

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	32
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 3x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4ls2aa-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- PLL up to 240MHz for device clock and for USB
- Digital Frequency Locked Loop (DFLL) with wide input range
- Up to 16 peripheral DMA (PDCA) channels
- Peripherals
 - USB 2.0 Device and Embedded Host: 12 Mbps, up to 8 bidirectional Endpoints and Multi-packet Ping-pong Mode. On-Chip Transceiver
 - Liquid Crystal Display (LCD) Module with Capacity up to 40 Segments and up to 4 Common Terminals
 - One USART with ISO7816, IrDA®, RS-485, SPI, Manchester and LIN Mode
 - Three USART with SPI Mode
 - One PicoUART for extended UART wake-up capabilities in all sleep modes
 - Windowed Watchdog Timer (WDT)
 - Asynchronous Timer (AST) with Real-time Clock Capability, Counter or Calendar Mode Supported
 - Frequency Meter (FREQM) for Accurate Measuring of Clock Frequency
 - Six 16-bit Timer/Counter (TC) Channels with capture, waveform, compare and PWM mode
 - One Master/Slave Serial Peripheral Interface (SPI) with Chip Select Signals
 - Four Master and Two Slave Two-wire Interfaces (TWI), up to 3.4Mbit/s I²C-compatible
 - One Advanced Encryption System (AES) with 128-bit key length
 - One 16-channel ADC 300Ksps (ADC) with up to 12 Bits Resolution
 - One DAC 500Ksps (DACC) with up to 10 Bits Resolution
 - Four Analog Comparators (ACIFC) with Optional Window Detection
 - Capacitive Touch Module (CATB) supporting up to 32 buttons
 - Audio Bitstream DAC (ABDACB) Suitable for Stereo Audio
 - Inter-IC Sound (IISC) Controller, Compliant with Inter-IC Sound (I²S) Specification
 - Peripheral Event System for Direct Peripheral to Peripheral Communication
 - 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)
 - Random generator (TRNG)
 - Parallel Capture Module (PARC)
 - Glue Logic Controller (GLOC)
- I/O
 - Up to 75 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and slew-rate control
 - Up to Six High-drive I/O Pins
- Single 1.68-3.6V Power Supply
- Packages
 - 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball VFBGA, 7x7 mm, pitch 0.65 mm
 - 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-pad QFN 9x9 mm, pitch 0.5 mm
 - 64-ball WLCSP, 4,314x4,434 mm, pitch 0.5 mm for SAM4LC4/2 and SAM4LS4/2 series
 - 64-ball WLCSP, 5,270x5,194 mm, pitch 0.5 mm for SAM4LC8 and SAM4LS8 series
 - 48-lead LQFP, 7 x 7 mm, pitch 0.5 mm/48-pad QFN 7x7 mm, pitch 0.5 mm

2.2 Configuration Summary

Table 2-1.Sub Series Summary

Feature	ATSAM4LC	ATSAM4LS
SEGMENT LCD	Yes	No
AESA	Yes	No
USB	Device + Host	Device Only

 Table 2-2.
 ATSAM4LC Configuration Summary

- Atmel

Feature	ATSAM4LC8/4/2C	ATSAM4LC8/4/2B	ATSAM4LC8/4/2A	
Number of Pins	100	64	48	
Max Frequency	48MHz			
Flash		512/256/128KB		
SRAM		64/32/32KB		
SEGMENT LCD	4x40	4x23	4x13	
GPIO	75	43	27	
High-drive pins	6	3	1	
External Interrupts		8 + 1 NMI		
TWI	2 Masters + 2	1 Master + 1 Master/Slave		
USART		3 in LC sub series 4 in LS sub series		
PICOUART		1	0	
Peripheral DMA Channels		16		
AESA		1		
Peripheral Event System		1		
SPI		1		
Asynchronous Timers		1		
Timer/Counter Channels	6		3	
Parallel Capture Inputs		8		
Frequency Meter		1		
Watchdog Timer	1			
Power Manager		1		
Glue Logic LUT	2 1			

Figure 3-8. ATSA

B. ATSAM4LS WLCSP64 Pinout

- Atmel

 Table 3-1.
 100-pin GPIO Controller Function Multiplexing (Sheet 2 of 4)

	ATSAM4LC		ATSAM4LS	Pin	GPIO	Supply	GPIO Functions						
QFN	VFBGA	QFN	VFBGA				Α	В	С	D	E	F	G
66	J7	66	J7	PA16	16	LCDA	USART1 TXD	TC0 CLK2	EIC EXTINT1	PARC PCDATA7		LCDCA SEG8	CATB SENSE11
67	H6	67	H6	PA17	17	LCDA	USART2 RTS	ABDACB DAC0	EIC EXTINT2	PARC PCCK		LCDCA SEG9	CATB SENSE12
76	K10	76	K10	PA18	18	LCDA	USART2 CLK	ABDACB DACN0	EIC EXTINT3	PARC PCEN1		LCDCA SEG18	CATB SENSE13
77	J10	77	J10	PA19	19	LCDA	USART2 RXD	ABDACB DAC1	EIC EXTINT4	PARC PCEN2	SCIF GCLK0	LCDCA SEG19	CATB SENSE14
78	H10	78	H10	PA20	20	LCDA	USART2 TXD	ABDACB DACN1	EIC EXTINT5	GLOC IN0	SCIF GCLK1	LCDCA SEG20	CATB SENSE15
91	E9	91	E9	PA21	21	LCDC	SPI MISO	USART1 CTS	EIC EXTINT6	GLOC IN1	TWIM2 TWD	LCDCA SEG34	CATB SENSE16
92	E10	92	E10	PA22	22	LCDC	SPI MOSI	USART2 CTS	EIC EXTINT7	GLOC IN2	TWIM2 TWCK	LCDCA SEG35	CATB SENSE17
95	D6	95	D6	PA23	23	LCDC	SPI SCK	TWIMS0 TWD	EIC EXTINT8	GLOC IN3	SCIF GCLK IN0	LCDCA SEG38	CATB DIS
96	D10	96	D10	PA24	24	LCDC	SPI NPCS0	TWIMS0 TWCK		GLOC OUT0	SCIF GCLK IN1	LCDCA SEG39	CATB SENSE18
98	D9	98	D9	PA25	25	VDDIO	USBC DM	USART2 RXD					CATB SENSE19
99	C9	99	C9	PA26	26	VDDIO	USBC DP	USART2 TXD					CATB SENSE20
		51	К1	PA27	27	LCDA	SPI MISO	IISC ISCK	ABDACB DAC0	GLOC IN4	USART3 RTS		CATB SENSE0
		52	J1	PA28	28	LCDA	SPI MOSI	IISC ISDI	ABDACB DACN0	GLOC IN5	USART3 CTS		CATB SENSE1
		53	K2	PA29	29	LCDA	SPI SCK	IISC IWS	ABDACB DAC1	GLOC IN6	USART3 CLK		CATB SENSE2
		56	K4	PA30	30	LCDA	SPI NPCS0	IISC ISDO	ABDACB DACN1	GLOC IN7	USART3 RXD		CATB SENSE3
		57	K5	PA31	31	LCDA	SPI NPCS1	IISC IMCK	ABDACB CLK	GLOC OUT1	USART3 TXD		CATB DIS
20	J3	20	J3	PB00	32	VDDIN	TWIMS1 TWD	USART0 RXD					CATB SENSE21
21	D5	21	D5	PB01	33	VDDIN	TWIMS1 TWCK	USART0 TXD	EIC EXTINT0				CATB SENSE22
22	E5	22	E5	PB02	34	VDDANA	ADCIFE AD3	USART1 RTS	ABDACB DAC0	IISC ISCK	ACIFC ACBN0		CATB SENSE23
23	C4	23	C4	PB03	35	VDDANA	ADCIFE AD4	USART1 CLK	ABDACB DACN0	IISC ISDI	ACIFC ACBP0		CATB DIS
28	C1	28	C1	PB04	36	VDDANA	ADCIFE AD5	USART1 RXD	ABDACB DAC1	IISC ISDO	DACC EXT TRIG0		CATB SENSE24
29	B1	29	B1	PB05	37	VDDANA	ADCIFE AD6	USART1 TXD	ABDACB DACN1	IISC IMCK			CATB SENSE25
45	G3	45	G3	PB06	38	LCDA	USART3 RTS		GLOC IN4	IISC IWS		LCDCA SEG22	CATB SENSE26
46	H1	46	H1	PB07	39	LCDA	USART3 CTS		GLOC IN5	TC0 A0		LCDCA SEG21	CATB SENSE27

4.4 Cortex-M4 processor features and benefits summary

- · tight integration of system peripherals reduces area and development costs
- · Thumb instruction set combines high code density with 32-bit performance
- code-patch ability for ROM system updates
- · power control optimization of system components
- integrated sleep modes for low power consumption
- fast code execution permits slower processor clock or increases sleep mode time
- hardware division and fast digital-signal-processing orientated multiply accumulate
- · saturating arithmetic for signal processing
- · deterministic, high-performance interrupt handling for time-critical applications
- memory protection unit (MPU) for safety-critical applications
- extensive debug and trace capabilities:
 - Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and code profiling.

4.5 Cortex-M4 core peripherals

These are:

Nested Vectored Interrupt Controller

The NVIC is an embedded interrupt controller that supports low latency interrupt processing.

System control block

The System control block (SCB) is the programmers model interface to the processor. It provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick timer or as a simple counter.

Memory protection unit

The *Memory protection unit* (MPU) improves system reliability by defining the memory attributes for different memory regions. It provides up to eight different regions, and an optional predefined background region.

The complete Cortex-M4 User Guide can be found on the ARM web site:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A cortex m4 dgug.pdf

The internal regulator is connected to the VDDIN pin and its output VDDOUT feeds VDDCORE in linear mode or through an inductor in switching mode. Figure 6-4 shows the power schematics to be used. All I/O lines will be powered by the same power ($V_{VDDIN}=V_{VDDIN}=V_{VDDANA}$).

6.2.3 LCD Power Modes

6.2.3.1 Principle

LCD lines is powered using the device internal voltage sources provided by the LCDPWR block. When enabled, the LCDPWR blocks will generate the VLCD, BIASL, BIASH voltages.

LCD pads are splitted into three clusters that can be powered independently namely clusters A, B and C. A cluster can either be in GPIO mode or in LCD mode.

When a cluster is in GPIO mode, its VDDIO pin must be powered externally. None of its GPIO pin can be used as a LCD line

When a cluster is in LCD mode, each clusters VDDIO pin can be either forced externally (1.8-3.6V) or unconnected (nc). GPIOs in a cluster are not available when it is in LCD mode. A cluster is set in LCD mode by the LCDCA controller when it is enabled depending on the number of segments configured. The LCDPWR block is powered by the VLCDIN pin inside cluster A

When LCD feature is not used, VLCDIN must be always powered (1.8-3.6V). VLCD, CAPH, CAPL, BIASH, BIASL can be left unconnected in this case

8.7.3 Block Diagram

Figure 8-3. Enhanced Debug Port Block Diagram

8.7.4 I/O Lines Description

 Table 8-1.
 I/O Lines Description

Name	JTAG Debug Port			SWD Debug Port
	Туре	Description	Туре	Description
TCK/SWCLK	I	Debug Clock	I	Serial Wire Clock
TDI	I	Debug Data in	-	NA
TDO/TRACESWO	0	Debug Data Out	0	Trace asynchronous Data Out
TMS/SWDIO	I	Debug Mode Select	I/O	Serial Wire Input/Output
RESET_N	I	Reset	I	Reset

Atmel

Instruction	Description
DR Size	Shows the number of bits in the data register chain when this instruction is active. Example: 32 bits
DR input value	Shows which bit pattern to shift into the data register in the Shift-DR state when this instruction is active.
DR output value	Shows the bit pattern shifted out of the data register in the Shift-DR state when this instruction is active.

 Table 8-4.
 Instruction Description (Continued)

8.7.14 JTAG Instructions

Refer to the ARM Debug Interface v5.1 Architecture Specification for more details on ABORT, DPACC, APACC and IDCODE instructions.

8.7.14.1 EXTEST

This instruction selects the boundary-scan chain as Data Register for testing circuitry external to the chip package. The contents of the latched outputs of the boundary-scan chain is driven out as soon as the JTAG IR-register is loaded with the EXTEST instruction.

Starting in Run-Test/Idle, the EXTEST instruction is accessed the following way:

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. In Update-IR: The data from the boundary-scan chain is applied to the output pins.
- 5. Return to Run-Test/Idle.
- 6. Select the DR Scan path.
- 7. In Capture-DR: The data on the external pins is sampled into the boundary-scan chain.
- 8. In Shift-DR: The boundary-scan chain is shifted by the TCK input.
- 9. In Update-DR: The data from the scan chain is applied to the output pins.
- 10. Return to Run-Test/Idle.

Table 8-5.	EXTEST	Details
------------	--------	---------

Instructions	Details
IR input value	0000 (0x0)
IR output value	p00s
DR Size	Depending on boundary-scan chain, see BSDL-file.
DR input value	Depending on boundary-scan chain, see BSDL-file.
DR output value	Depending on boundary-scan chain, see BSDL-file.

8.7.14.2 SAMPLE_PRELOAD

This instruction takes a snap-shot of the input/output pins without affecting the system operation, and pre-loading the scan chain without updating the DR-latch. The boundary-scan chain is selected as Data Register.

Starting in Run-Test/Idle, the Device Identification register is accessed in the following way:

8.9.11.8	Chip	Chip Identification Register				
Name:		CIDR				
Access Ty	pe:	Read-Only				
Offset:		0xF0				
Reset Valu	ie:	-				

31	30	29	28	27	26	25	24
EXT		NVPTYP			AR	CH	
23	22	21	20	19	18	17	16
ARCH					SRAMSIZ		
15	14	13	12	11	10	9	8
	NVP	SIZ2			NVI	PSIZ	
7	6	5	4	3	2	1	0
	EPROC				VERSION		

Note: Refer to section CHIPID for more information on this register.

8.9.11.9 Name:	Chip Identification EXID	Identification Extension Register EXID					
Access Type: Read-Only							
Offset:	0xF4						
Reset Value	: -						
31	30	29	28	27	26	25	24
	EXID						
23	22	21	20	19	18	17	16
	EXID						
15	14	13	12	11	10	9	8
			Ε>	KID			
7	6	5	4	3	2	1	0
			EΣ	KID			

Note: Refer to section CHIPID for more information on this register.

8.10 Available Features in Protected State

Table 8-10. Features availablility when in protected state

Feature	Provider	Availability when protected
Hot plugging	EDP	yes
System bus R/W Access	AHB-AP	no
Flash User Page read access	SMAP	yes
Core Hold Reset clear from the SMAP interface	SMAP	no
CRC32 of any memory accessible through the bus matrix	SMAP	restricted (limited to the entire flash array)
Chip Erase	SMAP	yes
IDCODE	SMAP	yes

Symbol	Parameter	Description	Мах	Units
f _{CPU}	CPU clock frequency		12	
f _{PBA}	PBA clock frequency		12	
f _{PBB}	PBB clock frequency		12	
f _{PBC}	PBC clock frequency		12	
f _{PBD}	PBD clock frequency		12	
f _{GCLK0}	GCLK0 clock frequency	DFLLIF main reference, GCLK0 pin	16.6	
f _{GCLK1}	GCLK1 clock frequency	DFLLIF dithering and SSGreference, GCLK1 pin	16.6	
f _{GCLK2}	GCLK2 clock frequency	AST, GCLK2 pin	6.6	
f _{GCLK3}	GCLK3 clock frequency	CATB, GCLK3 pin	17.3	
f _{GCLK4}	GCLK4 clock frequency	FLO and AESA	16.6	
f _{GCLK5}	GCLK5 clock frequency	GLOC, TC0 and RC32KIFB_REF	26.6	
f _{GCLK6}	GCLK6 clock frequency	ABDACB and IISC	16.6	MHz
f _{GCLK7}	GCLK7 clock frequency	USBC	16.6	
f _{GCLK8}	GCLK8 clock frequency	TC1 and PEVC[0]	16.6	
f _{GCLK9}	GCLK9 clock frequency	PLL0 and PEVC[1]	16.6	
f _{GCLK10}	GCLK10 clock frequency	ADCIFE	16.6	
f _{GCLK11}	GCLK11 clock frequency	Master generic clock. Can be used as source for other generic clocks	51.2	
	0000 1 11	Oscillator 0 in crystal mode	16	
T _{OSC0}	OSC0 output frequency	Oscillator 0 in digital clock mode	16	
f _{PLL}	PLL output frequency	Phase Locked Loop	N/A	
f _{DFLL}	DFLL output frequency	Digital Frequency Locked Loop	N/A	
f _{RC80M}	RC80M output frequency	Internal 80MHz RC Oscillator	N/A	

Table 9-5.Maximum Clock Frequencies in Power Scaling Mode 1 and RUN Mode

3. These values are based on characterization. These values are not covered by test limits in production

9.6.2 High-drive I/O Pin : PA02, PC04, PC05, PC06

 Table 9-14.
 High-drive I/O Pin Characteristics ⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Мах	Units
R _{PULLUP}	Pull-up resistance (2)				40		kΩ
R _{PULLDOWN}	Pull-down resistance ⁽²⁾				40		kΩ
V _{IL}	Input low-level voltage			-0.3		0.2 * V _{VDD}	
V _{IH}	Input high-level voltage			0.8 * V _{VDD}		V _{VDD} + 0.3	N
V _{OL}	Output low-level voltage					0.4	V
V _{OH}	Output high-level voltage			V _{VDD} - 0.4			
			1.68V <v<sub>VDD<2.7V</v<sub>			1.8	
	Output low lovel ourrept ⁽³⁾	ODCR0=0	2.7V <v<sub>VDD<3.6V</v<sub>			3.2	ША
OL			1.68V <v<sub>VDD<2.7V</v<sub>			3.2	~ ^
		ODCR0=1	2.7V <v<sub>VDD<3.6V</v<sub>			6	ma
		ODCR0=0	1.68V <v<sub>VDD<2.7V</v<sub>			1.6	~~^
	Output high lovel surrout ⁽³⁾		2.7V <v<sub>VDD<3.6V</v<sub>			3.2	ma
юн	Output high-level current		1.68V <v<sub>VDD<2.7V</v<sub>			3.2	mA
		ODCR0=1	2.7V <v<sub>VDD<3.6V</v<sub>			6	
		OSRR0=0	ODCR0=0			20	
	Diag time ⁽²⁾	OSRR0=1	$1.68V < V_{VDD} < 2.7V,$ Cload = 25pF			40	ns
RISE	Rise ume 7	OSRR0=0	ODCR0=0			11	
		OSRR0=1	$2.7V < V_{VDD} < 3.6V,$ Cload = 25pF			18	ns
		OSRR0=0	ODCR0=0			20	
		OSRR0=1	1.68V <v<sub>VDD<2.7V, Cload = 25pF</v<sub>			40	ns
^L FALL		OSRR0=0	ODCR0=0			11	
		OSRR0=1	$2.7V < V_{VDD} < 3.6V,$ Cload = 25pF			18	ns
		OSRR0=0	ODCR0=0, V _{VDD} >2.7V			22	MHz
_	Quite 1 (manual (2)	OSRR0=1	load = 25pF			17	MHz
		OSRR0=0	ODCR0=1, V _{VDD} >2.7V			35	MHz
		OSRR0=1	load = 25pF			26	MHz
I _{LEAK}	Input leakage current ⁽³⁾	Pull-up resis	tors disabled		0.01	2	μA
C _{IN}	Input capacitance ⁽²⁾				10		pF

1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

2. These values are based on simulation. These values are not covered by test limits in production or characterization

3. These values are based on characterization. These values are not covered by test limits in production

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{FARRAY}	Array endurance (write/page)	f _{CLK_AHB} > 10MHz	100k			avalaa
N _{FFUSE}	General Purpose fuses endurance (write/bit)	f _{CLK_AHB} > 10MHz	10k			cycles
t _{RET}	Data retention		15			years

 Table 9-35.
 Flash Endurance and Data Retention⁽¹⁾

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

Table 9-39.	VREG Electrical Characteristics in Switching mode	е
-------------	---	---

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{OUT}	DC output current ⁽¹⁾	V _{VDDCORE} > 1.65V			55	mA
	Output DC load regulation ⁽¹⁾ Transient load regulation	$I_{OUT} = 0$ to 50mA, $V_{VDDIN} = 3V$	-136	-101	-82	mV
	Output DC regulation ⁽¹⁾	$I_{OUT} = 50 \text{ mA},$ $V_{VDDIN} = 2 \text{ V to } 3.6 \text{ V}$	-20	38	99	mV
	Quessiont surrent(1)	$V_{VDDIN} = 2V, I_{OUT} = 0 \text{ mA}$	97	186	546	
IQ		V_{VDDIN} > 2.2V, I_{OUT} = 0 mA	97	111	147	μΑ
P _{EFF}	Power efficiency ⁽¹⁾	I _{OUT} = 5mA, 50mA Reference power not included	82.7	88.3	95	%

1. These values are based on characterization. These values are not covered by test limits in production.

 Table 9-40.
 Decoupling Requirements in Switching Mode

Symbol	Parameter	Technology	Тур	Units
C _{IN1}	Input regulator capacitor 1		33	<u>م</u> ۲
C _{IN2}	Input regulator capacitor 2		100	0F
C _{IN3}	Input regulator capacitor 3		10	μF
C _{OUT1}	Output regulator capacitor 1	X7R MLCC	100	nF
C _{OUT2}	Output regulator capacitor 2	X7R MLCC (ex : GRM31CR71A475)	4.7	μF
L _{EXT}	External inductance	(ex: Murata LQH3NPN220MJ0)	22	μH
R _{DCLEXT}	Serial resistance of L _{EXT}		0.7	Ω
ISAT _{LEXT}	Saturation current of L _{EXT}		300	mA

Note: 1. Refer to Section 6. on page 46.

Figure 9-10. USART in SPI Slave Mode with (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Table 9-58.	USART0 in SPI	mode Timing,	Slave Mode ⁽¹⁾
		U ,	

Symbol	Parameter	Conditions	Min	Max	Units
USPI6	SPCK falling to MISO delay			740.67	
USPI7	MOSI setup time before SPCK rises		56.73 + t _{SAMPLE} ⁽²⁾ + t _{CLK_USART}		
USPI8	MOSI hold time after SPCK rises		45.18 -(t _{SAMPLE} ⁽²⁾ + ^t CLK_USART)		
USPI9	SPCK rising to MISO delay	V _{VDDIO} from		670.18	
USPI10	MOSI setup time before SPCK falls	3.0 V to 3.6 V, maximum external	56.73 +(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART)}		ns
USPI11	MOSI hold time after SPCK falls	capacitor = 40pF	45.18 -(t _{SAMPLE} ⁽²⁾ + t _{CLK_USART)}		
USPI12	NSS setup time before SPCK rises		688.71		_
USPI13	NSS hold time after SPCK falls		-2.25		_
USPI14	NSS setup time before SPCK falls		688.71		
USPI15	NSS hold time after SPCK rises		-2.25		

- Atmel

Figure 9-16. SPI Slave Mode, NPCS Timing

Table 9-63. SPI Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
SPI6	SPCK falling to MISO delay		19	47	
SPI7	MOSI setup time before SPCK rises		0		_
SPI8	MOSI hold time after SPCK rises		5.4		_
SPI9	SPCK rising to MISO delay	V _{VDDIO} from	19	46	_
SPI10	MOSI setup time before SPCK falls	2.85V to 3.6V, maximum external	0		
SPI11	MOSI hold time after SPCK falls		5.3		ns
SPI12	NPCS setup time before SPCK rises	40pF	4		_
SPI13	NPCS hold time after SPCK falls		2.5		
SPI14	NPCS setup time before SPCK falls		6		_
SPI15	NPCS hold time after SPCK rises		1.1		

Note: 1. These values are based on simulation. These values are not covered by test limits in production.

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{CLKSPI}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, SPI7 + SPI8 or SPI10 + SPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

Table 9-65.JTAG Timings(1)

Symbol	Parameter	Conditions	Min	Мах	Units
JTAG0	TCK Low Half-period		21.8		
JTAG1	TCK High Half-period		8.6		
JTAG2	TCK Period		30.3		
JTAG3	TDI, TMS Setup before TCK High	V from	2.0		
JTAG4	TDI, TMS Hold after TCK High	3.0V to 3.6V,	2.3		
JTAG5	TDO Hold Time	maximum	9.5		ns
JTAG6	TCK Low to TDO Valid	capacitor =		21.8	
JTAG7	Boundary Scan Inputs Setup Time	40pF	0.6		
JTAG8	Boundary Scan Inputs Hold Time		6.9		
JTAG9	Boundary Scan Outputs Hold Time		9.3		
JTAG10	TCK to Boundary Scan Outputs Valid			32.2	

Note: 1. These values are based on simulation. These values are not covered by test limits in production.

9.10.6 SWD Timing

Read Cycle

Write Cycle

Figure 10-11. QFN-48 Package Drawing for ATSAM4LC8 and ATSAM4LS8

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

Table 10-32	Device and Package I	Maximum	Weight
	Device and Lackage I	Maximum	VVEIGII

140	mg

Table 10-33. Package Characteristics

|--|

Table 10-34. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

13.5 Rev. E – 07/13

- 1. Added ATSAM4L8 derivatives and WLCSP packages for ATSAM4L4/2
- 2. Added operating conditions details in Electrical Characteristics Chapter
- 3. Fixed "Supply Rise Rates and Order"
- 4. Added number of USART available in sub-series
- 5. Fixed IO line considerations for USB pins
- 6. Removed useless information about CPU local bus which is not implemented
- 7. Removed useless information about Modem support which is not implemented
- 8. Added information about unsupported features in Power Scaling mode 1
- 9. Fixed SPI timings

13.6 Rev. F- 12/13

- 1. Fixed table 3-6 TDI is connected to pin G3 in WLCSP package
- 2. Changed table 42-48 -ADCIFE Electricals in unipolar mode : PSRR & DC supply current typical values
- 3. Fixed SPI timing characteristics
- 4. Fixed BOD33 typical step size value

13.7 Rev. G- 03/14

- 1. Added WLCSP64 packages for SAM4LC8 and SAM4LS8 sub-series
- 2. Removed unsupported SWAP feature in LCD module
- 3. Added mnimal value for ADC Reference range

13.8 Rev. H- 11/16

1. Fixed AESA configuration in Overview chapter for SAM4LS sub-series