

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	48
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.68V ~ 3.6V
Data Converters	A/D 7x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-XFBGA, WLCSP
Supplier Device Package	64-WLCSP (4.31x4.43)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atsam4ls4ba-uur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 3-3. ATSAM4LC WLCSP64 Pinout

- Atmel

11

 Table 3-1.
 100-pin GPIO Controller Function Multiplexing (Sheet 4 of 4)

	ATSAM4LC		ATSAM4LS	Pin	GPIO	Supply			G	PIO Functio	ns		
QFN	VFBGA	QFN	VFBGA				Α	В	С	D	E	F	G
59	J6	59	J6	PC16	80	LCDA	TC1 B0			GLOC IN5		LCDCA SEG1	CATB SENSE17
60	H4	60	H4	PC17	81	LCDA	TC1 A1			GLOC IN6		LCDCA SEG2	CATB SENSE18
61	K6	61	K6	PC18	82	LCDA	TC1 B1			GLOC IN7		LCDCA SEG3	CATB SENSE19
62	G4	62	G4	PC19	83	LCDA	TC1 A2			GLOC OUT1		LCDCA SEG4	CATB SENSE20
68	H7	68	H7	PC20	84	LCDA	TC1 B2					LCDCA SEG10	CATB SENSE21
69	К8	69	K8	PC21	85	LCDA	TC1 CLK0			PARC PCCK		LCDCA SEG11	CATB SENSE22
70	J8	70	J8	PC22	86	LCDA	TC1 CLK1			PARC PCEN1		LCDCA SEG12	CATB SENSE23
71	H8	71	H8	PC23	87	LCDA	TC1 CLK2			PARC PCEN2		LCDCA SEG13	CATB DIS
79	J9	79	1 9	PC24	88	LCDB	USART1 RTS	EIC EXTINT1	PEVC PAD EVT0	PARC PCDATA0		LCDCA SEG24	CATB SENSE24
80	H9	80	H9	PC25	89	LCDB	USART1 CLK	EIC EXTINT2	PEVC PAD EVT1	PARC PCDATA1		LCDCA SEG25	CATB SENSE25
81	G9	81	G9	PC26	90	LCDB	USART1 RXD	EIC EXTINT3	PEVC PAD EVT2	PARC PCDATA2	SCIF GCLK0	LCDCA SEG26	CATB SENSE26
82	F6	82	F6	PC27	91	LCDB	USART1 TXD	EIC EXTINT4	PEVC PAD EVT3	PARC PCDATA3	SCIF GCLK1	LCDCA SEG27	CATB SENSE27
83	G10	83	G10	PC28	92	LCDB	USART3 RXD	SPI MISO	GLOC IN4	PARC PCDATA4	SCIF GCLK2	LCDCA SEG28	CATB SENSE28
84	F7	84	F7	PC29	93	LCDB	USART3 TXD	SPI MOSI	GLOC IN5	PARC PCDATA5	SCIF GCLK3	LCDCA SEG29	CATB SENSE29
85	F8	85	F8	PC30	94	LCDB	USART3 RTS	SPI SCK	GLOC IN6	PARC PCDATA6	SCIF GCLK IN0	LCDCA SEG30	CATB SENSE30
86	F9	86	F9	PC31	95	LCDB	USART3 CLK	SPI NPCS0	GLOC OUT1	PARC PCDATA7	SCIF GCLK IN1	LCDCA SEG31	CATB SENSE31

Table 3-2. 64-pin GPIO Controller Function Multiplexing (Sheet 1 of 3)

ATSAM4LC	ATSAM4LS	Pin	GPIO	Alddu			G	PIO Functio	ns		
QFP	QFP			S							
QFN	QFN				Α	В	С	D	E	F	G
1	1	PA00	0	VDDIO							
2	2	PA01	1	VDDIO							
					SCIF	SPI					CATB
3	3	PA02	2	VDDIN	GCLK0	NPCS0					DIS
10	10	PA03	3	VDDIN		SPI MISO					

3.3 Signals Description

The following table gives details on signal names classified by peripheral.

 Table 3-8.
 Signal Descriptions List (Sheet 1 of 4)

Signal Name	Function	Туре	Active Level	Comments
	Audio Bitstream DA	C - ABDACB	•	
CLK	D/A clock output	Output		
DAC1 - DAC0	D/A bitstream outputs	Output		
DACN1 - DACN0	D/A inverted bitstream outputs	Output		
	Analog Comparator Int	erface - ACIF	FC	
ACAN1 - ACAN0	Analog Comparator A negative references	Analog		
ACAP1 - ACAP0	Analog Comparator A positive references	Analog		
ACBN1 - ACBN0	Analog Comparator B negative references	Analog		
ACBP1 - ACBP0	Analog Comparator B positive references	Analog		
	ADC controller interf	ace - ADCIFE		
AD14 - AD0	Analog inputs	Analog		
ADVREFP	Positive voltage reference	Analog		
TRIGGER	External trigger	Input		
	Backup System Control	Interface - BS	SCIF	
XIN32	32 kHz Crystal Oscillator Input	Analog/ Digital		
XOUT32	32 kHz Crystal Oscillator Output	Analog		
	Capacitive Touch Mod	dule B - CATE	3	
DIS	Capacitive discharge line	Output		
SENSE31 - SENSE0	Capacitive sense lines	I/O		
	DAC Controller	- DACC		
DAC external trigger	DAC external trigger	Input		
DAC voltage output	DAC voltage output	Analog		
	Enhanced Debug Port For A	RM Product	s - EDP	
TCK/SWCLK	JTAG / SW Debug Clock	Input		
TDI	JTAG Debug Data In	Input		
TDO/TRACESWO	JTAG Debug Data Out / SW Trace Out	Output		
TMS/SWDIO	JTAG Debug Mode Select / SW Data	I/O		
	External Interrupt Co	ntroller - EIC		
EXTINT8 - EXTINT0	External interrupts	Input		
	Glue Logic Control	ller - GLOC		
IN7 - IN0	Lookup Tables Inputs	Input		
OUT1 - OUT0	Lookup Tables Outputs	Output		

Momony	Start Address	Size
Memory		ATSAM4Lx8
AESA	0x400B0000	256 bytes
Peripheral Bridge C	0x400E0000	64Kbytes
Peripheral Bridge D	0x400F0000	64Kbytes

Table 5-2.Flash Memory Parameters

Device	Flash Size (<i>FLASH_PW</i>)	Number of Pages (<i>FLASH_P</i>)	Page Size (FLASH_W)
ATSAM4Lx8	512Kbytes	1024	512 bytes
ATSAM4Lx4	256Kbytes	512	512 bytes
ATSAM4Lx2	128Kbytes	256	512 bytes

6.2.2 Typical Powering Schematics

The ATSAM4L8/L4/L2 supports the Single supply mode from 1.68V to 3.6V. Depending on the input voltage range and on the final application frequency, it is recommended to use the following table in order to choose the most efficient power strategy

			VDDIN	I Voltage)
	1.68V 1.8	30V 2.0	00V 2	.30V	3.60V
Switching Mode (BUCK/LDOn (PA02) =1)	N.	Ά	Possible but not efficient	C	Optimal power efficiency
Linear Mode (BUCK/LDOn (PA02) =0)	Optin	nal power e	efficiency	F	Possible but not efficient
F _{CPUMAX}	12MHz		և Լ Լ	Ip to 36MH Ip to 12MH Ip to 48MH	Hz In PS0 Hz in PS1 Hz in PS2
PowerScaling	PS1 ⁽¹⁾			AL	L
Typical power consumption in RUN mode	א 212µA/MI א 306µA/MI	Hz @ F _{CPU} =12M Hz @ F _{CPU} = 48N	IHz(PS1) /IHz(PS2)	א 100µA א 180µA	VMHz @ F _{CPU} =12MHz(PS1) @ V _{VDDIN} =3.3V VMHz @ F _{CPU} =48MHz(PS2) @ V _{VDDIN} =3.3V
Typical power consumption in RET mode			1	.5µA	

Figure 6-3. Efficient power strategy:

Note 1. The SAM4L boots in PS0 on RCSYS(115kHz), then the application must switch to PS1 before running on higher frequency (<12MHz)

8.11 Functional Description

8.11.1 Debug Environment

Figure 8-8 shows a complete debug environment example. The SWJ-DP interface is used for standard debugging functions, such as downloading code and single-stepping through the program and viewing core and peripheral registers.

8.11.2 Test Environment

Figure 8-9 shows a test environment example (JTAG Boundary scan). Test vectors are sent and interpreted by the tester. In this example, the "board in test" is designed using a number of JTAG-compliant devices. These devices can be connected to form a single scan chain.

9.4 Maximum Clock Frequencies

Symbol	Parameter	Description	Мах	Units
f _{CPU}	CPU clock frequency		48	
f _{PBA}	PBA clock frequency		48	
f _{PBB}	PBB clock frequency		48	
f _{PBC}	PBC clock frequency		48	
f _{PBD}	PBD clock frequency		48	
f _{GCLK0}	GCLK0 clock frequency	DFLLIF main reference, GCLK0 pin	50	
f _{GCLK1}	GCLK1 clock frequency	DFLLIF dithering and SSG reference, GCLK1 pin	50	-
f _{GCLK2}	GCLK2 clock frequency	AST, GCLK2 pin	20	
f _{GCLK3}	GCLK3 clock frequency	CATB, GCLK3 pin	50	
f _{GCLK4}	GCLK4 clock frequency	FLO and AESA	50	
f _{GCLK5}	GCLK5 clock frequency	GLOC, TC0 and RC32KIFB_REF	80	
f _{GCLK6}	GCLK6 clock frequency	ABDACB and IISC	50	MHz
f _{GCLK7}	GCLK7 clock frequency	USBC	50	
f _{GCLK8}	GCLK8 clock frequency	TC1 and PEVC[0]	50	
f _{GCLK9}	GCLK9 clock frequency	PLL0 and PEVC[1]	50	
f _{GCLK10}	GCLK10 clock frequency	ADCIFE	50	-
f _{GCLK11}	GCLK11 clock frequency	Master generic clock. Can be used as source for other generic clocks	150	
	0000 1 11	Oscillator 0 in crystal mode	30	
T _{OSC0}	OSCO output frequency	Oscillator 0 in digital clock mode	50	
f _{PLL}	PLL output frequency	Phase Locked Loop	240	
f _{DFLL}	DFLL output frequency	Digital Frequency Locked Loop	220	
f _{RC80M}	RC80M output frequency	Internal 80MHz RC Oscillator	80	

 Table 9-4.
 Maximum Clock Frequencies in Power Scaling Mode 0/2 and RUN Mode

Mode	Conditions	T _A	Typical Wakeup Time	Тур	Max ⁽¹⁾	Unit
	Switching mode	25°C	9 * Main clock	3817	4033	
SLEEPU	Switching mode	85°C	cycles	3934	4174	*
SLEEP1	Switching mode	25°C	9 * Main clock	2341	2477	
	Switching mode	85°C	cycles + 500ns	2437	2585	
	Switching mode	25°C	9 * Main clock	1758	1862	*
SLEEP2	Switching mode	85°C	cycles + 500ns	1847	1971	
SLEEP3	Linear mode			51	60	
	OSC32K and AST running Fast wake-up enable		4.5	5.9	8.7	μA
WAII	OSC32K and AST stopped Fast wake-up enable		1.5µS	4.7	7.6	
RETENTION	OSC32K running AST running at 1kHz	25°C	1.5µs	3.1	5.1	
	AST and OSC32K stopped			2.2	4.2	*
BACKUP	OSC32K running AST running at 1kHz			1.5	3.1	
	AST and OSC32K stopped			0.9	1.7	

 Table 9-6.
 ATSAM4L4/2 Current consumption and Wakeup time for power scaling mode 0 and 2

1. These values are based on characterization. These values are not covered by test limits in production.

	Table 9-7.	ATSAM4L8 Current consum	ption and Wakeup time for	or power scaling mode 0 and 2
--	------------	-------------------------	---------------------------	-------------------------------

Mode	Conditions	T _A	Typical Wakeup Time	Тур	Max ⁽¹⁾	Unit
	CPU running a Fibonacci algorithm	25°C	NI/A	319	343	
RUN	Linear mode	85°C	IN/A	326	350	
	CPU running a CoreMark algorithm Linear mode	25°C	N/A	343	387	
		85°C		351	416	
	CPU running a Fibonacci algorithm Switching mode	25°C	N/A	181	198	μΑνινιπΖ
		85°C		186	203	
	CPU running a CoreMark algorithm	25°C	N/A	192	232	
	Switching mode	85°C		202	239	

- Atmel

Symbol	Parameter	Conditions		Min	Тур	Max	Units
	Rise time ⁽²⁾	OSRR0=0	ODCR0=0		18		
t _{RISE}		OSRR0=1	1.68V <v<sub>VDD<2.7V, Cload = 25pF</v<sub>		110		ns
		OSRR0=0	ODCR0=0		10		
		OSRR0=1	2.7V <v<sub>VDD<3.6V, Cload = 25pF</v<sub>		50		ns
	Fall time ⁽²⁾	OSRR0=0	ODCR0=0		19		
		OSRR0=1	1.68V <v<sub>VDD<2.7V, Cload = 25pF</v<sub>		140		ns
		OSRR0=0	ODCR0=0		12		
		OSRR0=1	2.7V <v<sub>VDD<3.6V, Cload = 25pF</v<sub>		63		ns

 Table 9-17.
 TWI Pin Characteristics in GPIO configuration ⁽¹⁾

1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO}, depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

2. These values are based on simulation. These values are not covered by test limits in production or characterization

3. These values are based on characterization. These values are not covered by test limits in production

Table 9-18. Common TWI Pin Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{LEAK}	Input leakage current (1)	Pull-up resistors disabled		0.01	1	μA
C _{IN}	Input capacitance ⁽²⁾			5		pF

1. These values are based on simulation. These values are not covered by test limits in production or characterization

9.6.5

9.6.5 High Drive TWI Pin : PB00, PB01 Table 9-19. High Drive TWI Pin Characteristics in TWI configuration ⁽¹⁾

Symbol	Parameter	Conditions		Min	Тур	Мах	Units
R _{PULLUP}	Pull-up resistance (2)	PB00, PB01			40		kΩ
R _{PULLDOWN}	Pull-down resistance ⁽²⁾				40		kΩ
V _{IL}	Input low-level voltage			-0.3		0.3 * V _{VDD}	
V _{IH}	Input high-level voltage			0.7 * V _{VDD}		V _{VDD} + 0.3	Ň
V _{OL}	Output low-level voltage					0.4	V
V _{OH}	Output high-level voltage			V _{VDD} - 0.4			
		DRIVEL=0				0.5	
		DRIVEL=1				1.0	
		DRIVEL=2				1.6	
	Output low lovel surrest (3)	DRIVEL=3				3.1	
IOL	Output low-level current (*)	DRIVEL=4				6.2	mA
		DRIVEL=5				9.3	
		DRIVEL=6				15.5	
		DRIVEL=7				21.8	
		DRIVEH=0			0.5		
	Current Source ⁽²⁾	DRIVEH=1			1		mA
ICS		DRIVEH=2			1.5		
		DRIVEH=3			3		
f _{MAX}	Max frequency ⁽²⁾	HsMode with DRIVEx=3, S	Current source; SLEW=0	3.5	6.4		MHz
		HeMode Mod	$h_{\rm DRIVE_{Y-3}SIEW-0}$				
t _{RISE}	Rise time ⁽²⁾	Cbus = $400p$ V _{VDD} = $1.68V$	F, Rp = 440Ohm,		28	38	ns
+	Fall time ⁽²⁾	Standard Mod Cbus = 400p V _{VDD} = 1.68 V	de, DRIVEx=3, SLEW=0 F, Rp = 440Ohm, /		50	95	
t _{FALL}		HsMode Mod Cbus = 400p V _{VDD} = 1.68V	le, DRIVEx=3, SLEW=0 F, Rp = 440Ohm, /		50	95	115

1. V_{VDD} corresponds to either V_{VDDIN} or V_{VDDIO} , depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

2. These values are based on simulation. These values are not covered by test limits in production or characterization

3. These values are based on characterization. These values are not covered by test limits in production

9.7 Oscillator Characteristics

9.7.1 Oscillator 0 (OSC0) Characteristics

9.7.1.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN.

Table 9-22. Digital Clock Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
f _{CPXIN}	XIN clock frequency (1)				50	MHz
t _{CPXIN}	XIN clock duty cycle ⁽¹⁾		40		60	%
t _{STARTUP}	Startup time			N/A		cycles

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

9.7.1.2 Crystal Oscillator Characteristics

The following table describes the characteristics for the oscillator when a crystal is connected between XIN and XOUT as shown in Figure 9-3. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can be found in the crystal datasheet. The capacitance of the external capacitors (C_{LEXT}) can then be computed as follows:

$$C_{LEXT} = 2(C_{L} - C_{STRAY} - C_{SHUNT})$$

where C_{STRAY} is the capacitance of the pins and PCB, C_{SHUNT} is the shunt capacitance of the crystal.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{OUT}	Crystal oscillator frequency (1)		0.6		30	MHz	
ESR		$f = 0.455 MHz$, $C_{LEXT} = 100 pF$ SCIF.OSCCTRL.GAIN = 0			17000	0	
	Crystal Equivalent Series Resistance ⁽²⁾	$f = 2MHz, C_{LEXT} = 20pF$ SCIF.OSCCTRL.GAIN = 0			2000		
		$f = 4MHz, C_{LEXT} = 20pF$ SCIF.OSCCTRL.GAIN = 1			1500		
		f = 8MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 2			300	52	
		f = 16MHz, C _{LEXT} = 20pF SCIF.OSCCTRL.GAIN = 3			350		
		$f = 30MHz, C_{LEXT} = 18pF$ SCIF.OSCCTRL.GAIN = 4			45		

Table 9-23.	Crystal Oscillator Characteristics

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
N _{FARRAY}	Array endurance (write/page)	f _{CLK_AHB} > 10MHz	100k			avalaa
N _{FFUSE}	General Purpose fuses endurance (write/bit)	f _{CLK_AHB} > 10MHz	10k			cycles
t _{RET}	Data retention		15			years

 Table 9-35.
 Flash Endurance and Data Retention⁽¹⁾

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

9.10.3 SPI Timing

9.10.3.1 Master mode

Figure 9-12. SPI Master Mode with (CPOL= NCPHA= 0) or (CPOL= NCPHA= 1)

Table 9-62.	SPI Timing, Master Mode ⁽	1)
-------------	--------------------------------------	----

Symbol	Parameter	Conditions	Min	Max	Units
SPI0	MISO setup time before SPCK rises	V _{VDDIO} from 2.85V to 3.6V, maximum	9		
SPI1	MISO hold time after SPCK rises		0		
SPI2	SPCK rising to MOSI delay		9	21	
SPI3	MISO setup time before SPCK falls	external	7.3		ns
SPI4	MISO hold time after SPCK falls	40pF	0		
SPI5	SPCK falling to MOSI delay	1	9	22	

Atmel

Note: 1. These values are based on simulation. These values are not covered by test limits in production.

Maximum SPI Frequency, Master Output

Figure 9-16. SPI Slave Mode, NPCS Timing

Table 9-63. SPI Timing, Slave Mode⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Units
SPI6	SPCK falling to MISO delay		19	47	
SPI7	MOSI setup time before SPCK rises		0		_
SPI8	MOSI hold time after SPCK rises		5.4		_
SPI9	SPCK rising to MISO delay	V _{VDDIO} from	19	46	_
SPI10	MOSI setup time before SPCK falls	K falls 2.85V to 3.6V, maximum	0		
SPI11	MOSI hold time after SPCK falls	external	5.3		ns
SPI12	NPCS setup time before SPCK rises	40pF	4		_
SPI13	NPCS hold time after SPCK falls		2.5		
SPI14	NPCS setup time before SPCK falls		6		_
SPI15	NPCS hold time after SPCK rises		1.1		

Note: 1. These values are based on simulation. These values are not covered by test limits in production.

Maximum SPI Frequency, Slave Input Mode

The maximum SPI slave input frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{CLKSPI}, \frac{1}{SPIn})$$

Where *SPIn* is the MOSI setup and hold time, SPI7 + SPI8 or SPI10 + SPI11 depending on CPOL and NCPHA. f_{CLKSPI} is the maximum frequency of the CLK_SPI. Refer to the SPI chapter for a description of this clock.

Maximum SPI Frequency, Slave Output Mode

The maximum SPI slave output frequency is given by the following formula:

$$f_{SPCKMAX} = MIN(f_{PINMAX}, \frac{1}{SPIn + t_{SETUP}})$$

COMMON DIMENSIONS (Unit of Measure = mm)

BALL	SIGNAL	X COORD	Y COORD
A1	PB04	1.746	1.683
A2	GNDANA	1.246	1.683
A3	ADVREFP	0.746	1.683
A4	VDDANA	0.246	1.683
A5	PA09	-0.254	1.683
A6	PA28	-0.754	1.683
A7	PA27	-1.254	1.683
A8	PA12	-1.754	1.683
B1	PB03	1.746	1.183
B2	XIN32	1.246	1.183
B3	XOUT32	0.746	1.183
B4	PA08	0.246	1.183
B5	PB06	-0.254	1.183
B6	PA10	-0.754	1.183
B7	PA11	-1.254	1.183
B8	PA29	-1.754	1.183
C1	VDDIN	1.746	0.683
C2	PB01	1.246	0.683
C3	PA05	0.746	0.683
C4	PA06	0.246	0.683
C5	PA07	-0.254	0.683
C6	PB07	-0.754	0.683

 SIGNAL
 X COORD
 Y COORD

 PA13
 -1.254
 0.683

 GNDIO0
 -1.754
 0.683

 VDDOUT
 1.746
 0.183

 PB00
 1.246
 0.183

 PA00
 1.246
 0.183
 CE DI D 0.746 D PA04 0.18 PB05 0.1 PB12 PB08 PA14 VLCDIN GNDIN D5 D6 -0.254 0.18 -1.254 D7 D8 0.1 1 746 E1 E2 E3 PA03 PB02 RESET_N PB13 PB09 PA15 1.246 0.746 0.246 -0.254 E4 E5 -0 E6 F7 0.254 -0.754 -1.254 -1.754 1.746 PA30 VDDCORE TCK E8 -0.317 -0.81 .246 -0.8 PA02 PB14 F3 F4 0.746

BALL	SIGNAL	X COORD	Y COORD
F5	PA22	-0.254	-0.817
F6	PB10	-0.754	-0.817
F7	PA16	-1.254	-0.817
F8	PA31	-1.754	-0.817
G1	GNDIO1	1.746	-1.317
G2	PA26	1.246	-1.317
G3	PA24	0.746	-1.317
G4	PA00	0.246	-1.317
G5	PA01	-0.254	-1.317
G6	PA19	-0.754	-1.317
G7	PA18	-1.254	-1.317
G8	PA17	-1.754	-1.317
H1	VDDI01	1.746	-1.817
H2	PA25	1.246	-1.817
H3	PA23	0.746	-1.817
H4	PB15	0.246	-1.817
H5	PA21	-0.254	-1.817
H6	VDDI00	-0.754	-1.817
H7	PA20	-1.254	-1.817
H8	PB11	-1.754	-1.817

Notes : 1. Dimension "b" is measured at the maximum ball diameter in a plane to the seating plane.

2. Applied to whole wafer.

Table 10-11. Device and Package Maximum Weight

14.8	mg	
Table 10-12. Package Characteristics		
Moisture Sensitivity Level	MSL3	

Table 10-13. Package Reference

JEDEC Drawing Reference	MS-026		
JESD97 Classification	E1		

Figure 10-11. QFN-48 Package Drawing for ATSAM4LC8 and ATSAM4LS8

Note: The exposed pad is not connected to anything internally, but should be soldered to ground to increase board level reliability.

Table 10-32	Device and Package I	Maximum	Weight
	Device and Lackage I	Maximum	VVEIGII

140	mg

Table 10-33. Package Characteristics

|--|

Table 10-34. Package Reference

JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

10.3 Soldering Profile

Table 10-35 gives the recommended soldering profile from J-STD-20.

Table	10-35.	Soldering	Profile

Profile Feature	Green Package
Average Ramp-up Rate (217°C to Peak)	3°C/s max
Preheat Temperature 175°C ±25°C	150-200°C
Time Maintained Above 217°C	60-150 s
Time within 5.C of Actual Peak Temperature	30 s
Peak Temperature Range	260°C
Ramp-down Rate	6°C/s max
Time 25 C to Peak Temperature	8 minutes max

A maximum of three reflow passes is allowed per component.

Table 11-5.	ATSAM4LS4 Sub Serie Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range
ATSAM4LS4CA-AU-ES				ES		N/A
ATSAM4LS4CA-AU			TQFP100	Tray		
ATSAM4LS4CA-AUR				Reel		
ATSAM4LS4CA-CFU				Tray		
ATSAM4LS4CA-CFUR			VFBGA100	Reel		Industrial -40°C to 85°C
ATSAM4LS4BA-AU-ES				ES	Green	N/A
ATSAM4LS4BA-AU			TQFP64	Tray		Industrial -40°C to 85°C
ATSAM4LS4BA-AUR	256	32		Reel		
ATSAM4LS4BA-MU-ES			QFN64	ES		N/A
ATSAM4LS4BA-MU				Tray		Industrial 40%C to 05%C
ATSAM4LS4BA-MUR				Reel		
ATSAM4LS4BA-UUR			WLCSP64	Reel		Industrial -40°C to 85°C
ATSAM4LS4AA-AU-ES	-		TQFP48	ES		N/A
ATSAM4LS4AA-AU				Tray		
ATSAM4LS4AA-AUR				Reel		
ATSAM4LS4AA-MU-ES			QFN48	ES		N/A
ATSAM4LS4AA-MU				Tray		
ATSAM4LS4AA-MUR				Reel		

Table 11-6. ATSAM4LS2 Sub Serie Ordering Information

Ordering Code	Flash (Kbytes)	RAM (Kbytes)	Package	Conditioning	Package Type	Temperature Operating Range
ATSAM4LS2CA-AU			TQFP100	Tray		
ATSAM4LS2CA-AUR				Reel		
ATSAM4LS2CA-CFU				Tray		
ATSAM4LS2CA-CFUR		32	VFDGATUU	Reel	Green	Industrial -40°C to 85°C
ATSAM4LS2BA-AU	128		TQFP64	Tray		
ATSAM4LS2BA-AUR				Reel		
ATSAM4LS2BA-MU			QFN64	Tray		
ATSAM4LS2BA-MUR				Reel		
ATSAM4LS2BA-UUR			WLCSP64	Reel		
ATSAM4LS2AA-AU			TQFP48	Tray		
ATSAM4LS2AA-AUR				Reel		
ATSAM4LS2AA-MU			QFN48	Tray		
ATSAM4LS2AA-MUR				Reel		

12. Errata

12.1 ATSAM4L4 /2 Rev. B & ATSAM4L8 Rev. A

12.1.1	General	
		 PS2 mode is not supported by Engineering Samples PS2 mode support is supported only by parts with calibration version higher than 0. Fix/Workaround The calibration version can be checked by reading a 32-bit word at address 0x0080020C. The calibration version bitfield is 4-bit wide and located from bit 4 to bit 7 in this word. Any value higher than 0 ensures that the part supports the PS2 mode
12.1.2	SCIF	
		 PLLCOUNT value larger than zero can cause PLLEN glitch Initializing the PLLCOUNT with a value greater than zero creates a glitch on the PLLEN signal during asynchronous wake up. Fix/Workaround The lock-masking mechanism for the PLL should not be used. The PLLCOUNT field of the PLL Control Register should always be written to zero.
12.1.3	WDT	
		WDT Control Register does not have synchronization feedback When writing to the Timeout Prescale Select (PSEL), Time Ban Prescale Select (TBAN), Enable (EN), or WDT Mode (MODE) fieldss of the WDT Control Register (CTRL), a synchro- nizer is started to propagate the values to the WDT clcok domain. This synchronization takes a finite amount of time, but only the status of the synchronization of the EN bit is reflected back to the user. Writing to the synchronized fields during synchronization can lead to undefined behavior. Fix/Workaround -When writing to the affected fields, the user must ensure a wait corresponding to 2 clock cycles of both the WDT peripheral bus clock and the selected WDT clock source. -When doing writes that changes the EN bit, the EN bit can be read back until it reflects the written value.
12.1.4	SPI	
		SPI data transfer hangs with CSR0.CSAAT==1 and MR.MODFDIS==0 When CSR0.CSAAT==1 and mode fault detection is enabled (MR.MODFDIS==0), the SPI module will not start a data transfer. Fix/Workaround Disable mode fault detection by writing a one to MR.MODFDIS. SPI disable does not work in SLAVE mode SPI disable does not work in SLAVE mode.

13. Datasheet Revision History

Note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

13.1 Rev. A - 09/12

1. Initial revision.

13.2 Rev. B - 10/12

- 1. Fixed ordering code
- 2. Changed BOD18CTRL and BOD33CTRL ACTION field from "Reserved" to 'No action"

13.3 Rev. C – 02/13

- 1. Fixed ball pitch for VFBGA100 package
- 2. Added VFBGA100 and WLCSP64 pinouts
- 3. Added Power Scaling Mode 2 for high frequency support
- 4. Minor update on several modules chapters
- 5. Major update on Electrical characteristics
- 6. Updated errata
- 7. Fixed GPIO multiplexing pin numbers

13.4 Rev. D - 03/13

- 1. Removed WLCSP package information
- 2. Added errata text for detecting whether a part supports PS2 mode or not
- 3. Removed temperature sensor feature (not supported by production flow)
- 4. Fixed MUX selection on Positive ADC input channel table

- 5. Added information about TWI instances capabilities
- 6. Added some details on errata Corrupted data in flash may happen after flash page write operations.171