

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	48
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 7x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4ls4ba-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- PLL up to 240MHz for device clock and for USB
- Digital Frequency Locked Loop (DFLL) with wide input range
- Up to 16 peripheral DMA (PDCA) channels
- Peripherals
 - USB 2.0 Device and Embedded Host: 12 Mbps, up to 8 bidirectional Endpoints and Multi-packet Ping-pong Mode. On-Chip Transceiver
 - Liquid Crystal Display (LCD) Module with Capacity up to 40 Segments and up to 4 Common Terminals
 - One USART with ISO7816, IrDA®, RS-485, SPI, Manchester and LIN Mode
 - Three USART with SPI Mode
 - One PicoUART for extended UART wake-up capabilities in all sleep modes
 - Windowed Watchdog Timer (WDT)
 - Asynchronous Timer (AST) with Real-time Clock Capability, Counter or Calendar Mode Supported
 - Frequency Meter (FREQM) for Accurate Measuring of Clock Frequency
 - Six 16-bit Timer/Counter (TC) Channels with capture, waveform, compare and PWM mode
 - One Master/Slave Serial Peripheral Interface (SPI) with Chip Select Signals
 - Four Master and Two Slave Two-wire Interfaces (TWI), up to 3.4Mbit/s I²C-compatible
 - One Advanced Encryption System (AES) with 128-bit key length
 - One 16-channel ADC 300Ksps (ADC) with up to 12 Bits Resolution
 - One DAC 500Ksps (DACC) with up to 10 Bits Resolution
 - Four Analog Comparators (ACIFC) with Optional Window Detection
 - Capacitive Touch Module (CATB) supporting up to 32 buttons
 - Audio Bitstream DAC (ABDACB) Suitable for Stereo Audio
 - Inter-IC Sound (IISC) Controller, Compliant with Inter-IC Sound (I²S) Specification
 - Peripheral Event System for Direct Peripheral to Peripheral Communication
 - 32-bit Cyclic Redundancy Check Calculation Unit (CRCCU)
 - Random generator (TRNG)
 - Parallel Capture Module (PARC)
 - Glue Logic Controller (GLOC)
- I/O
 - Up to 75 I/O lines with external interrupt capability (edge or level sensitivity), debouncing, glitch filtering and slew-rate control
 - Up to Six High-drive I/O Pins
- Single 1.68-3.6V Power Supply
- Packages
 - 100-lead LQFP, 14 x 14 mm, pitch 0.5 mm/100-ball VFBGA, 7x7 mm, pitch 0.65 mm
 - 64-lead LQFP, 10 x 10 mm, pitch 0.5 mm/64-pad QFN 9x9 mm, pitch 0.5 mm
 - 64-ball WLCSP, 4,314x4,434 mm, pitch 0.5 mm for SAM4LC4/2 and SAM4LS4/2 series
 - 64-ball WLCSP, 5,270x5,194 mm, pitch 0.5 mm for SAM4LC8 and SAM4LS8 series
 - 48-lead LQFP, 7 x 7 mm, pitch 0.5 mm/48-pad QFN 7x7 mm, pitch 0.5 mm

Feature	ATSAM4LC8/4/2C	ATSAM4LC8/4/2B	ATSAM4LC8/4/2A			
	Digital Freque	Digital Frequency Locked Loop 20-150MHz (DFLL)				
	Phase	Locked Loop 48-240M	Hz (PLL)			
	Crysta	l Oscillator 0.6-30MHz	(OSC0)			
Oscillators	Cryst	al Oscillator 32kHz (O	SC32K)			
	RC	Oscillator 80MHz (RC	80M)			
	RC O	scillator 4,8,12MHz (R	CFAST)			
	RC	RC Oscillator 115kHz (RCSYS)				
	RC Oscillator 32kHz (RC32K)					
ADC	15-channel 7-channel 3-channel					
DAC		1-channel				
Analog Comparators	4	2	1			
CATB Sensors	32	32	26			
USB		1				
Audio Bitstream DAC	1					
IIS Controller	1					
Packages	TQFP/VFBGA TQFP/QFN/ WLCSP TQFP/Q					

Table 2-2. ATSAM4LC Configuration Summary

 Table 2-3.
 ATSAM4LS Configuration Summary

•

Feature	ATSAM4LS8/4/2C	ATSAM4LS8/4/2B	ATSAM4LS8/4/2A
Number of Pins	100	64	48
Max Frequency		48MHz	
Flash		512/256/128KB	
SRAM		64/32/32KB	
SEGMENT LCD		NA	
GPIO	80	48	32
High-drive pins	6	3	1
External Interrupts	8 + 1 NMI		
TWI	2 Masters + 2	1 Master + 1 Master/Slave	
USART	4		3 in LC sub series 4 in LS sub series
PICOUART		1	0
Peripheral DMA Channels		16	
AESA	NA		
Peripheral Event System	1		
SPI	1		
Asynchronous Timers		1	

ATSAM4LC	ATSAM4LS	Pin	GPIO	Supply			GI	PIO Functio	ns		
WLCSP	WLCSP				Α	В	С	D	E	F	G
E5	E5	PB13	45	LCDC	USART0 CLK	SPI NPCS1	PEVC PAD EVT1	TC0 CLK0	SCIF GCLK3	LCDCA SEG33	CATB SENSE0
F4	F4	PB14	46	LCDC	USART0 RXD	SPI MISO	TWIM3 TWD	TC0 CLK1	SCIF GCLK IN0	LCDCA SEG36	CATB SENSE1
H4	H4	PB15	47	LCDC	USART0 TXD	SPI MOSI	TWIM3 TWCK	TC0 CLK2	SCIF GCLK IN1	LCDCA SEG37	CATB SENSE2

 Table 3-3.
 64-pin GPIO Controller Function Multiplexing for WLCSP package (Sheet 3 of 3)

5.2 Embedded Memories

- Internal high-speed flash
 - 512Kbytes (ATSAM4Lx8)
 - 256Kbytes (ATSAM4Lx4)
 - 128Kbytes (ATSAM4Lx2)
 - Pipelined flash architecture, allowing burst reads from sequential flash locations, hiding penalty of 1 wait state access
 - Pipelined flash architecture typically reduces the cycle penalty of 1 wait state operation compared to 0 wait state operation
 - 100 000 write cycles, 15-year data retention capability
 - Sector lock capabilities, bootloader protection, security bit
 - 32 fuses, erased during chip erase
 - User page for data to be preserved during chip erase
- Internal high-speed SRAM, single-cycle access at full speed
 - 64Kbytes (ATSAM4Lx8)
 - 32Kbytes (ATSAM4Lx4, ATSAM4Lx2)

5.3 Physical Memory Map

The system bus is implemented as a bus matrix. All system bus addresses are fixed, and they are never remapped in any way, not even during boot. The 32-bit physical address space is mapped as follows:

Momory	Start Address	Size	Size
wemory		ATSAM4Lx4	ATSAM4Lx2
Embedded Flash	0x0000000	256Kbytes	128Kbytes
Embedded SRAM	0x20000000	32Kbytes	32Kbytes
Cache SRAM	0x21000000	4Kbytes	4Kbytes
Peripheral Bridge A	0x4000000	64Kbytes	64Kbytes
Peripheral Bridge B	0x400A0000	64Kbytes	64Kbytes
AESA	0x400B0000	256 bytes	256 bytes
Peripheral Bridge C	0x400E0000	64Kbytes	64Kbytes
Peripheral Bridge D	0x400F0000	64Kbytes	64Kbytes

 Table 5-1.
 ATSAM4L8/L4/L2 Physical Memory Map

Momony	Start Address	Size
Memory		ATSAM4Lx8
Embedded Flash	0x0000000	512Kbytes
Embedded SRAM	0x20000000	64Kbytes
Cache SRAM	0x21000000	4Kbytes
Peripheral Bridge A	0x4000000	64Kbytes
Peripheral Bridge B	0x400A0000	64 Kbytes

6.2.2 Typical Powering Schematics

The ATSAM4L8/L4/L2 supports the Single supply mode from 1.68V to 3.6V. Depending on the input voltage range and on the final application frequency, it is recommended to use the following table in order to choose the most efficient power strategy

	VDDIN Voltage				
	1.68V 1.8	30V 2.0	00V 2	.30V	3.60V
Switching Mode (BUCK/LDOn (PA02) =1)	N.	Ά	Possible but not efficient	C	Optimal power efficiency
Linear Mode (BUCK/LDOn (PA02) =0)	Optin	nal power efficiency		I power efficiency Possible but not ef	
F _{CPUMAX}	12MHz	Up to 36MHz In PS0 Up to 12MHz in PS1 Up to 48MHz in PS2			Hz In PS0 Hz in PS1 Hz in PS2
PowerScaling	PS1 ⁽¹⁾	ALL			L
Typical power consumption in RUN mode	א 212µA/MI א 306µA/MI	Hz @ F _{CPU} =12M Hz @ F _{CPU} = 48N	IHz(PS1) /IHz(PS2)	א 100µA א 180µA	VMHz @ F _{CPU} =12MHz(PS1) @ V _{VDDIN} =3.3V VMHz @ F _{CPU} =48MHz(PS2) @ V _{VDDIN} =3.3V
Typical power consumption in RET mode		1.5µA			

Figure 6-3. Efficient power strategy:

Note 1. The SAM4L boots in PS0 on RCSYS(115kHz), then the application must switch to PS1 before running on higher frequency (<12MHz)

7.1.3 BACKUP Mode

The BACKUP mode allows achieving the lowest power consumption possible in a system which is performing periodic wake-ups to perform tasks but not requiring fast startup time.

The Core domain is powered-off. The internal SRAM and register contents of the Core domain are lost. The Backup domain is kept powered-on. The 32kHz clock (RC32K or OSC32K) is kept running if enabled to feed modules that require clocking.

In BACKUP mode, the configuration of the I/O lines is preserved. Refer to Section 9. "Backup Power Manager (BPM)" on page 677 to have more details.

7.1.3.1 Entering BACKUP Mode

The Backup mode is entered by using the WFI instruction with the following settings:

- set the SCR.SLEEPDEEP bit to 1. (See the Power Management section in the ARM Cortex-M4 Processor chapter).
- set the BPM.PSAVE.BKUP bit to 1.

7.1.3.2 Exiting BACKUP Mode

Exit from BACKUP mode happens if a reset occurs or if an enabled wake up event occurs.

The reset sources are:

- BOD33 reset
- BOD18 reset
- WDT reset
- External reset in RESET_N pin

The wake up sources are:

- EIC lines (level transition only)
- BOD33 interrupt
- BOD18 interrupt
- AST alarm, periodic, overflow
- WDT interrupt

The RC32K or OSC32K should be used as clock source for modules if required. The PMCON.CK32S is used to select one of these two 32kHz clock sources.

Exiting the BACKUP mode is triggered by:

- a reset source: an internal reset sequence is performed according to the reset source. Once VDDCORE is stable and has the correct value according to RUN0 mode, the internal reset is released and program execution starts. The corresponding reset source is flagged in the Reset Cause register (RCAUSE) of the PM.
- a wake up source: the Backup domain is not reset. An internal reset is generated to the Core domain, and the system switches back to the previous RUN mode. Once VDDCORE is stable and has the correct value, the internal reset in the Core domain is released and program execution starts. The BKUP bit is set in the Reset Cause register (RCAUSE) of the PM. It allows the user to discriminate between the reset cause and a wake up cause from the BACKUP mode. The wake up cause can be found in the Backup Wake up Cause register (BPM.BKUPWCAUSE).

7.1.5 Power Save Mode Summary Table

The following table shows a summary of the main Power Save modes:

 Table 7-2.
 Power Save mode Configuration Summary

		·	Core	Backup
Mode	Mode Entry	Wake up sources	domain	domain
SLEEP	WFI SCR.SLEEPDEEP bit = 0 BPM.PMCON.BKUP bit = 0	Any interrupt	CPU clock OFF Other clocks OFF depending on the BPM.PMCON.SLEEP field see "SLEEP mode" on page 56	Clocks OFF depending on the BPM.PMCON.SLEEP field see "SLEEP mode" on page 56
WAIT	WFI SCR.SLEEPDEEP bit = 1 BPM.PMCON.RET bit = 0 BPM.PMCON.BKUP bit = 0	PM WAKE interrupt	All clocks are OFF Core domain is retained	All clocks are OFF except RC32K or OSC32K if running
RETENTION	WFI SCR.SLEEPDEEP bit = 1 BPM.PMCON.RET bit = 1 BPM.PMCON.BKUP bit = 0	PM WAKE interrupt	All clocks are OFF Core domain is retained	All clocks are OFF except RC32K or OSC32K if running
BACKUP	WFI + SCR.SLEEPDEEP bit = 1 + BPM.PMCON.BKUP bit = 1	EIC interrupt BOD33, BOD18 interrupt and reset AST alarm, periodic, overflow WDT interrupt and reset external reset on RESET_N pin	OFF (not powered)	All clocks are OFF except RC32K or OSC32K if running

7.2 Power Scaling

The Power Scaling technique consists of adjusting the internal regulator output voltage (voltage scaling) to reduce the power consumption. According to the requirements in terms of performance, operating modes, and current consumption, the user can select the Power Scaling configuration that fits the best with its application.

The Power Scaling configuration field (PMCON.PS) is provided in the Backup Power Manager (BPM) module.

In RUN mode, the user can adjust on the fly the Power Scaling configuration

The Figure 7.1 summarizes the different combination of the Power Scaling configuration which can be applied according to the Power Save Mode.

Power scaling from a current power configuration to a new power configuration is done by halting the CPU execution

Power scaling occurs after a WFI instruction. The system is halted until the new power configuration is stabilized. After handling the PM interrupt, the system resumes from WFI.

To scale the power, the following sequence is required:

• Check the BPM.SR.PSOK bit to make sure the current power configuration is stabilized.

8.7.14.4 CLAMP

This instruction selects the Bypass register as Data Register. The device output pins are driven from the boundary-scan chain.

Starting in Run-Test/Idle, the CLAMP instruction is accessed the following way:

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. In Update-IR: The data from the boundary-scan chain is applied to the output pins.
- 5. Return to Run-Test/Idle.
- 6. Select the DR Scan path.
- 7. In Capture-DR: A logic '0' is loaded into the Bypass Register.

Atmel

- 8. In Shift-DR: Data is scanned from TDI to TDO through the Bypass register.
- 9. Return to Run-Test/Idle.

Table 8-8. CLAMP Details

Instructions	Details
IR input value	0101 (0x5)
IR output value	p00s
DR Size	1
DR input value	x
DR output value	x

8.9.11.5	Lengtl	h Register
Name:		LENGTH
Access Ty	pe:	Read/Write
Offset:		0x10
Reset Valu	ie:	0x00000000

31	30	29	28	27	26	25	24
			LEN	GTH			
23	22	21	20	19	18	17	16
			LEN	GTH			
15	14	13	12	11	10	9	8
			LEN	GTH			
7	6	5	4	3	2	1	0
LENGTH					-		

• LENGTH: Length Value, Bits 1-0 are always zero

8.11 Functional Description

8.11.1 Debug Environment

Figure 8-8 shows a complete debug environment example. The SWJ-DP interface is used for standard debugging functions, such as downloading code and single-stepping through the program and viewing core and peripheral registers.

8.11.2 Test Environment

Figure 8-9 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by the tester. In this example, the "board in test" is designed using a number of JTAG-compliant devices. These devices can be connected to form a single scan chain.

Atmel

9. Electrical Characteristics

9.1 Absolute Maximum Ratings*

 Table 9-1.
 Absolute Maximum Ratings

Operating temperature40°C to +85°C	*NOTICE:	Stresses beyond those listed under "Absolute Maxi-
Storage temperature60°C to +150°C		device. This is a stress rating only and functional
Voltage on input pins with respect to ground0.3V to $V_{\text{VDD}}^{(1)}\text{+}0.3\text{V}$		operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute
Total DC output current on all I/O pins VDDIO		affect device reliability.
Total DC output current on all I/O pins VDDIN		
Total DC output current on all I/O pins VDDANA		
Maximum operating voltage VDDIO, VDDIN		

1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO}, depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

9.2 Operating Conditions

All the electrical characteristics are applicable to the following conditions unless otherwise specified :

- operating voltage range 1,68V to 3,6V for VDDIN, VDDIO & VDDANA
- Power Scaling 0 and 2 modes
- operating temperature range: TA = -40°C to 85°C and for a junction temperature up to TJ = 100°C.

Typical values are base on TA = 25° c and VDDIN,VDDIO,VDDANA = 3,3V unless otherwise specified

9.3 Supply Characteristics

		Voltage		
Symbol	Conditions	Min	Max	Unit
V _{VDDIO,}	PS1 (FCPU<=12MHz) Linear mode	1.68		
V _{vddin,} V _{vddana}	PS0 & PS2 (FCPU>12MHz) Linear mode	1.8	3.6	V
	Switching mode	2.0 (1)		

Table 9-2.Supply Characteristics

1. Below 2.3V, linear mode is more power efficient than switching mode.

Atmel

Refer to Section 6. "Power and Startup Considerations" on page 46 for details about Power Supply

Symbol	Parameter	Description	Мах	Units
f _{CPU}	CPU clock frequency		12	
f _{PBA}	PBA clock frequency		12	
f _{PBB}	PBB clock frequency		12	
f _{PBC}	PBC clock frequency		12	
f _{PBD}	PBD clock frequency		12	
f _{GCLK0}	GCLK0 clock frequency	DFLLIF main reference, GCLK0 pin	16.6	
f _{GCLK1}	GCLK1 clock frequency	DFLLIF dithering and SSGreference, GCLK1 pin	16.6	
f _{GCLK2}	GCLK2 clock frequency	AST, GCLK2 pin	6.6	
f _{GCLK3}	GCLK3 clock frequency	CATB, GCLK3 pin	17.3	
f _{GCLK4}	GCLK4 clock frequency	FLO and AESA	16.6	
f _{GCLK5}	GCLK5 clock frequency	GLOC, TC0 and RC32KIFB_REF	26.6	
f _{GCLK6}	GCLK6 clock frequency	ABDACB and IISC	16.6	MHz
f _{GCLK7}	GCLK7 clock frequency	USBC	16.6	
f _{GCLK8}	GCLK8 clock frequency	TC1 and PEVC[0]	16.6	
f _{GCLK9}	GCLK9 clock frequency	PLL0 and PEVC[1]	16.6	
f _{GCLK10}	GCLK10 clock frequency	ADCIFE	16.6	
f _{GCLK11}	GCLK11 clock frequency	Master generic clock. Can be used as source for other generic clocks	51.2	
	0000 1 11	Oscillator 0 in crystal mode	16	
T _{OSC0}	OSC0 output frequency	Oscillator 0 in digital clock mode	16	
f _{PLL}	PLL output frequency	Phase Locked Loop	N/A	
f _{DFLL}	DFLL output frequency	Digital Frequency Locked Loop	N/A	
f _{RC80M}	RC80M output frequency	Internal 80MHz RC Oscillator	N/A	

Table 9-5.Maximum Clock Frequencies in Power Scaling Mode 1 and RUN Mode

3. These values are based on characterization. These values are not covered by test limits in production

9.6.2 High-drive I/O Pin : PA02, PC04, PC05, PC06

 Table 9-14.
 High-drive I/O Pin Characteristics ⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Мах	Units
R _{PULLUP}	Pull-up resistance (2)				40		kΩ
R _{PULLDOWN}	Pull-down resistance ⁽²⁾				40		kΩ
V _{IL}	Input low-level voltage			-0.3		0.2 * V _{VDD}	
V _{IH}	Input high-level voltage					V _{VDD} + 0.3	Ň
V _{OL}	Output low-level voltage					0.4	V
V _{OH}	Output high-level voltage			V _{VDD} - 0.4			
			1.68V <v<sub>VDD<2.7V</v<sub>			1.8	~^
	Output low lovel ourrept ⁽³⁾	ODCR0=0	2.7V <v<sub>VDD<3.6V</v<sub>			3.2	ША
IOL			1.68V <v<sub>VDD<2.7V</v<sub>			3.2	~ ^
		ODCR0=1	2.7V <v<sub>VDD<3.6V</v<sub>			6	ma
			1.68V <v<sub>VDD<2.7V</v<sub>			1.6	
	Output high lovel output (3)	ODCR0=0	2.7V <v<sub>VDD<3.6V</v<sub>			3.2	ma
Гон	Output high-level current ^(a)	ODCR0=1	1.68V <v<sub>VDD<2.7V</v<sub>			3.2	mA
			2.7V <v<sub>VDD<3.6V</v<sub>			6	
		OSRR0=0	ODCR0=0			20	ns
		OSRR0=1	$1.68V < V_{VDD} < 2.7V,$ Cload = 25pF			40	
RISE	Rise ume 7	OSRR0=0	ODCR0=0			11	
		OSRR0=1	$2.7V < V_{VDD} < 3.6V,$ Cload = 25pF			18	ns
		OSRR0=0	ODCR0=0			20	
		OSRR0=1	1.68V <v<sub>VDD<2.7V, Cload = 25pF</v<sub>			40	ns
^L FALL		OSRR0=0	ODCR0=0			11	
		OSRR0=1	$2.7V < V_{VDD} < 3.6V,$ Cload = 25pF			18	ns
		OSRR0=0	ODCR0=0, V _{VDD} >2.7V			22	MHz
_	Quite 1 (manual (2)	OSRR0=1	load = 25pF			17	MHz
		OSRR0=0	ODCR0=1, V _{VDD} >2.7V			35	MHz
		OSRR0=1	load = 25pF			26	MHz
I _{LEAK}	Input leakage current ⁽³⁾	Pull-up resis	tors disabled		0.01	2	μA
C _{IN}	Input capacitance ⁽²⁾				10		pF

1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

2. These values are based on simulation. These values are not covered by test limits in production or characterization

3. These values are based on characterization. These values are not covered by test limits in production

9.7.7 1MHz RC Oscillator (RC1M) Characteristics

Table 9-30	RC1M Oscillator (Characteristics
	INC IN OSCIIIALUI V	

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{OUT}	Output frequency (1)		0.91	1	1.12	MHz
I _{RC1M}	Current consumption (2)			35		μA
Duty	Duty cycle ⁽¹⁾		48.6	49.9	54.4	%

1. These values are based on characterization. These values are not covered by test limits in production.

2. These values are based on simulation. These values are not covered by test limits in production or characterization.

9.7.8 4/8/12MHz RC Oscillator (RCFAST) Characteristics

Table 9-31. RCFAST Oscillator Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{out}		Calibrated, FRANGE=0	4	4.3	4.6		
	Output frequency (1)	Calibrated, FRANGE=1	7.8	8.2	8.5	MHz	
		Calibrated, FRANGE=2	11.3	12	12.3		
	Current consumption ⁽²⁾	Calibrated, FRANGE=0		90	110	μΑ	
I _{RCFAST}		Calibrated, FRANGE=1		130	150		
		Calibrated, FRANGE=2		180	205		
	Duty cycle ⁽¹⁾	Calibrated, FRANGE=0	48.8	49.6	50.1		
Duty		Calibrated, FRANGE=1	47.8	49.2	50.1	%	
		Calibrated, FRANGE=2	46.7	48.8	50.0		
t _{STARTUP}	Startup time ⁽¹⁾	Calibrated, FRANGE=2	0.1	0.31	0.71	μs	

1. These values are based on characterization. These values are not covered by test limits in production.

2. These values are based on simulation. These values are not covered by test limits in production or characterization.

Table 9-39.	VREG Electrical Characteristics in Switching mode	е
-------------	---	---

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{OUT}	DC output current ⁽¹⁾	V _{VDDCORE} > 1.65V			55	mA
	Output DC load regulation ⁽¹⁾ Transient load regulation	$I_{OUT} = 0$ to 50mA, $V_{VDDIN} = 3V$	-136	-101	-82	mV
	Output DC regulation ⁽¹⁾	$I_{OUT} = 50 \text{ mA},$ $V_{VDDIN} = 2 \text{ V to } 3.6 \text{ V}$	-20	38	99	mV
	Quessiont surrent(1)	$V_{VDDIN} = 2V, I_{OUT} = 0 \text{ mA}$	97	186	546	
IQ		V_{VDDIN} > 2.2V, I_{OUT} = 0 mA	97	111	147	μΑ
P _{EFF}	Power efficiency ⁽¹⁾	I _{OUT} = 5mA, 50mA Reference power not included	82.7	88.3	95	%

1. These values are based on characterization. These values are not covered by test limits in production.

 Table 9-40.
 Decoupling Requirements in Switching Mode

Symbol	Parameter	Technology	Тур	Units
C _{IN1}	Input regulator capacitor 1		33	<u>م</u> ۲
C _{IN2}	Input regulator capacitor 2		100	0F
C _{IN3}	Input regulator capacitor 3		10	μF
C _{OUT1}	Output regulator capacitor 1	X7R MLCC	100	nF
C _{OUT2}	Output regulator capacitor 2	X7R MLCC (ex : GRM31CR71A475)	4.7	μF
L _{EXT}	External inductance	(ex: Murata LQH3NPN220MJ0)	22	μH
R _{DCLEXT}	Serial resistance of L _{EXT}		0.7	Ω
ISAT _{LEXT}	Saturation current of L _{EXT}		300	mA

Note: 1. Refer to Section 6. on page 46.

COMMON DIMENSIONS (Unit of Measure = mm)

BALL	SIGNAL	X COORD	Y COORD
A1	PB04	1.746	1.683
A2	GNDANA	1.246	1.683
A3	ADVREFP	0.746	1.683
A4	VDDANA	0.246	1.683
A5	PA09	-0.254	1.683
A6	CAPL	-0.754	1.683
A7	CAPH	-1.254	1.683
A8	PA12	-1.754	1.683
B1	PB03	1.746	1.183
B2	XIN32	1.246	1.183
B3	XOUT32	0.746	1.183
B4	PA08	0.246	1,183
B5	PB06	-0.254	1.183
B6	PA10	-0.754	1.183
B7	PA11	-1.254	1.183
B8	VLCD	-1.754	1.183
C1	VDDIN	1.746	0.683
C2	PB01	1.246	0.683
C3	PA05	0.746	0.683
C4	PA06	0.246	0.683
C5	PA07	-0.254	0.683
C6	PB07	-0.754	0.683

BALL	SIGNAL	X COORD	Y COORD
C7	PA13	-1.254	0.683
C8	BIAS1	-1.754	0.683
D1	VDDOUT	1.746	0.183
D2	PB00	1.246	0.183
D3	PA04	0.746	0.183
D4	PB05	0.246	0.183
D5	PB12	-0.254	0.183
D6	PB08	-0.754	0.183
D7	PA14	-1.254	0.183
D8	BIAS2	-1.754	0.183
E1	GNDIN	1.746	-0.317
E2	PA03	1.246	-0.317
E3	PB02	0.746	-0.317
E4	RESET_N	0.246	-0.317
E5	PB13	-0.254	-0.317
E6	PB09	-0.754	-0.317
E7	PA15	-1.254	-0.317
E8	GNDIO0	-1.754	-0.317
F1	VDDCORE	1.746	-0.817
F2	TCK	1.246	-0.817
F3	PA02	0.746	-0.817
F4	PB14	0.246	-0.817

BALL	SIGNAL	X COORD	Y COORD
F5	PA22	-0.254	-0.817
F6	PB10	-0.754	-0.817
F7	PA16	-1.254	-0.817
F8	VLCDIN	-1.754	-0.817
G1	GNDIO1	1.746	-1.317
G2	PA26	1.246	-1.317
G3	PA24	0.746	-1.317
G4	PA00	0.246	-1.317
G5	PA01	-0.254	-1.317
G6	PA19	-0.754	-1.317
G7	PA18	-1.254	-1.317
G8	PA17	-1.754	-1.317
H1	VDDIO1	1.746	-1.817
H2	PA25	1.246	-1.817
H3	PA23	0.746	-1.817
H4	PB15	0.246	-1.817
H5	PA21	-0.254	-1.817
H6	VDDI00	-0.754	-1.817
H7	PA20	-1.254	-1.817
H8	PB11	-1.754	-1.817

Notes : 1. Dimension "b" is measured at the maximum ball diameter in a plane to the seating plane.

2. Applied to whole wafer.

Table 10-8. Device and Package Maximum Weight

14.8		mg
Table 10-9.	Package Characteristics	
Moisture Ser	nsitivity Level	MSL3

Table 10-10. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E1

Atmel

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

Table 10-23.	Device and Package Maximum	Weight
--------------	----------------------------	--------

200	mg

Table 10-24. Package Characteristics

Moisture Sensitivity Level	MSL3

Table 10-25. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

DETAIL VIEW

(Unlt of Measure = mm)				
SYMBOL	MIN	NOM	MAX	NOTE
A			1,20	
A1	0.05		0,15	
A2	0.95		1.05	
с	0.09		0.20	
D/E	9.00 BSC			
D1/E1	7	7.00 BSC		
L	0,45		0,75	
b	0.17		0.27	
е	0.50 BSC			

Table 10-26.	Device and Package	Maximum	Weight
	Dovido una r donago	i wia/minarii	v orgine

140	mg	
Table 10-27. Package Characteristics		
Moisture Sensitivity Level	MSL3	

Table 10-28. Package Reference

JEDEC Drawing Reference	MS-026
JESD97 Classification	E3

13. Datasheet Revision History

Note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

13.1 Rev. A - 09/12

1. Initial revision.

13.2 Rev. B - 10/12

- 1. Fixed ordering code
- 2. Changed BOD18CTRL and BOD33CTRL ACTION field from "Reserved" to 'No action"

13.3 Rev. C – 02/13

- 1. Fixed ball pitch for VFBGA100 package
- 2. Added VFBGA100 and WLCSP64 pinouts
- 3. Added Power Scaling Mode 2 for high frequency support
- 4. Minor update on several modules chapters
- 5. Major update on Electrical characteristics
- 6. Updated errata
- 7. Fixed GPIO multiplexing pin numbers

13.4 Rev. D - 03/13

- 1. Removed WLCSP package information
- 2. Added errata text for detecting whether a part supports PS2 mode or not
- 3. Removed temperature sensor feature (not supported by production flow)
- 4. Fixed MUX selection on Positive ADC input channel table

Atmel

- 5. Added information about TWI instances capabilities
- 6. Added some details on errata Corrupted data in flash may happen after flash page write operations.171

Atmel

Table o	of Contents	
13.8	Rev. H– 11/16	173
13.7	Rev. G-03/14	173
13.6	Rev. F– 12/13	173
13.5	Rev. E – 07/13	173
13.4	Rev. D – 03/13	172

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: (+1)(408) 441-0311 Fax: (+1)(408) 487-2600 www.atmel.com Atmel Asia Limited Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon HONG KONG Tel: (+852) 2245-6100 Fax: (+852) 2722-1369

Atmel Munich GmbH Business Campus Parkring 4 D-85748 Garching b. Munich GERMANY Tel: (+49) 89-31970-0 Fax: (+49) 89-3194621 Atmel Japan

16F, Shin Osaki Kangyo Bldg. 1-6-4 Osaka Shinagawa-ku Tokyo 104-0032 JAPAN Tel: (+81) 3-6417-0300 Fax: (+81) 3-6417-0370

© 2013 Atmel Corporation. All rights reserved.

Atmel[®], Atmel logo and combinations thereof, picoPower[®], Adjacent Key Suppression[®], AKS[®], Qtouch[®], and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. ARM[®], AMBA[®], Thumb[®], Cortex[™] are registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.