



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                                           |
| Core Size                  | 32-Bit Single-Core                                                        |
| Speed                      | 48MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART, USB                      |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT              |
| Number of I/O              | 27                                                                        |
| Program Memory Size        | 512KB (512K x 8)                                                          |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 64K x 8                                                                   |
| Voltage - Supply (Vcc/Vdd) | 1.68V ~ 3.6V                                                              |
| Data Converters            | A/D 3x12b; D/A 1x10b                                                      |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 48-VFQFN Exposed Pad                                                      |
| Supplier Device Package    | 48-QFN (7x7)                                                              |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsam4ls8aa-mur |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- Atmel



15

| ATSAM4LC | ATSAM4LS | Pin  | GPIO | Supply |               |              | GI               | PIO Functio | ns               |                |                |
|----------|----------|------|------|--------|---------------|--------------|------------------|-------------|------------------|----------------|----------------|
| WLCSP    | WLCSP    |      |      |        | Α             | В            | С                | D           | E                | F              | G              |
| E5       | E5       | PB13 | 45   | LCDC   | USART0<br>CLK | SPI<br>NPCS1 | PEVC<br>PAD EVT1 | TC0<br>CLK0 | SCIF<br>GCLK3    | LCDCA<br>SEG33 | CATB<br>SENSE0 |
| F4       | F4       | PB14 | 46   | LCDC   | USART0<br>RXD | SPI<br>MISO  | TWIM3<br>TWD     | TC0<br>CLK1 | SCIF<br>GCLK IN0 | LCDCA<br>SEG36 | CATB<br>SENSE1 |
| H4       | H4       | PB15 | 47   | LCDC   | USART0<br>TXD | SPI<br>MOSI  | TWIM3<br>TWCK    | TC0<br>CLK2 | SCIF<br>GCLK IN1 | LCDCA<br>SEG37 | CATB<br>SENSE2 |

 Table 3-3.
 64-pin GPIO Controller Function Multiplexing for WLCSP package (Sheet 3 of 3)



## 3.4.7 ADC Input Pins

These pins are regular I/O pins powered from the VDDANA.

### 4.4 Cortex-M4 processor features and benefits summary

- · tight integration of system peripherals reduces area and development costs
- · Thumb instruction set combines high code density with 32-bit performance
- code-patch ability for ROM system updates
- · power control optimization of system components
- integrated sleep modes for low power consumption
- fast code execution permits slower processor clock or increases sleep mode time
- hardware division and fast digital-signal-processing orientated multiply accumulate
- · saturating arithmetic for signal processing
- · deterministic, high-performance interrupt handling for time-critical applications
- memory protection unit (MPU) for safety-critical applications
- extensive debug and trace capabilities:
  - Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging, tracing, and code profiling.

#### 4.5 Cortex-M4 core peripherals

These are:

Nested Vectored Interrupt Controller

The NVIC is an embedded interrupt controller that supports low latency interrupt processing.

System control block

The System control block (SCB) is the programmers model interface to the processor. It provides system implementation information and system control, including configuration, control, and reporting of system exceptions.

#### System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time Operating System (RTOS) tick timer or as a simple counter.

Memory protection unit

The *Memory protection unit* (MPU) improves system reliability by defining the memory attributes for different memory regions. It provides up to eight different regions, and an optional predefined background region.

The complete Cortex-M4 User Guide can be found on the ARM web site:

http://infocenter.arm.com/help/topic/com.arm.doc.dui0553a/DUI0553A cortex m4 dgug.pdf

| Line | Module                                  | Signal       |
|------|-----------------------------------------|--------------|
| 12   | Peripheral DMA Controller               | PDCA 11      |
| 13   | Peripheral DMA Controller               | PDCA 12      |
| 14   | Peripheral DMA Controller               | PDCA 13      |
| 15   | Peripheral DMA Controller               | PDCA 14      |
| 16   | Peripheral DMA Controller               | PDCA 15      |
| 17   | CRC Calculation Unit                    | CRCCU        |
| 18   | USB 2.0 Interface                       | USBC         |
| 19   | Peripheral Event Controller             | PEVC TR      |
| 20   | Peripheral Event Controller             | PEVC OV      |
| 21   | Advanced Encryption Standard            | AESA         |
| 22   | Power Manager                           | PM           |
| 23   | System Control Interface                | SCIF         |
| 24   | Frequency Meter                         | FREQM        |
| 25   | General-Purpose Input/Output Controller | GPIO 0       |
| 26   | General-Purpose Input/Output Controller | GPIO 1       |
| 27   | General-Purpose Input/Output Controller | GPIO 2       |
| 28   | General-Purpose Input/Output Controller | GPIO 3       |
| 29   | General-Purpose Input/Output Controller | GPIO 4       |
| 30   | General-Purpose Input/Output Controller | GPIO 5       |
| 31   | General-Purpose Input/Output Controller | GPIO 6       |
| 32   | General-Purpose Input/Output Controller | GPIO 7       |
| 33   | General-Purpose Input/Output Controller | GPIO 8       |
| 34   | General-Purpose Input/Output Controller | GPIO 9       |
| 35   | General-Purpose Input/Output Controller | GPIO 10      |
| 36   | General-Purpose Input/Output Controller | GPIO 11      |
| 37   | Backup Power Manager                    | BPM          |
| 38   | Backup System Control Interface         | BSCIF        |
| 39   | Asynchronous Timer                      | AST ALARM    |
| 40   | Asynchronous Timer                      | AST PER      |
| 41   | Asynchronous Timer                      | AST OVF      |
| 42   | Asynchronous Timer                      | AST READY    |
| 43   | Asynchronous Timer                      | AST CLKREADY |
| 44   | Watchdog Timer                          | WDT          |
| 45   | External Interrupt Controller           | EIC 1        |
| 46   | External Interrupt Controller           | EIC 2        |
| 47   | External Interrupt Controller           | EIC 3        |

 Table 4-2.
 Interrupt Request Signal Map (Sheet 2 of 3)



## 5. Memories

## 5.1 Product Mapping

## Figure 5-1. ATSAM4L8/L4/L2 Product Mapping



System Controller

### 8.7.5 Product Dependencies

#### 8.7.5.1 I/O Lines

The TCK pin is dedicated to the EDP. The other debug port pins default after reset to their GPIO functionality and are automatically reassigned to the JTAG functionalities on detection of a debugger. In serial wire mode, TDI and TDO can be used as GPIO functions. Note that in serial wire mode TDO can be used as a single pin trace output.

#### 8.7.5.2 Power Management

When a debugger is present, the connection is kept alive allowing debug operations. As a side effect, the power is never turned off. The hot plugging functionality is always available except when the system is in BACKUP Power Save Mode.

#### 8.7.5.3 Clocks

The SWJ-DP uses the external TCK pin as its clock source. This clock must be provided by the external JTAG master device.

Some of the JTAG Instructions are used to access an Access Port (SMAP or AHB-AP). These instructions require the CPU clock to be running.

If the CPU clock is not present because the CPU is in a Power Save Mode where this clock is not provided, the Power Manager(PM) will automatically restore the CPU clock on detection of a debug access.

The RCSYS clock is used as CPU clock when the external reset is applied to ensure correct Access Port operations.

#### 8.7.6 Module Initialization

This module is enabled as soon as a TCK falling edge is detected when RESET\_N is not asserted (refer to Section 8.7.7 below). Moreover, the module is synchronously reseted as long as the TAP machine is in the TEST\_LOGIC\_RESET (TLR) state. It is advised asserting TMS at least 5 TCK clock periods after the debugger has been detected to ensure the module is in the TLR state prior to any operation. This module also has the ability to maintain the Cortex-M4 under reset (refer to the Section 8.7.8 "SMAP Core Reset Request Source" on page 70).

### 8.7.7 Debugger Hot Plugging

The TCK pin is dedicated to the EDP. After reset has been released, the EDP detects that a debugger has been attached when a TCK falling edge arises.

Figure 8-4. Debugger Hot Plugging Detection Timings Diagram



The Debug Port pins assignation is then forced to the EDP function even if they were already assigned to another module. This allows to connect a debugger at any time without reseting the device. The connection is non-intrusive meaning that the chip will continue its execution without being disturbed. The CPU can of course be halted later on by issuing Cortex-M4 OCD features.

#### 8.7.8 SMAP Core Reset Request Source

The EDP has the ability to send a request to the SMAP for a Cortex-M4 Core reset. The procedure to do so is to hold TCK low until RESET\_N is released. This mechanism aims at halting the CPU to prevent it from changing the system configuration while the SMAP is operating.

### Figure 8-5. SMAP Core Reset Request Timings Diagram



The SMAP can de-assert the core reset request for this operation, refer to Section 2.8.8 "Cortex-M4 Core Reset Source" on page 57.

### 8.7.9 SWJ-DP

The Cortex-M4 embeds a SWJ-DP Debug port which is the standard CoreSight<sup>™</sup> debug port. It combines Serial Wire Debug Port (SW-DP), from 2 to 3 pins and JTAG debug Port(JTAG-DP), 5 pins.

By default, the JTAG Debug Port is active. If the host debugger wants to switch to the Serial Wire Debug Port, it must provide a dedicated JTAG sequence on TMS/SWDIO and TCK/SWCLK which disables JTAG-DP and enables SW-DP.

When the EDP has been switched to Serial Wire mode, TDO/TRACESWO can be used for trace (for more information refer to the section below). The asynchronous TRACE output (TRAC-ESWO) is multiplexed with TDO. So the asynchronous trace can only be used with SW-DP, not JTAG-DP.

The SWJ-DP provides access to the AHB-AP and SMAP access ports which have the following APSEL value:

| Acces Port (AP) | APSEL |
|-----------------|-------|
| AHB-AP          | 0     |
| SMAP            | 1     |

Figure 8-6. Access Ports APSEL

Refer to the ARM Debug Interface v5.1 Architecture Specification for more details on SWJ-DP.

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. Return to Run-Test/Idle.
- 5. Select the DR Scan path.
- 6. In Capture-DR: The Data on the external pins are sampled into the boundary-scan chain.
- 7. In Shift-DR: The boundary-scan chain is shifted by the TCK input.
- 8. Return to Run-Test/Idle.

#### Table 8-6. SAMPLE\_PRELOAD Details

| Instructions    | Details                                          |
|-----------------|--------------------------------------------------|
| IR input value  | <b>0001</b> (0x1)                                |
| IR output value | p00s                                             |
| DR Size         | Depending on boundary-scan chain, see BSDL-file. |
| DR input value  | Depending on boundary-scan chain, see BSDL-file. |
| DR output value | Depending on boundary-scan chain, see BSDL-file. |

#### 8.7.14.3 INTEST

This instruction selects the boundary-scan chain as Data Register for testing internal logic in the device. The logic inputs are determined by the boundary-scan chain, and the logic outputs are captured by the boundary-scan chain. The device output pins are driven from the boundary-scan chain.

Starting in Run-Test/Idle, the INTEST instruction is accessed the following way:

- 1. Select the IR Scan path.
- 2. In Capture-IR: The IR output value is latched into the shift register.
- 3. In Shift-IR: The instruction register is shifted by the TCK input.
- 4. In Update-IR: The data from the boundary-scan chain is applied to the internal logic inputs.
- 5. Return to Run-Test/Idle.
- 6. Select the DR Scan path.
- 7. In Capture-DR: The data on the internal logic is sampled into the boundary-scan chain.
- 8. In Shift-DR: The boundary-scan chain is shifted by the TCK input.
- 9. In Update-DR: The data from the boundary-scan chain is applied to internal logic inputs.
- 10. Return to Run-Test/Idle.

#### Table 8-7. INTEST Details

| Instructions    | Details                                          |
|-----------------|--------------------------------------------------|
| IR input value  | <b>0100</b> (0x4)                                |
| IR output value | p001                                             |
| DR Size         | Depending on boundary-scan chain, see BSDL-file. |
| DR input value  | Depending on boundary-scan chain, see BSDL-file. |
| DR output value | Depending on boundary-scan chain, see BSDL-file. |



#### 8.9 System Manager Access Port (SMAP)

Rev.: 1.0.0.0

#### 8.9.1 **Features**

- Chip Erase command and status
- Cortex-M4 core reset source
- 32-bit Cyclic Redundancy check of any memory accessible through the bus matrix
- Unlimited Flash User page read access
- Chip identification register

#### 8.9.2 **Overview**

The SMAP provides memory-related services and also Cortex-M4 core reset control to a debugger through the Debug Port. This makes possible to halt the CPU and program the device after reset.

#### 8.9.3 **Block Diagram**



#### SMAP Block Diagram Figure 8-7.

#### 8.9.4 Initializing the Module

The SMAP can be accessed only if the CPU clock is running and the SWJ-DP has been activated by issuing a CDBGPWRUP request. For more details, refer to the ARM Debug Interface v5.1 Architecture Specification.

Then it must be enabled by writing a one to the EN bit of the CR register (CR.EN) before writing or reading other registers. If the SMAP is not enabled it will discard any read or write operation.

#### Stopping the Module 8.9.5

To stop the module, the user must write a one to the DIS bit of the CR register (CR.DIS). All the user interface and internal registers will be cleared and the internal clock will be stopped.



| 8.9.11.4   | Addres | ss Register |
|------------|--------|-------------|
| Name:      |        | ADDR        |
| Access Ty  | vpe:   | Read/Write  |
| Offset:    |        | 0x0C        |
| Reset Valu | ie:    | 0x00000000  |

| 31 | 30   | 29 | 28 | 27 | 26 | 25 | 24 |
|----|------|----|----|----|----|----|----|
|    |      |    | AD | DR |    |    |    |
|    |      |    |    |    |    |    |    |
| 23 | 22   | 21 | 20 | 19 | 18 | 17 | 16 |
|    |      |    | AD | DR |    |    |    |
|    |      |    |    |    |    |    |    |
| 15 | 14   | 13 | 12 | 11 | 10 | 9  | 8  |
|    |      |    | AD | DR |    |    |    |
|    |      |    |    |    |    |    |    |
| 7  | 6    | 5  | 4  | 3  | 2  | 1  | 0  |
|    | ADDR |    |    |    |    |    | -  |

• ADDR: Address Value

Addess values are always world aligned



| 8.9.11.9<br>Name: | Chip Identification<br>EXID | exilian Extension Register |    |     |    |    |    |  |
|-------------------|-----------------------------|----------------------------|----|-----|----|----|----|--|
| Access Typ        | e: Read-O                   | nly                        |    |     |    |    |    |  |
| Offset: 0xF4      |                             |                            |    |     |    |    |    |  |
| Reset Value       | : -                         |                            |    |     |    |    |    |  |
|                   |                             |                            |    |     |    |    |    |  |
| 31                | 30                          | 29                         | 28 | 27  | 26 | 25 | 24 |  |
|                   |                             |                            | E> | (ID |    |    |    |  |
|                   |                             |                            |    |     |    |    |    |  |
| 23                | 22                          | 21                         | 20 | 19  | 18 | 17 | 16 |  |
|                   |                             |                            | Ε> | KID |    |    |    |  |
|                   |                             |                            |    |     |    |    |    |  |
| 15                | 14                          | 13                         | 12 | 11  | 10 | 9  | 8  |  |
|                   |                             |                            | Ε> | KID |    |    |    |  |
|                   |                             |                            |    |     |    |    |    |  |
| 7                 | 6                           | 5                          | 4  | 3   | 2  | 1  | 0  |  |
|                   |                             |                            | EΣ | KID |    |    |    |  |

Note: Refer to section CHIPID for more information on this register.

Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. The instruction is latched onto the parallel output from the shift register path in the Update-IR state. The Exit-IR, Pause-IR, and Exit2-IR states are only used for navigating the state machine.





#### 8.11.5.2 Scanning in/out data

At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the Shift Data Register - Shift-DR state. While in this state, upload the selected Data Register (selected by the present JTAG instruction in the JTAG Instruction Register) from the TDI input at the rising edge of TCK. In order to remain in the Shift-DR state, the TMS input must be held low. While the Data Register is shifted in from the TDI pin, the parallel inputs to the Data Register captured in the Capture-DR state is shifted out on the TDO pin.

Apply the TMS sequence 1, 1, 0 to re-enter the Run-Test/Idle state. If the selected Data Register has a latched parallel-output, the latching takes place in the Update-DR state. The Exit-DR, Pause-DR, and Exit2-DR states are only used for navigating the state machine.

As shown in the state diagram, the Run-Test/Idle state need not be entered between selecting JTAG instruction and using Data Registers.

#### 8.11.6 Boundary-Scan

The Boundary-Scan chain has the capability of driving and observing the logic levels on the digital I/O pins, as well as the boundary between digital and analog logic for analog circuitry having off-chip connections. At system level, all ICs having JTAG capabilities are connected serially by the TDI/TDO signals to form a long shift register. An external controller sets up the devices to drive values at their output pins, and observe the input values received from other devices. The controller compares the received data with the expected result. In this way, Boundary-Scan provides a mechanism for testing interconnections and integrity of components on Printed Circuits Boards by using the 4 TAP signals only.

The four IEEE 1149.1 defined mandatory JTAG instructions IDCODE, BYPASS, SAMPLE/PRE-LOAD, and EXTEST can be used for testing the Printed Circuit Board. Initial scanning of the data register path will show the ID-code of the device, since IDCODE is the default JTAG instruction. It may be desirable to have the device in reset during test mode. If not reset, inputs to the device may be determined by the scan operations, and the internal software may be in an undetermined state when exiting the test mode. Entering reset, the outputs of any Port Pin will instantly enter the high impedance state, making the HIGHZ instruction redundant. If needed, the BYPASS instruction can be issued to make the shortest possible scan chain through the device. The device can be set in the reset state by pulling the external RESET\_N pin low.

The EXTEST instruction is used for sampling external pins and loading output pins with data. The data from the output latch will be driven out on the pins as soon as the EXTEST instruction is loaded into the JTAG IR-register. Therefore, the SAMPLE/PRELOAD should also be used for setting initial values to the scan ring, to avoid damaging the board when issuing the EXTEST

#### 8.11.8 Chip erase typical procedure

The chip erase operation is triggered by writing a one in the CE bit in the Control Register (CR.CE). This clears first all volatile memories in the system and second the whole flash array. Note that the User page is not erased in this process. To ensure that the chip erase operation is completed, check the DONE bit in the Status Register (SR.DONE). Also note that the chip erase operation depends on clocks and power management features that can be altered by the CPU. It is important to ensure that it is stopped. The recommended sequence is shown below:

- 1. At power up, RESET\_N is driven low by a debugger. The on-chip regulator holds the system in a POR state until the input supply is above the POR threshold. The system continues to be held in this static state until the internally regulated supplies have reached a safe operating.
- PM starts, clocks are switched to the slow clock (Core Clock, System Clock, Flash Clock, and any Bus Clocks that do not have clock gate control). Internal resets are maintained due to the external reset.
  - The debug port and access ports receives a clock and leave the reset state
- 3. The debugger maintains a low level on TCK and release RESET\_N.
  - The SMAP asserts the core\_hold\_reset signal
- 4. The Cortex-M4 core remains in reset state, meanwhile the rest of the system is released.
- 5. The Chip erase operation can be performed by issuing the SMAP Chip Erase command. In this case:
  - volatile memories are cleared first
  - followed by the clearing of the flash array
  - followed by the clearing of the protected state

Atmel

 After operation is completed, the chip must be restarted by either controling RESET\_N or switching power off/on. Make sure that the TCK pin is high when releasing RESET\_N not to halt the core.

### 8.11.9 Setting the protected state

This is done by issuing a specific flash controller command, for more information, refer to the Flash Controller chapter and to section 8.11.7Flash Programming typical procedure97. The protected state is defined by a highly secure Flash builtin mechanism. Note that for this programmation to propagate, it is required to reset the chip.



Figure 9-1. Typical Power Consumption running Coremark (from above table)

Note: For variable frequency oscillators, linear interpolation between high and low settings

Figure 9-2. Measurement Schematic, Switching Mode



### 9.5.3 Peripheral Power Consumption in Power Scaling mode 0 and 2

The values in Table 9-11 are measured values of power consumption under the following conditions:

- Operating conditions, internal core supply (Figure 9-2)
  - $V_{VDDIN} = 3.3 V$
  - $V_{VDDCORE}$  supplied by the internal regulator in switching mode
- TA = 25°C
- Oscillators
  - OSC0 (crystal oscillator) stopped
  - OSC32K (32KHz crystal oscillator) running with external 32KHz crystal
  - DFLL running at 48 MHz with OSC32K as reference clock

Atmel

- Clocks
  - DFLL used as main clock source
  - CPU, AHB, and PB clocks undivided
- I/Os are inactive with internal pull-up
- Flash enabled in high speed mode
- CPU in SLEEP0 mode
- BOD18 and BOD33 disabled

Consumption active is the added current consumption when the module clock is turned on.

## 9.6 I/O Pin Characteristics

## 9.6.1 Normal I/O Pin

## Table 9-13. Normal I/O Pin Characteristics <sup>(1)</sup>

| Symbol                                                   | Parameter                               | Conditions                       |                                                   | Min                    | Тур  | Max                    | Units |  |
|----------------------------------------------------------|-----------------------------------------|----------------------------------|---------------------------------------------------|------------------------|------|------------------------|-------|--|
| R <sub>PULLUP</sub>                                      | Pull-up resistance (2)                  |                                  |                                                   |                        | 40   |                        | kΩ    |  |
| R <sub>PULLDOWN</sub>                                    | Pull-down resistance <sup>(2)</sup>     |                                  |                                                   |                        | 40   |                        | kΩ    |  |
| V <sub>IL</sub>                                          | Input low-level voltage                 |                                  |                                                   | -0.3                   |      | 0.2 * V <sub>VDD</sub> | _     |  |
| V <sub>IH</sub>                                          | Input high-level voltage                |                                  |                                                   | 0.8 * V <sub>VDD</sub> |      | V <sub>VDD</sub> + 0.3 | N     |  |
| V <sub>OL</sub>                                          | Output low-level voltage                |                                  |                                                   |                        |      | 0.4                    | V     |  |
| V <sub>OH</sub>                                          | Output high-level voltage               |                                  |                                                   | V <sub>VDD</sub> - 0.4 |      |                        |       |  |
|                                                          |                                         |                                  | 1.68V <v<sub>VDD&lt;2.7V</v<sub>                  |                        |      | 0.8                    |       |  |
|                                                          | Output low lovel ourrent <sup>(3)</sup> | ODCR0=0                          | 2.7V <v<sub>VDD&lt;3.6V</v<sub>                   |                        |      | 1.6                    | mA    |  |
| I <sub>OL</sub> Output low-level curren                  | Output low-level current (*/            |                                  | 1.68V <v<sub>VDD&lt;2.7V</v<sub>                  |                        |      | 1.6                    | ~~^   |  |
|                                                          |                                         | ODCR0=1                          | 2.7V <v<sub>VDD&lt;3.6V</v<sub>                   |                        |      | 3.2                    | ША    |  |
| I <sub>OH</sub> Output high-level current <sup>(3)</sup> |                                         | 1.68V <v<sub>VDD&lt;2.7V</v<sub> |                                                   |                        | 0.8  | mA                     |       |  |
|                                                          | ODCR0=0                                 | 2.7V <v<sub>VDD&lt;3.6V</v<sub>  |                                                   |                        | 1.6  |                        |       |  |
|                                                          |                                         | 00000 4                          | 1.68V <v<sub>VDD&lt;2.7V</v<sub>                  |                        |      | 1.6                    | mA    |  |
|                                                          |                                         | ODCR0=1                          | 2.7V <v<sub>VDD&lt;3.6V</v<sub>                   |                        |      | 3.2                    |       |  |
|                                                          |                                         | OSRR0=0                          | ODCR0=0                                           |                        |      | 35                     |       |  |
|                                                          | Diag time (2)                           | OSRR0=1                          | 1.68V <v<sub>VDD&lt;2.7V,<br/>load = 25pF</v<sub> |                        |      | 45                     | ns    |  |
| <sup>t</sup> RISE                                        | Rise time                               | OSRR0=0                          | ODCR0=0                                           |                        |      | 19                     |       |  |
|                                                          |                                         | OSRR0=1                          | 2.7V <v<sub>VDD&lt;3.6V,<br/>load = 25pF</v<sub>  |                        |      | 23                     | ns    |  |
|                                                          |                                         | OSRR0=0                          | ODCR0=0                                           |                        |      | 36                     |       |  |
|                                                          |                                         | OSRR0=1                          | 1.68V <v<sub>VDD&lt;2.7V,<br/>load = 25pF</v<sub> |                        |      | 47                     | ns    |  |
| <sup>L</sup> FALL                                        |                                         | OSRR0=0                          | ODCR0=0                                           |                        |      | 20                     |       |  |
|                                                          |                                         | OSRR0=1                          | 2.7V <v<sub>VDD&lt;3.6V,<br/>load = 25pF</v<sub>  |                        |      | 24                     | ns    |  |
|                                                          |                                         | OSRR0=0                          | ODCR0=0, V <sub>VDD</sub> >2.7V                   |                        |      | 17                     | MHz   |  |
| _                                                        | Quite 1 (manual (2)                     | OSRR0=1                          | load = 25pF                                       |                        |      | 15                     | MHz   |  |
| F <sub>PINMAX</sub>                                      |                                         | OSRR0=0                          | ODCR0=1, V <sub>VDD</sub> >2.7V                   |                        |      | 27                     | MHz   |  |
|                                                          |                                         | OSRR0=1                          | load = 25pF                                       |                        |      | 23                     | MHz   |  |
| I <sub>LEAK</sub>                                        | Input leakage current <sup>(3)</sup>    |                                  | Pull-up resistors<br>disabled                     |                        | 0.01 | 1                      | μA    |  |
| C <sub>IN</sub>                                          | Input capacitance <sup>(2)</sup>        |                                  |                                                   |                        | 5    |                        | pF    |  |

1.  $V_{VDD}$  corresponds to either  $V_{VDDIN}$  or  $V_{VDDIO}$ , depending on the supply for the pin. Refer to Section 3-5 on page 13 for details

2. These values are based on simulation. These values are not covered by test limits in production or characterization

Table 9-46. DC Characteristics

| Symbol              | Parameter                                        | Conditions                                   | Min  | Тур | Max            | Units  |
|---------------------|--------------------------------------------------|----------------------------------------------|------|-----|----------------|--------|
| VDDANA              | Supply voltage <sup>(1)</sup>                    |                                              | 1.6  |     | 3.6            | V      |
|                     |                                                  | Differential mode                            | 1.0  |     | VDDANA<br>-0.6 |        |
|                     | Reference range (2)                              | Unipolar and Window modes                    | 1.0  |     | 1.0            | V      |
|                     |                                                  | Using divide by two function (differential)  | 2.0  |     | VDDANA         |        |
|                     | Absolute min, max input voltage <sup>(2)</sup>   |                                              | -0,1 |     | VDDANA<br>+0.1 | V      |
|                     |                                                  | ADC with reference already enabled           |      | 12  | 24             | Cycles |
|                     | Start up time <sup>(2)</sup>                     | No gain compensation<br>Reference buffer     |      |     | 5              | μs     |
|                     |                                                  | Gain compensation<br>Reference buffer        |      |     | 60             | Cycles |
| R <sub>SAMPLE</sub> | Input channel source resistance <sup>(2)</sup>   |                                              |      |     | 0.5            | kΩ     |
| C <sub>SAMPLE</sub> | Sampling capacitance <sup>(2)</sup>              |                                              | 2.9  | 3.6 | 4.3            | pF     |
|                     | Potoronco input source resistance <sup>(2)</sup> | Gain compensation                            |      |     | 2              | kΩ     |
|                     |                                                  | No gain compensation                         |      |     | 1              | MΩ     |
|                     | ADC reference settling time <sup>(2)</sup>       | After changing reference/mode <sup>(3)</sup> |      | 5   | 60             | Cycles |

1. These values are based on characterization. These values are not covered by test limits in production

2. These values are based on simulation. These values are not covered by test limits in production

3. Requires refresh/flush otherwise conversion time (latency) + 1

| Table 9-47. | Differential mode, gain=1 |
|-------------|---------------------------|
|-------------|---------------------------|

| Symbol | Parameter                                      | Conditions                                                   | Min  | Тур  | Max  | Units |  |
|--------|------------------------------------------------|--------------------------------------------------------------|------|------|------|-------|--|
|        | Accuracy without compensation (1)              |                                                              |      | 7    |      | ENOB  |  |
|        | Accuracy after compensation <sup>(1)</sup>     | (INL, gain and offset)                                       |      |      | 11   | ENOB  |  |
| INL    | Integral Non Linearity <sup>(2)</sup>          | After calibration,<br>Gain compensation                      |      | 1.2  | 1.7  | LSBs  |  |
| DNL    | Differential Non Linearity <sup>(2)</sup>      | After calibration                                            |      | 0.7  | 1.0  | LSBs  |  |
|        |                                                | External reference                                           | -5.0 | -1.0 | 5.0  | mV    |  |
|        | Gain error <sup>(2)</sup>                      | VDDANA/1.6                                                   | -40  |      | 40   |       |  |
|        |                                                | VDDANA/2.0                                                   | -40  |      | 40   |       |  |
|        |                                                | Bandgap After calibration                                    | -30  |      | 30   |       |  |
|        | Gain error drift vs voltage <sup>(1)</sup>     | External reference                                           | -2   |      | 2    | mV/V  |  |
|        | Gain error drift vs temperature <sup>(1)</sup> | After calibration + bandgap drift<br>If using onchip bandgap |      |      | 0.08 | mV/°K |  |
|        |                                                | External reference                                           | -5.0 |      | 5.0  |       |  |
|        | Offset error <sup>(2)</sup>                    | VDDANA/1.6                                                   | -10  |      | 10   | m\/   |  |
|        |                                                | VDDANA/2.0                                                   | -10  |      | 10   |       |  |
|        |                                                | Bandgap After calibration                                    | -10  |      | 10   |       |  |
|        | Offset error drift vs voltage <sup>(1)</sup>   |                                                              | -4   |      | 4    | mV/V  |  |



Figure 9-10. USART in SPI Slave Mode with (CPOL= CPHA= 0) or (CPOL= CPHA= 1)







| Table 9-58. | USART0 in SPI | mode Timing, | Slave Mode <sup>(1)</sup> |
|-------------|---------------|--------------|---------------------------|
|             |               | <b>U</b> ,   |                           |

| Symbol | Parameter                         | Conditions                             | Min                                                                       | Max    | Units |
|--------|-----------------------------------|----------------------------------------|---------------------------------------------------------------------------|--------|-------|
| USPI6  | SPCK falling to MISO delay        |                                        |                                                                           | 740.67 |       |
| USPI7  | MOSI setup time before SPCK rises |                                        | 56.73 + t <sub>SAMPLE</sub> <sup>(2)</sup> +<br>t <sub>CLK_USART</sub>    |        |       |
| USPI8  | MOSI hold time after SPCK rises   |                                        | 45.18 -( t <sub>SAMPLE</sub> <sup>(2)</sup> +<br><sup>t</sup> CLK_USART ) |        |       |
| USPI9  | SPCK rising to MISO delay         | V <sub>VDDIO</sub> from                |                                                                           | 670.18 |       |
| USPI10 | MOSI setup time before SPCK falls | 3.0 V to 3.6 V,<br>maximum<br>external | 56.73 +( t <sub>SAMPLE</sub> <sup>(2)</sup> +<br>t <sub>CLK_USART )</sub> |        | ns    |
| USPI11 | MOSI hold time after SPCK falls   | capacitor =<br>40pF                    | 45.18 -( t <sub>SAMPLE</sub> <sup>(2)</sup> +<br>t <sub>CLK_USART )</sub> |        |       |
| USPI12 | NSS setup time before SPCK rises  |                                        | 688.71                                                                    |        |       |
| USPI13 | NSS hold time after SPCK falls    |                                        | -2.25                                                                     |        | _     |
| USPI14 | NSS setup time before SPCK falls  |                                        | 688.71                                                                    |        |       |
| USPI15 | NSS hold time after SPCK rises    |                                        | -2.25                                                                     |        |       |

- Atmel

# 11. Ordering Information

| Ordering Code    | Flash<br>(Kbytes) | RAM<br>(Kbytes) | Package  | Conditioning | Package<br>Type | Temperature Operating<br>Range |
|------------------|-------------------|-----------------|----------|--------------|-----------------|--------------------------------|
| ATSAM4LC8CA-AU   |                   |                 |          | Tray         |                 |                                |
| ATSAM4LC8CA-AUR  |                   |                 | IQFFIUU  | Reel         |                 |                                |
| ATSAM4LC8CA-CFU  |                   |                 |          | Tray         |                 |                                |
| ATSAM4LC8CA-CFUR |                   |                 | VFDGATUU | Reel         | Green           | Industrial -40°C to 85°C       |
| ATSAM4LC8BA-AU   |                   |                 | TQFP64   | Tray         |                 |                                |
| ATSAM4LC8BA-AUR  | 512               | 64              |          | Reel         |                 |                                |
| ATSAM4LC8BA-MU   | ·MU               |                 |          | Tray         |                 |                                |
| ATSAM4LC8BA-MUR  |                   |                 | QFIN04   | Reel         | -               |                                |
| ATSAM4LC8BA-UUR  |                   |                 | WLCSP64  | Reel         |                 |                                |
| ATSAM4LC8AA-MU   |                   |                 |          | Tray         |                 |                                |
| ATSAM4LC8AA-MUR  |                   |                 |          | Reel         |                 |                                |

 Table 11-1.
 ATSAM4LC8 Sub Serie Ordering Information

 Table 11-2.
 ATSAM4LC4 Sub Serie Ordering Information

| Ordering Code     | Flash<br>(Kbytes) | RAM<br>(Kbytes) | Package  | Conditioning | Package<br>Type | Temperature Operating<br>Range |                       |
|-------------------|-------------------|-----------------|----------|--------------|-----------------|--------------------------------|-----------------------|
| ATSAM4LC4CA-AU-ES | -                 |                 | TQFP100  | ES           |                 | N/A                            |                       |
| ATSAM4LC4CA-AU    |                   |                 |          | Tray         |                 | Industrial -40°C to 85°C       |                       |
| ATSAM4LC4CA-AUR   |                   |                 |          | Reel         |                 |                                |                       |
| ATSAM4LC4CA-CFU   |                   |                 | VFBGA100 | Tray         |                 |                                |                       |
| ATSAM4LC4CA-CFUR  |                   |                 |          | Reel         |                 |                                |                       |
| ATSAM4LC4BA-AU-ES |                   |                 |          | ES           |                 | N/A                            |                       |
| ATSAM4LC4BA-AU    |                   |                 |          | TQFP64       | Tray            |                                | Industrial 40% to 05% |
| ATSAM4LC4BA-AUR   |                   | 32              |          | Reel         | Green           |                                |                       |
| ATSAM4LC4BA-MU-ES |                   |                 | QFN64    | ES           |                 | N/A                            |                       |
| ATSAM4LC4BA-MU    | 200               |                 |          | Tray         |                 | Industrial -40°C to 85°C       |                       |
| ATSAM4LC4BA-MUR   | _                 |                 |          | Reel         |                 |                                |                       |
| ATSAM4LC4BA-UUR   |                   |                 | WLCSP64  | SP64 Reel    |                 | Industrial -40°C to 85°C       |                       |
| ATSAM4LC4AA-AU-ES | AA-AU-ES          |                 |          | ES           |                 | N/A                            |                       |
| ATSAM4LC4AA-AU    |                   |                 | TQFP48   | Tray         |                 | Industrial -40°C to 85°C       |                       |
| ATSAM4LC4AA-AUR   | -                 |                 |          | Reel         |                 |                                |                       |
| ATSAM4LC4AA-MU-ES |                   |                 | QFN48    | ES           |                 | N/A                            |                       |
| ATSAM4LC4AA-MU    |                   |                 |          | Tray         |                 | Industrial 40%C to 05%C        |                       |
| ATSAM4LC4AA-MUR   |                   |                 |          | Reel         |                 |                                |                       |