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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 3-4. ATSAM4LC TQFP64/QFN64 Pinout
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48 External Interrupt Controller EIC 4 

49 External Interrupt Controller EIC 5 

50 External Interrupt Controller EIC 6 

51 External Interrupt Controller EIC 7 

52 External Interrupt Controller EIC 8 

53 Inter-IC Sound (I2S) Controller IISC

54 Serial Peripheral Interface SPI

55 Timer/Counter TC00

56 Timer/Counter TC01

57 Timer/Counter TC02

58 Timer/Counter TC10

59 Timer/Counter TC11

60 Timer/Counter TC12

61 Two-wire Master Interface TWIM0

62 Two-wire Slave Interface TWIS0

63 Two-wire Master Interface TWIM1

64 Two-wire Slave Interface TWIS1

65 Universal Synchronous Asynchronous 
Receiver Transmitter USART0

66 Universal Synchronous Asynchronous 
Receiver Transmitter USART1

67 Universal Synchronous Asynchronous 
Receiver Transmitter USART2

68 Universal Synchronous Asynchronous 
Receiver Transmitter USART3

69 ADC controller interface ADCIFE

70 DAC Controller DACC

71 Analog Comparator Interface ACIFC

72 Audio Bitstream DAC ABDACB

73 True Random Number Generator TRNG

74 Parallel Capture PARC

75 Capacitive Touch Module B CATB

77 Two-wire Master Interface TWIM2

78 Two-wire Master Interface TWIM3

79 LCD Controller A LCDCA

Table 4-2. Interrupt Request Signal Map (Sheet 3 of 3)

Line Module Signal
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8.7 Enhanced Debug Port (EDP)
Rev.: 1.0.0.0

8.7.1 Features
• IEEE1149.1 compliant JTAG debug port
• Serial Wire Debug Port
• Boundary-Scan chain on all digital pins for board-level testing 
• Debugger Hot-Plugging
• SMAP core reset request source

8.7.2 Overview
The enhanced debug port embeds a standard ARM debug port plus some specific hardware
intended for testability and activation of the debug port features. All the information related to the
ARM Debug Interface implementation can be found in the ARM Debug Interface v5.1 Architec-
ture Specification document.

It features:

• A single Debug Port (SWJ-DP), that provides the external physical connection to the 
interface and supports two DP implementations:

– the JTAG Debug Port (JTAG-DP)
– the Serial Wire Debug Port (SW-DP)

• A supplementary JTAG TAP (BSCAN-TAP) connected in parallel with the JTAG-DP that 
implements the boundary scan instructions detailed in 

• A JTAG-FILTER module that monitors TCK and RESET_N pins to handle specific features 
like the detection of a debugger hot-plugging and the request of reset of the Cortex-M4 at 
startup.

The JTAG-FILTER module detects the presence of a debugger. When present, JTAG pins are
automatically assigned to the Enhanced Debug Port(EDP). If the SWJ-DP is switched to the SW
mode, then TDI and TDO alternate functions are released. The JTAG-FILTER also implements a
CPU halt mechanism. When triggered, the Cortex-M4 is maintained under reset after the exter-
nal reset is released to prevent any system corruption during later programmation operations.
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8.7.3 Block Diagram

Figure 8-3. Enhanced Debug Port Block Diagram

8.7.4 I/O Lines Description

TCK

RESET_N

TDO

TDI

TMS

boundary_scan

JTAG-FILTER EDP Core reset request

ENHANCED DEBUG PORT

DAP Bus

SW-DP

SWJ-DP

JTAG-DP

BSCAN-TAP

traceswo

swclk

swdio

tdo

tck

tms

tdi

tdo

tck

tms

tdi

tck

reset_n

test_tap_sel

Table 8-1. I/O Lines Description

Name JTAG Debug Port SWD Debug Port

Type Description Type Description

TCK/SWCLK I Debug Clock I Serial Wire Clock

TDI I Debug Data in - NA

TDO/TRACESWO O Debug Data Out O Trace asynchronous Data Out

TMS/SWDIO I Debug Mode Select I/O Serial Wire Input/Output

RESET_N I Reset I Reset
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The Debug Port pins assignation is then forced to the EDP function even if they were already
assigned to another module. This allows to connect a debugger at any time without reseting the
device. The connection is non-intrusive meaning that the chip will continue its execution without
being disturbed. The CPU can of course be halted later on by issuing Cortex-M4 OCD features.

8.7.8 SMAP Core Reset Request Source
The EDP has the ability to send a request to the SMAP for a Cortex-M4 Core reset. The proce-
dure to do so is to hold TCK low until RESET_N is released. This mechanism aims at halting the
CPU to prevent it from changing the system configuration while the SMAP is operating.

Figure 8-5. SMAP Core Reset Request Timings Diagram

The SMAP can de-assert the core reset request for this operation, refer to Section 2.8.8 ”Cortex-
M4 Core Reset Source” on page 57.

8.7.9 SWJ-DP
The Cortex-M4 embeds a SWJ-DP Debug port which is the standard CoreSight™ debug port. It
combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port(JTAG-DP), 5
pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial
Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and
TCK/SWCLK which disables JTAG-DP and enables SW-DP. 

When the EDP has been switched to Serial Wire mode, TDO/TRACESWO can be used for trace
(for more information refer to the section below). The asynchronous TRACE output (TRAC-
ESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not
JTAG-DP.  

The SWJ-DP provides access to the AHB-AP and SMAP access ports which have the following
APSEL value:

Refer to the ARM Debug Interface v5.1 Architecture Specification for more details on SWJ-DP.

reset request

 

T C K

R E S E T _ N

E D P  
C o re  re s e t re q u e s t

Figure 8-6. Access Ports APSEL

Acces Port (AP) APSEL

AHB-AP 0

SMAP 1



84
42023HS–SAM–11/2016

ATSAM4L8/L4/L2

0: No bus error has been detected sincle last clear of this bit
• HCR: Hold Core reset

1: The Cortex-M4 core is held under reset
0: The Cortex-M4 core is not held under reset

• DONE: Operation done
1: At least one operation has terminated since last clear of this field
0: No operation has terminated since last clear of this field
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8.9.11.4 Address Register
Name: ADDR

Access Type: Read/Write

Offset: 0x0C

Reset Value: 0x00000000

• ADDR: Address Value
Addess values are always world aligned

31 30 29 28 27 26 25 24

ADDR

23 22 21 20 19 18 17 16

ADDR

15 14 13 12 11 10 9 8

ADDR

7 6 5 4 3 2 1 0

ADDR - -
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8.9.11.5 Length Register
Name: LENGTH

Access Type: Read/Write

Offset: 0x10

Reset Value: 0x00000000

• LENGTH: Length Value, Bits 1-0 are always zero

31 30 29 28 27 26 25 24

LENGTH

23 22 21 20 19 18 17 16

LENGTH

15 14 13 12 11 10 9 8

LENGTH

7 6 5 4 3 2 1 0

LENGTH - -
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8.9.11.8 Chip Identification Register
Name: CIDR

Access Type: Read-Only

Offset: 0xF0

Reset Value: -

Note: Refer to section CHIPID for more information on this register.

31 30 29 28 27 26 25 24

EXT NVPTYP ARCH

23 22 21 20 19 18 17 16

ARCH SRAMSIZ

15 14 13 12 11 10 9 8

NVPSIZ2 NVPSIZ

7 6 5 4 3 2 1 0

EPROC VERSION
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8.11.8 Chip erase typical procedure
The chip erase operation is triggered by writing a one in the CE bit in the Control Register
(CR.CE). This clears first all volatile memories in the system and second the whole flash array.
Note that the User page is not erased in this process. To ensure that the chip erase operation is
completed, check the DONE bit in the Status Register (SR.DONE). Also note that the chip erase
operation depends on clocks and power management features that can be altered by the CPU.
It is important to ensure that it is stopped. The recommended sequence is shown below:

1. At power up, RESET_N is driven low by a debugger. The on-chip regulator holds the 
system in a POR state until the input supply is above the POR threshold. The system 
continues to be held in this static state until the internally regulated supplies have 
reached a safe operating. 

2. PM starts, clocks are switched to the slow clock (Core Clock, System Clock, Flash 
Clock, and any Bus Clocks that do not have clock gate control). Internal resets are 
maintained due to the external reset.
– The debug port and access ports receives a clock and leave the reset state

3. The debugger maintains a low level on TCK and release RESET_N. 
– The SMAP asserts the core_hold_reset signal

4. The Cortex-M4 core remains in reset state, meanwhile the rest of the system is 
released.

5. The Chip erase operation can be performed by issuing the SMAP Chip Erase com-
mand. In this case:
– volatile memories are cleared first
– followed by the clearing of the flash array
– followed by the clearing of the protected state

6. After operation is completed, the chip must be restarted by either controling RESET_N 
or switching power off/on. Make sure that the TCK pin is high when releasing 
RESET_N not to halt the core.

8.11.9 Setting the protected state
This is done by issuing a specific flash controller command, for more information, refer to the
Flash Controller chapter and to section 8.11.7Flash Programming typical procedure97. The pro-
tected state is defined by a highly secure Flash builtin mechanism. Note that for this
programmation to propagate, it is required to reset the chip.
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9.4 Maximum Clock Frequencies

Table 9-4. Maximum Clock Frequencies in Power Scaling Mode 0/2 and RUN Mode

Symbol Parameter Description Max Units

fCPU CPU clock frequency 48

MHz

fPBA PBA clock frequency 48

fPBB PBB clock frequency 48

fPBC PBC clock frequency 48

fPBD PBD clock frequency 48

fGCLK0 GCLK0 clock frequency DFLLIF main reference, GCLK0 pin 50

fGCLK1 GCLK1 clock frequency DFLLIF dithering and SSG reference, 
GCLK1 pin 50

fGCLK2 GCLK2 clock frequency AST, GCLK2 pin 20

fGCLK3 GCLK3 clock frequency CATB, GCLK3 pin 50

fGCLK4 GCLK4 clock frequency FLO and AESA 50

fGCLK5 GCLK5 clock frequency GLOC, TC0 and RC32KIFB_REF 80

fGCLK6 GCLK6 clock frequency ABDACB and IISC 50

fGCLK7 GCLK7 clock frequency USBC 50

fGCLK8 GCLK8 clock frequency TC1 and PEVC[0] 50

fGCLK9 GCLK9 clock frequency PLL0 and PEVC[1] 50

fGCLK10
GCLK10 clock 
frequency ADCIFE 50

fGCLK11
GCLK11 clock 
frequency

Master generic clock. Can be used as 
source for other generic clocks 150

fOSC0 OSC0 output frequency
Oscillator 0 in crystal mode 30

Oscillator 0 in digital clock mode 50

fPLL PLL output frequency Phase Locked Loop 240

fDFLL DFLL output frequency Digital Frequency Locked Loop 220

fRC80M
RC80M output 
frequency Internal 80MHz RC Oscillator 80
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Table 9-9. ATSAM4L8 Current consumption and Wakeup time for power scaling mode 1

Mode Conditions TA

Typical 
Wakeup Time Typ Max (1) Unit

RUN

CPU running a Fibonacci algorithm
Linear mode

25°C
N/A

222 240

µA/MHz

85°C 233 276

CPU running a CoreMark algorithm
Linear mode

25°C N/A 233 276

85°C 230 270

CPU running a Fibonacci algorithm
Switching mode

25°C N/A 100 112

85°C 100 119

CPU running a CoreMark algorithm
Switching mode

25°C N/A 104 128

85°C 107 138

SLEEP0 Switching mode
25°C 9 * Main clock 

cycles
527 627

µA

85°C 579 739

SLEEP1 Switching mode
25°C 9 * Main clock 

cycles + 500ns
369 445

85°C 404 564

SLEEP2 Switching mode
25°C 9 * Main clock 

cycles + 500ns
305 381

85°C 334 442

SLEEP3 Linear mode

25°C

46 55

WAIT

OSC32K and AST running
Fast wake-up enable

1.5µs

5.5

OSC32K and AST stopped
Fast wake-up enable

4.3

RETENTION

OSC32K running
AST running at 1kHz 1.5µs

3.4

AST and OSC32K stopped 2.3

BACKUP

OSC32K running
AST running at 1kHz

1.5 3.1

AST and OSC32K stopped 0.9 1.7

1. These values are based on characterization. These values are not covered by test limits in production.

Table 9-10. Typical Power Consumption running CoreMark on CPU clock sources (1)

Clock Source Conditions Regulator
Frequency 

(MHz) Typ Unit
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RCSYS
(MCSEL = 0)

Power scaling mode 1

Switching
Mode

0.115 978

µA/MHz

OSC0
(MCSEL = 1)

Power scaling mode 1
0.5 354

12 114

Power scaling mode 0
12 228

30 219

OSC0
(MCSEL = 1)
External Clock
(MODE=0)

Power scaling mode 1 
0.6 292

12 111

Power scaling mode 0 12 193

Power scaling mode 2 50 194

PLL
(MCSEL = 2)

Power scaling mode 2
Input Freq = 4MHz from OSC0

40 188

50 185

DFLL
(MCSEL = 3)

Power scaling mode 0
Input Freq = 32kHz from OSC32K

20 214

Power scaling mode 2
Input Freq = 32kHz from OSC32K

50 195

RC1M
(MCSEL = 4)

Power scaling mode 1 1 267

RCFAST
(MCSEL = 5)

Power scaling mode 1
RCFAST frequency is configurable from 4 to 12MHz

4 153

12 114

RC80M
(MCSEL = 6)

Power scaling mode 2
fCPU = RC80M / 2 = 40MHz

40 211

1. These values are based on characterization. These values are not covered by test limits in production.

Table 9-10. Typical Power Consumption running CoreMark on CPU clock sources (1)



116
42023HS–SAM–11/2016

ATSAM4L8/L4/L2

9.6.3 USB I/O Pin : PA25, PA26

9.6.4  TWI Pin : PA21, PA22, PA23, PA24, PB14, PB15

Table 9-15. USB I/O Pin Characteristics in GPIO configuration (1)

1. VVDD corresponds to either VVDDIN or VVDDIO, depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

Symbol Parameter Conditions Min Typ Max Units

RPULLUP Pull-up resistance (2)

2. These values are based on simulation. These values are not covered by test limits in production or characterization

40 kΩ

RPULLDOWN Pull-down resistance(2) 40 kΩ

VIL Input low-level voltage -0.3 0.2 * VVDD

V
VIH Input high-level voltage 0.8 * VVDD VVDD + 0.3

VOL Output low-level voltage 0.4

VOH Output high-level voltage VVDD - 0.4

IOL Output low-level current (3)

3. These values are based on characterization. These values are not covered by test limits in production

ODCR0=0
1.68V<VVDD<2.7V 20

mA
2.7V<VVDD<3.6V 30

IOH Output high-level current(3) ODCR0=0
1.68V<VVDD<2.7V 20

mA
2.7V<VVDD<3.6V 30

FPINMAX Maximum frequency(2) ODCR0=0
OSRR0=0 load = 25pF

20 MHz

ILEAK Input leakage current(3) Pull-up resistors disabled 0.01 1 µA

CIN Input capacitance(2) 5 pF

Table 9-16. TWI Pin Characteristics in TWI configuration (1)

Symbol Parameter Conditions Min Typ Max Units

RPULLUP Pull-up resistance (2) 40 kΩ

RPULLDOWN Pull-down resistance(2) 40 kΩ

VIL Input low-level voltage -0.3 0.3 * VVDD V

VIH Input high-level voltage 0.7 * VVDD VVDD + 0.3 V

VOL Output low-level voltage 0.4 V

IOL Output low-level current (3)

DRIVEL=0 0.5

mA

DRIVEL=1 1.0

DRIVEL=2 1.6

DRIVEL=3 3.1

DRIVEL=4 6.2

DRIVEL=5 9.3

DRIVEL=6 15.5

DRIVEL=7 21.8
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Table 9-20. High Drive TWI Pin Characteristics in GPIO configuration (1)

Symbol Parameter Conditions Min Typ Max Units

RPULLUP Pull-up resistance (2) 40 kΩ

RPULLDOWN Pull-up resistance(2) 40 kΩ

VIL Input low-level voltage -0.3 0.2 * VVDD

V
VIH Input high-level voltage 0.8 * VVDD VVDD + 0.3

VOL Output low-level voltage 0.4

VOH Output high-level voltage VVDD - 0.4

IOL Output low-level current (3)

ODCR0=0
1.68V<VVDD<2.7V 3.4

mA
2.7V<VVDD<3.6V 6

ODCR0=1
1.68V<VVDD<2.7V 5.2

mA
2.7V<VVDD<3.6V 8

IOH Output high-level current(3)

ODCR0=0
1.68V<VVDD<2.7V 3.4

mA
2.7V<VVDD<3.6V 6

ODCR0=1
1.68V<VVDD<2.7V 5.2

mA
2.7V<VVDD<3.6V 8

tRISE Rise time(2)

OSRR0=0 ODCR0=0
1.68V<VVDD<2.7V, 
Cload = 25pF

18
ns

OSRR0=1 110

OSRR0=0 ODCR0=0
2.7V<VVDD<3.6V,
Cload = 25pF

10
ns

OSRR0=1 50

tFALL Fall time(2)

OSRR0=0 ODCR0=0
1.68V<VVDD<2.7V, 
Cload = 25pF

19
ns

OSRR0=1 140

OSRR0=0 ODCR0=0
2.7V<VVDD<3.6V,
Cload = 25pF

12
ns

OSRR0=1 63

1. VVDD corresponds to either VVDDIN or VVDDIO, depending on the supply for the pin. Refer to Section 3-5 on page 13 for details
2. These values are based on simulation. These values are not covered by test limits in production or characterization
3. These values are based on characterization. These values are not covered by test limits in production

Table 9-21. Common High Drive TWI Pin Characteristics

Symbol Parameter Conditions Min Typ Max Units

ILEAK Input leakage current (1) Pull-up resistors disabled 0.01 2 µA

CIN Input capacitance(1) 10 pF

1. These values are based on simulation. These values are not covered by test limits in production or characterization
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9.9.5 Digital to Analog Converter Characteristics

9.9.6 Analog Comparator Characteristics

Table 9-49. Operating conditions
Symbol Parameter Conditions Min Typ Max Units

Analog Supply Voltage (1)

1. These values are based on simulation. These values are not covered by test limits in production or characterization

on VDDANA 2.4 3 3.6 V

Digital Supply Voltage(1) on VDDCORE 1.62 1.8 1.98 V

Resolution (2)

2. These values are based on characterization. These values are not covered by test limits in production

10 bits

Clock frequency(1) Cload = 50pF ; Rload = 5kΩ 500 kHz

Load(1) CLoad 50 pF

RLoad 5 kΩ

INL Integral Non Linearity (1) Best fit-line method ±2 LSBs

DNL Differential Non Linearity (1) Best fit-line method -0.9 +1 LSBs

Zero Error (offset) (1) CDR[9:0] = 0 1 5 mV

Gain Error (1) CDR[9:0] = 1023 5 10 mV

Total Harmonic Distortion(1) 80% of VDDANA @ fin = 
70kHz -56 7 dB

Delay to vout (1) CDR[9:0] = 512/ Cload = 50 pF 
/ Rload = 5 kΩ 2 µs

Startup time(1) CDR[9:0] = 512 5 9 µs

Output Voltage Range (ADVREFP < VDDANA – 
100mV) is mandatory 0 ADVREFP V

ADVREFP Voltage Range(1) (ADVREFP < VDDANA – 
100mV) is mandatory 2.3 3.5 V

ADVREFN Voltage Range(1) ADVREFP = GND 0 V

Standby Current(1) 
On VDDANA 500

nA
On VDDCORE 100

DC Current consumption(1)
On VDDANA (no Rload) 485 660

µAOn ADVREFP
(CDR[9:0] = 512) 

250 295

Table 9-50. Analog Comparator Characteristics

Symbol Parameter Conditions Min Typ Max Units

Positive input voltage 
range 0.1 VDDIO-0.1

V
Negative input voltage 
range 0.1 VDDIO-0.1

Offset (1)

VACREFN =0.1V to VDDIO-0.1V, 
hysteresis = 0 (2)

Fast mode
-12 13 mV

VACREFN =0.1V to VDDIO-0.1V, 
hysteresis = 0(2)

Low power mode
-11 12 mV
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Figure 9-10. USART in SPI Slave Mode with (CPOL= CPHA= 0) or (CPOL= CPHA= 1)

Figure 9-11. USART in SPI Slave Mode, NPCS Timing

USPI10 USPI11

MISO

SPCK

MOSI

USPI9

USPI14

USPI12

USPI15

USPI13

NSS

SPCK, CPOL=0

SPCK, CPOL=1

Table 9-58. USART0 in SPI mode Timing, Slave Mode(1)

Symbol Parameter Conditions Min Max Units

USPI6 SPCK falling to MISO delay

VVDDIO from 
3.0V to 3.6V, 

maximum 
external 

capacitor = 
40pF

740.67

ns

USPI7 MOSI setup time before SPCK rises 56.73 + tSAMPLE
(2) + 

tCLK_USART

USPI8 MOSI hold time after SPCK rises 45.18 -( tSAMPLE
(2) + 

tCLK_USART )

USPI9 SPCK rising to MISO delay 670.18

USPI10 MOSI setup time before SPCK falls 56.73 +( tSAMPLE
(2) + 

tCLK_USART )

USPI11 MOSI hold time after SPCK falls 45.18 -( tSAMPLE
(2) + 

tCLK_USART )

USPI12 NSS setup time before SPCK rises 688.71

USPI13 NSS hold time after SPCK falls -2.25

USPI14 NSS setup time before SPCK falls 688.71

USPI15 NSS hold time after SPCK rises -2.25
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Figure 9-16.  SPI Slave Mode, NPCS Timing

Note: 1. These values are based on simulation. These values are not covered by test limits in production.

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

Where  is the MOSI setup and hold time, SPI7 + SPI8 or SPI10 + SPI11 depending on
CPOL and NCPHA.  is the maximum frequency of the CLK_SPI. Refer to the SPI chap-
ter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

SPI14

SPI12

SPI15

SPI13

NPCS

SPCK, CPOL=0

SPCK, CPOL=1

Table 9-63. SPI Timing, Slave Mode(1)

Symbol Parameter Conditions Min Max Units

SPI6 SPCK falling to MISO delay

VVDDIO from 
2.85V to 3.6V, 

maximum 
external 

capacitor = 
40pF

19 47

ns

SPI7 MOSI setup time before SPCK rises 0

SPI8 MOSI hold time after SPCK rises 5.4

SPI9 SPCK rising to MISO delay 19 46

SPI10 MOSI setup time before SPCK falls 0

SPI11 MOSI hold time after SPCK falls 5.3

SPI12 NPCS setup time before SPCK rises 4

SPI13 NPCS hold time after SPCK falls 2.5

SPI14 NPCS setup time before SPCK falls 6

SPI15 NPCS hold time after SPCK rises 1.1

fSPCKMAX MIN fCLKSPI
1

SPIn
------------( , )=

SPIn
fCLKSPI

fSPCKMAX MIN fPINMAX
1

SPIn tSETUP+------------------------------------( , )=
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Fix/Workaround
Read the last received data, then perform a software reset by writing a one to the Software
Reset bit in the Control Register (CR.SWRST). 

Disabling SPI has no effect on the SR.TDRE bit
Disabling SPI has no effect on the SR.TDRE bit whereas the write data command is filtered
when SPI is disabled. Writing to TDR when SPI is disabled will not clear SR.TDRE. If SPI is
disabled during a PDCA transfer, the PDCA will continue to write data to TDR until its buffer
is empty, and this data will be lost.
Fix/Workaround
Disable the PDCA, add two NOPs, and disable the SPI. To continue the transfer, enable the
SPI and PDCA. 

SPI bad serial clock generation on 2nd chip_select when SCBR=1, CPOL=1, and
NCPHA=0
When multiple chip selects (CS) are in use, if one of the baudrates equal 1 while one
(CSRn.SCBR=1) of the others do not equal 1, and CSRn.CPOL=1 and CSRn.NCPHA=0,
then an additional pulse will be generated on SCK.
Fix/Workaround
When multiple CS are in use, if one of the baudrates equals 1, the others must also equal 1
if CSRn.CPOL=1 and CSRn.NCPHA=0. 

12.1.5 TC

Channel chaining skips first pulse for upper channel
When chaining two channels using the Block Mode Register, the first pulse of the clock
between the channels is skipped.
Fix/Workaround
Configure the lower channel with RA = 0x1 and RC = 0x2 to produce a dummy clock cycle
for the upper channel. After the dummy cycle has been generated, indicated by the
SR.CPCS bit, reconfigure the RA and RC registers for the lower channel with the real
values. 

12.1.6 USBC

In USB host mode, entering suspend mode for low speed device can fail when the
USB freeze (USBCON.FRZCLK=1) is done just after UHCON.SOFE=0.
Fix/Workaround
When entering suspend mode (UHCON.SOFE is cleared), check that USBFSM.DRDSTATE
is not equal to three before freezing the clock (USBCON.FRZCLK=1).

In USB host mode, the asynchronous attach detection (UDINT.HWUPI) can fail when
the USB clock freeze (USBCON.FRZCLK=1) is done just after setting the USB-
STA.VBUSRQ bit.
Fix/Workaround
After sett ing USBSTA.VBUSRQ bit ,  wait  unt i l  the USBFSM register value is
‘A_WAIT_BCON’ before setting the USBCON.FRZCLK bit.
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12.1.7 FLASHCALW

Corrupted data in flash may happen after flash page write operations.
After a flash page write operation, reading (data read or code fetch) in flash may fail. This
may lead to an expecption or to others errors derived from this corrupted read access.
Fix/Workaround
Before any flash page write operation, each 64-bit doublewords write in the page buffer must
preceded by a 64-bit doublewords write in the page buffer with 0xFFFFFFFF_FFFFFFFF
content at any address in the page. Note that special care is required when loading page
buffer, refer to Section 2.5.9 ”Page Buffer Operations” on page 11.


