 to 110MHz COARSE=31, FINE=255, DIV=0	704	827	862	
		RANGE 2 25 to 55MHz COARSE=0, FINE=0, DIV=1	140	187	226	μΑ
		RANGE 2 25 to 55MHz COARSE=31, FINE=255, DIV=1	365	441	477	
		RANGE 3 20 to 30MHz COARSE=0, FINE=0, DIV=1	122	174	219	
		RANGE 3 20 to 30MHz COARSE=31, FINE=255, DIV=1	288	354	391	

2. A device must internally provide a hold time of at least 300 ns for TWD with reference to the falling edge of TWCK.

Notations:

 C_b = total capacitance of one bus line in pF

 t_{clkpb} = period of TWI peripheral bus clock

 $t_{prescaled}$ = period of TWI internal prescaled clock (see chapters on TWIM and TWIS)

The maximum $t_{\text{HD;DAT}}$ has only to be met if the device does not stretch the LOW period ($t_{\text{LOW-TWI}}$) of TWCK.

9.10.5 JTAG Timing

Figure 9-17. JTAG Interface Signals

10.3 Soldering Profile

Table 10-35 gives the recommended soldering profile from J-STD-20.

Table	10-35.	Soldering	Profile

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/s max
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150 s
Time within 5.C of Actual Peak Temperature	30 s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max
Time 25 C to Peak Temperature	8 minutes max

A maximum of three reflow passes is allowed per component.

Table 11-5.	ATSAM4LS4 Sub Serie Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range
ATSAM4LS4CA-AU-ES			TQFP100	ES		N/A
ATSAM4LS4CA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LS4CA-AUR	_			Reel		
ATSAM4LS4CA-CFU					Tray	
ATSAM4LS4CA-CFUR			VFBGA100	Reel	Green	Industrial -40°C to 85°C
ATSAM4LS4BA-AU-ES	256		TQFP64	ES		N/A
ATSAM4LS4BA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LS4BA-AUR				Reel		
ATSAM4LS4BA-MU-ES		256 32	QFN64 WLCSP64	ES		N/A
ATSAM4LS4BA-MU				Tray		Industrial -40°C to 85°C
ATSAM4LS4BA-MUR				Reel		
ATSAM4LS4BA-UUR				Reel		Industrial -40°C to 85°C
ATSAM4LS4AA-AU-ES			TQFP48	ES		N/A
ATSAM4LS4AA-AU				Tray		Industrial -40°C to 85°C
ATSAM4LS4AA-AUR				Reel		
ATSAM4LS4AA-MU-ES			QFN48	ES		N/A
ATSAM4LS4AA-MU				Tray		Industrial -40°C to 85°C
ATSAM4LS4AA-MUR				Reel		

Table 11-6. ATSAM4LS2 Sub Serie Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range	
ATSAM4LS2CA-AU	_	TQFP100 VFBGA100	TQFP100	Tray			
ATSAM4LS2CA-AUR				Reel			
ATSAM4LS2CA-CFU				Tray			
ATSAM4LS2CA-CFUR			VFDGA100	Reel	-		
ATSAM4LS2BA-AU			TQFP64	Tray			
ATSAM4LS2BA-AUR				Reel			
ATSAM4LS2BA-MU	128	128 32 QFNG WLCS		Tray	Green	Industrial -40°C to 85°C	
ATSAM4LS2BA-MUR	-			QFN64	Reel		
ATSAM4LS2BA-UUR			WLCSP64	Reel			
ATSAM4LS2AA-AU				Tray			
ATSAM4LS2AA-AUR			TQFP48	Reel			
ATSAM4LS2AA-MU			Tray				
ATSAM4LS2AA-MUR			QFIN48	Reel			

13. Datasheet Revision History

Note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

13.1 Rev. A - 09/12

1. Initial revision.

13.2 Rev. B - 10/12

- 1. Fixed ordering code
- 2. Changed BOD18CTRL and BOD33CTRL ACTION field from "Reserved" to 'No action"

13.3 Rev. C – 02/13

- 1. Fixed ball pitch for VFBGA100 package
- 2. Added VFBGA100 and WLCSP64 pinouts
- 3. Added Power Scaling Mode 2 for high frequency support
- 4. Minor update on several modules chapters
- 5. Major update on Electrical characteristics
- 6. Updated errata
- 7. Fixed GPIO multiplexing pin numbers

13.4 Rev. D - 03/13

- 1. Removed WLCSP package information
- 2. Added errata text for detecting whether a part supports PS2 mode or not
- 3. Removed temperature sensor feature (not supported by production flow)
- 4. Fixed MUX selection on Positive ADC input channel table

Atmel

- 5. Added information about TWI instances capabilities
- 6. Added some details on errata Corrupted data in flash may happen after flash page write operations.171