
E·XFL

onsemi - LC87F1HC4BUWA-2H Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo	
Product Status	Obsolete
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO, UART/USART, USB
Peripherals	PWM, WDT
Number of I/O	36
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 12x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-SQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87f1hc4buwa-2h

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■Minimum Instruction Cycle Time (tCYC)

• 250ns (When CF=12MHz)

■Ports

• I/O ports

Ports whose I/O direction can be designated in 1-bit units	28 (P10 to P17, P20 to P27, P30 to P34,
	P70 to P73, PWM0, PWM1, XT2)
Ports whose I/O direction can be designated in 4-bit units	8 (P00 to P07)
• USB ports	2 (UHD+, UHD-)
 Dedicated oscillator ports 	2 (CF1, CF2)
• Input-only port (also used for oscillation)	1 (XT1)
• Reset pins	$1(\overline{\text{RES}})$
• Power supply pins	6 (V _{SS} 1 to 3, V _{DD} 1 to 3)

- ■Timers
 - Timer 0: 16-bit timer/counter with 2 capture registers.

Mode 0: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) × 2 channels Mode 1: 8-bit timer with an 8-bit programmable prescaler (with two 8-bit capture registers) + 8-bit counter (with two 8-bit capture registers)

- Mode 2: 16-bit timer with an 8-bit programmable prescaler (with two 16-bit capture registers)
- Mode 3: 16-bit counter (with two 16-bit capture registers)
- Timer 1: 16-bit timer/counter that supports PWM/toggle outputs

Mode 0: 8-bit timer with an 8-bit prescaler (with toggle outputs) + 8-bit timer/

- counter with an 8-bit prescaler (with toggle outputs)
- Mode 1: 8-bit PWM with an 8-bit prescaler \times 2 channels
- Mode 2: 16-bit timer/counter with an 8-bit prescaler (with toggle outputs)
 - (toggle outputs also possible from lower-order 8 bits)
- Mode 3: 16-bit timer with an 8-bit prescaler (with toggle outputs)
 - (lower-order 8 bits may be used as a PWM output)
- Timer 4: 8-bit timer with a 6-bit prescaler
- Timer 5: 8-bit timer with a 6-bit prescaler
- Timer 6: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Timer 7: 8-bit timer with a 6-bit prescaler (with toggle outputs)
- Base timer
 - 1) The clock is selectable from the subclock (32.768kHz crystal oscillation), system clock, and timer 0 prescaler output.
 - 2) Interrupts programmable in 5 different time schemes

■SIO

- SIO0: Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Transfer clock cycle: 4/3 to 512/3 tCYC
 - Automatic continuous data transmission (1 to 256 bits, specifiable in 1-bit units) (Suspension and resumption of data transmission possible in 1 byte units)
- SIO1: 8-bit asynchronous/synchronous serial interface
 - Mode 0: Synchronous 8-bit serial I/O (2- or 3-wire configuration, 2 to 512 tCYC transfer clocks)
 - Mode 1: Asynchronous serial I/O (half-duplex, 8 data bits, 1 stop bit, 8 to 2048 tCYC baudrates)
- Mode 2: Bus mode 1 (start bit, 8 data bits, 2 to 512 tCYC transfer clocks)
- Mode 3: Bus mode 2 (start detect, 8 data bits, stop detect)
- SIO4: Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Transfer clock cycle: 4/3 to 1020/3 tCYC
 - Automatic continuous data transmission (1 to 4096 bytes, specifiable in 1 byte units) (Suspension and resumption of data transmission possible in 1 byte units or in word units)
 - 4) Auto-start-on-falling-edge function
 - 5) Clock polarity selectable
 - 6) CRC16 calculator circuit built in

Continued on next page.

Continued from preceding page.

- SIO9: Synchronous serial interface
 - 1) LSB first/MSB first mode selectable
 - 2) Transfer clock cycle: 4/3 to 1020/3 tCYC
 - 3) Automatic continuous data transmission (1 to 4096 bytes, specifiable in 1 byte units) (Suspension and resumption of data transmission possible in 1 byte units or word units)
 - 4) Auto-start-on-falling-edge function
 - 5) Clock polarity selectable
 - 6) CRC16 calculator circuit built in

■Full Duplex UART

- 1) Data length : 7/8/9 bits selectable
- 2) Stop bits : 1 bit (2 bits in continuous transmission mode)
- 3) Baud rate : 16/3 to 8192/3 tCYC
- ■AD Converter: 8 bits × 12 channels
- ■PWM: Multifrequency 12-bit PWM × 2 channels
- ■Infrared Remote Control Receiver Circuit
 - 1) Noise rejection function (noise filter time constant: Approx. 120µs when the 32.768kHz crystal oscillator is selected as the base clock)
 - 2) Supports data encoding systems such as PPM (Pulse Position Modulation) and Manchester encoding.
 - 3) X'tal HOLD mode reset function
- ■USB Interface (host control function)
 - 1) Compliant with full-speed (12M bps) specifications
 - 2) Supports 4 transfer types (control transfer, bulk transfer, interrupt transfer, and isochronous transfer).
- ■Audio Interface
 - 1) Sampling frequency (fs) : 32kHz, 44.1kHz, 48kHz
 - 2) Master clock frequency (internal PLL) : 12.288MHz, 16.9344MHz, 18.432MHz
 - 3) Bit clock selectable
- : 48fs/64fs
- 4) Data bit length : 16/18/20/24 bits
- 5) LSB first/MSB firsts selectable
- 6) Left-justification/right-justification selectable

■Watchdog Timer

- Watchdog timer using external RC circuitry
- Interrupt and reset signals selectable

Clock Output Function

- 1) Can output a clock with a clock rate of 1/1, 1/2, 1/4, 1/8, 1/16, 1/32, or 1/64 of the source oscillator clock selected as the system clock.
- 2) Can output the source oscillation clock for the subclock.

■Development Tools

• On-chip debugger: TCB87- type-B + LC87F1HC4B

■Flash ROM Programming Boards

Package	Programming boards
SQFP48(7 × 7)	W87F55256SQ

■Recommended EPROM Programmer

Maker		Model	Supported version	Device
Flash Support Group, Inc. (FSG)	Single Programmer	AF9708/ AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev 02.82 or later	LC87F1HC8A
Flash Support Group, Inc. (FSG) + ON Semiconductor (Note 1)	Onboard Single/Gang Programmer	AF9101/AF9103(Main body) (FSG models) SIB87(Inter Face Driver) (ON Semiconductor model)	(Note 2)	LC87F1HC8A
ON Semiconductor	Single/Gang Programmer Onboard Single/Gang Programmer	SKK/SKK TypeB (SanyoFWS) SKK-DBG TypeB (SanyoFWS)	Application Version 2.04 or later Chip Data Version 2.11 or later	LC87F1HC8

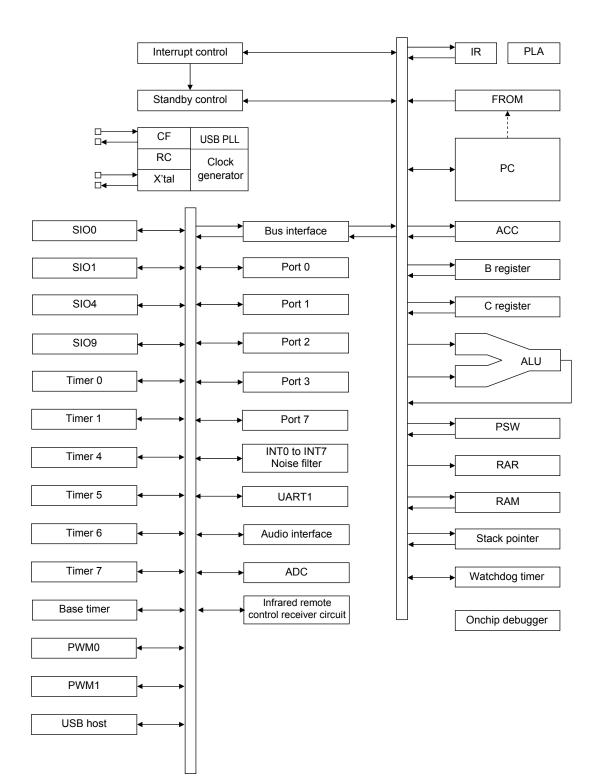
Note 1: With the FSG onboard programmer (AF9101/AF9103) and the serial interface driver (SIB87) provided by ON Semiconductor, PC-less standalone onboard programming is possible

Note 2: Depending on programming conditions, it is necessary to use a dedicated programming device and a program. Please contact our company or FSG if you have any questions or difficulties regarding this matter.

Package Dimensions

unit : mm

SPQFP48 7x7 / SQFP48


CASE 131AJ ISSUE A

NOTE: The measurements are not to guarantee but for reference only.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

System Block Diagram

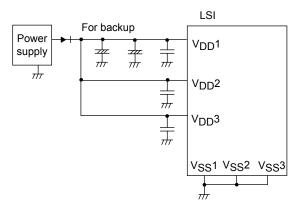
Pin Description

Pin Name	I/O			De	scription			Option	
V _{SS} 1,V _{SS} 2, V _{SS} 3	-	- power supply						No	
V _{DD} 1, V _{DD} 2	-	+ power supply						No	
V _{DD} 3	-	USB reference	voltage					Yes	
Port 0	I/O	8-bit I/O ports	;					Yes	
P00 to P07		 I/O specifiable 	e in 4-bit units						
		 Pull-up resist 	ors can be turne	d on and off in 4	-bit units.				
		HOLD reset i	•						
		Port 0 interru	pt input						
		Pin functions	input porto: ANC	to ANZ/DO0 to					
			input ports: ANC ger pins: DBGP		,				
			clock output/aud	-					
		-	toggle output/au						
			toggle output/au						
Port 1	I/O	8-bit I/O ports	;					Yes	
P10 to P17		 I/O specifiable 	e in 1-bit units						
		 Pull-up resist 	ors can be turne	d on and off in 1	-bit units.				
		Pin functions							
		P10: SIO0 da			4: SIO1 data inpu		ut		
			ta input/bus inpu	•	5: SIO1 clock inp	-			
		P12: SIO0 cid P13: SIO1 da	ck input/output		6: Timer 1 PWML 7: Timer 1 PWMŀ	•	outout		
Port 2	I/O	8-bit I/O ports				i output/beeper	σαιραί	Yes	
P20 to P27	- "0	 I/O specifiable 						100	
F 20 t0 F 27		Pull-up resistors can be turned on and off in 1-bit units.							
		• Pin functions							
		P20 to P23: II	NT4 input/HOLD	reset input/time	r 1 event input/ti	mer 0L capture i	nput/		
		ti	mer 0H capture	input					
		P24 to P27: INT5 input/HOLD reset input/timer 1 event input/timer 0L capture input/							
		timer 0H capture input							
		P20: INT6 input/timer 0L capture 1 input							
		P22: SIO4 data input/output/parallel interface \overline{RD} output							
		P23: SIO4 data input/output/parallel interface WR output P24: SIO4 clock input/output/INT7 input/timer 0H capture 1 input							
			ta input/output/p	•	'	ut			
			ta input/output/p		·				
			ck input/output		-				
		Interrupt ackn	owledge types		•				
			Rising	Falling	Rising & Falling	H level	L level		
		INT4	enable	enable	enable	disable	disable		
		INT5	enable	enable	enable	disable	disable		
		INT6	enable	enable	enable	disable	disable		
		INT7	enable	enable	enable	disable	disable		
Port 3	I/O	• 5-bit I/O ports	;					Yes	
P30 to P34		 I/O specifiable in 1-bit units Pull-up resistors can be turned on and off in 1-bit units.							
		Pin functions							
		P30: UART1							
		P31: UART1 P33: Audio in)				
			terface PLL filter)				

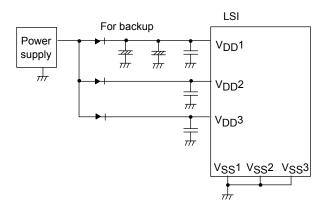
Continued on next page.

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor. Data can be read into any input port even if it is in the output mode.


Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
P20 to P27 P30 to P34		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
P71 to P73	-	No	CMOS	Programmable
PWM0, PWM1	-	No	CMOS	No
UHD+, UHD-	-	No	CMOS	No
XT1	-	No	Input only	No
XT2	-	No	32.768kHz crystal resonator output (N channel open drain when in general-purpose output mode)	No

Note 1: Programmable pull-up resistors for port 0 are controlled in 4 bit units (P00 to 03, P04 to 07).


Power Pin Treatment

Connect the IC as shown below to minimize the noise input to the V_{DD1} pin. and extend the backup period. Be sure to electrically short the V_{SS1} , V_{SS2} , and V_{SS3} pins.

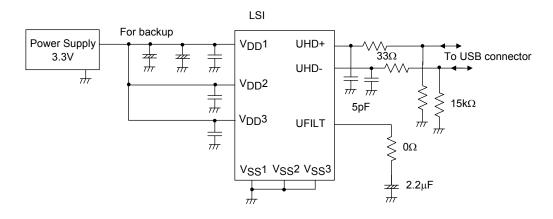
Example 1: When the microcontroller is in the backup state in the HOLD mode, the power to sustain the high level of output ports is supplied by their backup capacitors.

Example 2: The high level output at ports is not sustained and unstable in the HOLD backup mode.

USB Reference Power Option

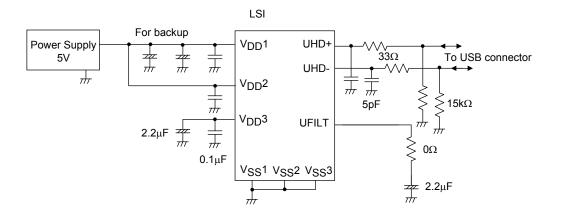
When a voltage 4.5 to 5.5V is supplied to V_{DD1} and the internal USB reference voltage circuit is activated, the reference voltage for USB port output is generated. The active/inactive state of the reference voltage circuit can be switched by option select. The procedure for marking the option selection is described below.

		(1)	(2)	(3)	(4)
Option settings	USB regulator	USE	USE	USE	NONUSE
	USB regulator at HOLD mode	USE	NONUSE	NONUSE	NONUSE
	USB regulator at HALT mode	USE	NONUSE	USE	NONUSE
Reference voltage circuit state	Normal mode	active	active	active	inactive
	HOLD mode	active	inactive	inactive	inactive
	HALT mode	active	inactive	active	inactive


• When the USB reference voltage circuit is made inactive, the level of the reference voltage for USB port output is equal to V_{DD}1.

• Selection (2) or (3) can be used to set the reference voltage circuit inactive in HOLD or HALT mode.

• When the reference voltage circuit is activated, the current drain increases by approximately 100µA compared with when the reference voltage circuit is inactive.


Example 1: VDD1=VDD2=3.3V

- Inactivating the reference voltage circuit (selection (4)).
- Connecting VDD3 to VDD1 and VDD2.

Example 2: VDD1=VDD2=5.0V

- Activating the reference voltage circuit (selection (1)).
- Isolating VDD3 from VDD1 and VDD2, and connecting capacitor between VDD3 and VSS.

	Deremeter	Cumhal	Din /Domorko	Conditions			Specif	ication	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	uni
	ximum supply tage	V _{DD} max	V _{DD} 1, V _{DD} 2, V _{DD} 3	V _{DD} 1= V _{DD} 2= V _{DD} 3		-0.3	-0.3 +6.5		
۱p	ut voltage	V _I (1)	XT1, CF1			-0.3		V _{DD} +0.3	v
	ut/output tage	V _{IO} (1)	Ports 0, 1, 2, 3, 7 PWM0, PWM1 XT2			-0.3		V _{DD} +0.3	v
	Peak output current	IOPH(1)	Ports 0, 1, 2	When CMOS output type is selected Per 1 applicable pin		-10			
		IOPH(2)	PWM0, PWM1	Per 1 applicable pin		-20			
High level output current		IOPH(3)	Port 3 P71 to P73	When CMOS output type is selected Per 1 applicable pin		-5			
	Average output current (Note 1-1)	IOMH(1)	Ports 0, 1, 2	When CMOS output type is selected Per 1 applicable pin		-7.5			
		IOMH(2)	PWM0, PWM1	Per 1 applicable pin		-15			
		IOMH(3)	Port 3 P71 to P73	When CMOS output type is selected Per 1 applicable pin		-3			
ß	Total output current	ΣIOAH(1)	Ports 0, 2	Total current of all applicable pins		-25			
		ΣIOAH(2)	Port 1 PWM0, PWM1	Total current of all applicable pins		-25			
		ΣIOAH(3)	Ports 0, 1, 2 PWM0, PWM1	Total current of all applicable pins		-45			
		ΣIOAH(4)	Port 3 P71 to P73	Total current of all applicable pins		-10			
		ΣIOAH(5)	UHD+, UHD-	Total current of all applicable pins		-25			m
	Peak output current	IOPL(1)	P02 to P07 Ports 1, 2 PWM0, PWM1	Per 1 applicable pin				20	
		IOPL(2)	P00, P01	Per 1 applicable pin				30	
		IOPL(3)	Ports 3, 7 XT2	Per 1 applicable pin				10	
ent	Average output current (Note 1-1)	IOML(1)	P02 to P07 Ports 1, 2 PWM0, PWM1	Per 1 applicable pin				15	
cull		IOML(2)	P00, P01	Per 1 applicable pin				20	
Low level output current		IOML(3)	Ports 3, 7 XT2	Per 1 applicable pin				7.5	
	Total output current	ΣIOAL(1)	Ports 0, 2	Total current of all applicable pins				45	
Ľ		ΣIOAL(2)	Port 1 PWM0, PWM1	Total current of all applicable pins				45	
		ΣIOAL(3)	Ports 0, 1, 2 PWM0, PWM1	Total current of all applicable pins				80	
		ΣIOAL(4)	Ports 3, 7 XT2	Total current of all applicable pins				15	1
		ΣIOAL(5)	UHD+, UHD-	Total current of all applicable pins				25	
	owable power sipation	Pd max	SQFP48(7×7)	Ta=-40 to +85°C				140	m\
Ор	erating ambient mperature	Topr				-40		+85	
	orage ambient	Tstg						1	°(

Absolute Maximum Ratings at $Ta = 25^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Note 1-1: The average output current is an average of current values measured over 100 ms intervals.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Parameter	Symbol	Pin/Remarks	Conditions			Specifica	ition	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	uni
High level input current	I _{IH} (1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1 UHD+, UHD-	Output disabled Pull-up resistor off V _{IN} =V _{DD} (Including output Tr's off leakage current)	2.7 to 5.5			1	
	I _{IH} (2)	XT1, XT2	Input port configuration VIN=VDD	2.7 to 5.5			1	
	I _{IH} (3)	CF1	V _{IN} =V _{DD}	2.7 to 5.5			15	
Low level input current	lη _L (1)	Ports 0, 1, 2, 3 Port 7 RES PWM0, PWM1 UHD+, UHD-	Output disabled Pull-up resistor off V _{IN} =V _{SS} (Including output Tr's off leakage current)	2.7 to 5.5	-1			μA
	I _{IL} (2)	XT1, XT2	Input port configuration VIN ^{=V} SS	2.7 to 5.5	-1			
	I _{IL} (3)	CF1	VIN ^{=V} SS	2.7 to 5.5	-15			
High level output	V _{OH} (1)	Ports 0, 1, 2, 3	I _{OH} =-1mA	4.5 to 5.5	V _{DD} -1			
voltage	V _{OH} (2)	P71 to P73	I _{OH} =-0.4mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (3)		I _{OH} =-0.2mA	2.7 to 5.5	V _{DD} -0.4			
	V _{OH} (4)	PWM0, WM1	I _{OH} =-10mA	4.5 to 5.5	V _{DD} -1.5			
	V _{OH} (5)	P05 to P07 (Note 3-1)	I _{OH} =-1.6mA	3.0 to 5.5	V _{DD} -0.4			
	V _{OH} (6)		I _{OH} =-1mA	2.7 to 5.5	V _{DD} -0.4			1
Low level output	V _{OL} (1)	P00, P01	I _{OL} =30mA	4.5 to 5.5			1.5	v
voltage	V _{OL} (2)		I _{OL} =5mA	3.0 to 5.5			0.4	
	V _{OL} (3)		I _{OL} =2.5mA	2.7 to 5.5			0.4	
	V _{OL} (4)	Ports 0, 1, 2	I _{OL} =10mA	4.5 to 5.5			1.5	
	V _{OL} (5)	PWM0, PWM1	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (6)	XT2	I _{OL} =1mA	2.7 to 5.5			0.4	
	V _{OL} (7)	Ports 3, 7	I _{OL} =1.6mA	3.0 to 5.5			0.4	
	V _{OL} (8)		I _{OL} =1mA	2.7 to 5.5			0.4	
Pull-up resistance	Rpu(1)	Ports 0, 1, 2, 3	V _{OH} =0.9V _{DD}	4.5 to 5.5	15	35	80	
	Rpu(2)	Port 7		2.7 to 5.5	18	50	150	kΩ
Hysteresis voltage	VHYS	RES Port 1, 2, 3, 7		2.7 to 5.5		0.1V _{DD}		v
Pin capacitance	СР	All pins	For pins other than that under test: VIN=VSS f=1MHz Ta=25°C	2.7 to 5.5		10		pF

Note 3-1: When the CKO system clock output function (P05) or audio interface output function (P05 to P07) is used.

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Serial I/O Characteristics at Ta = -40° C to $+85^{\circ}$ C, V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V

1. SIO0 Serial I/O Characteristics (Note 4-1-1)

	Parameter	Symbol	Pin/	Conditions			Spec	ification		
	Farameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
	Frequency	tSCK(1)	SCK0(P12)	See Fig. 8.		2				
	Low level	tSCKL(1)				1				
	pulse width High level	tSCKH(1)				1				
clock	tSCKHA	tSCKHA(1a)		 Continuous data transfer mode USB, AIF, SIO4, SIO9, and DMCOPY not used at the same time. See Fig. 8. (Note 4-1-2) 		4				
Input clock		tSCKHA(1b)		 Continuous data transfer mode USB used at the same time. AIF, SIO4, SIO9, and DMCOPY not used at the same time. See Fig. 8. (Note 4-1-2) 	2.7 to 5.5	7			tCYC	
ť		tSCKHA(1c)	*	 Continuous data transfer mode USB, AIF, SIO4, SIO9, and DMCOPY used at the same time. See Fig. 8. (Note 4-1-2) 		9				
Serial clock	Frequency	tSCK(2)	KL(2)	When CMOS output type is selectedSee Fig. 8.		4/3				
ž	Low level pulse width	tSCKL(2)				1/2			- tSCK	
	High level	tSCKH(2)				1/2				
clock	Cuthur clock	tSCKHA(2a)		 Continuous data transfer mode USB, AIF, SIO4, SIO9, and DMCOPY not used at the same time. When CMOS output type is selected See Fig. 8. 			tSCKH(2) +2tCYC		tSCKH(2) + (10/3)tCYC	
Output		tSCKHA(2b)	•	 Continuous data transfer mode USB used at the same time. AIF, SIO4, SIO9, and DMCOPY not used at the same time. When CMOS output type is selected. See Fig. 8. 	2.7 to 5.5	tSCKH(2) +2tCYC		tSCKH(2) + (19/3)tCYC	tCYC	
		tSCKHA(2c)	+	 Continuous data transfer mode USB, AIF, SIO4, SIO9, and DMCOPY used at the same time When CMOS output type is selected See Fig. 8. 		tSCKH(2) +2tCYC		tSCKH(2) + (25/3)tCYC		

Note 4-1-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

Note 4-1-2: In an application where the serial clock input is to be used in the continuous data transfer mode, the time from SIORUN being set when serial clock is high to the falling edge of the first serial clock must be longer than tSCKHA.

Continued on next page.

Con	tinued from preceding		Pin/		Specification				
	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
input	Data setup time	tsDI(3)	SO4(P22), SI4(P23)	 Must be specified with respect to falling edge of SIOCLK. See Fig. 8 		0.03			
Serial	Data hold time	thDI(3)			2.7 to 5.5	0.03			
Serial output	Output delay time	tdD0(5)	SO4(P22), SI4(P23)	 Must be specified with respect to rising edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 8. 	2.7 to 5.5			(1/3)tCYC +0.05	μs

4. SIO9 Serial I/O Characteristics (Note 4-4-1)

	-	Parameter	Symbol	Pin/	Conditions			Specifi	cation		
	P	arameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
		Frequency	tSCK(7)	SCK9(P27)	See Fig. 8.		2				
		Low level pulse width	tSCKL(7)				1				
		High level pulse width	tSCKH(7)				1				
lock	ock		tSCKHA(7a)		 USB, SIO0 continuous transfer mode, AIF, SIO4 and DMCOPY not used at the same time. See Fig. 8. (Note 4-4-2) 			4			
Serial clock	Input clock		tSCKHA(7b)		 USB used at the same time. SIO0 continuous transfer mode, AIF, SIO4, and DMCOPY not used at the same time. See Fig. 8. (Note 4-4-2) 	2.7 to 5.5	7			tCYC	
			tSCKHA(7c)		 USB, SIO0 continuous transfer mode, SIO4 and DMCOPY used at the same time. AIF not used at the same time. See Fig. 8. (Note 4-4-2) 		15				

Note 4-4-1: These specifications are theoretical values. Margins must be allowed according to the actual operating conditions.

Note 4-4-2: In an application where the serial clock input is to be used in the continuous data transfer mode, the period from the time SI9RUN is set with the serial clock set high to the falling edge of the first serial clock must be longer than tSCKHA.

Continued on next page

Con	tinue	ed from precedin	g page		1					
	Parameter		Symbol	Pin/	Conditions		. 1	· ·	ication	
		Frequency	tSCK(8)	tSCK(8) SCK9(P27) • When CMOS output type is selected.		V _{DD} [V]	min 4/3	typ	max	unit tCYC
		Low level pulse width	tSCKL(8)		• See Fig. 8.			1/2	•	10.014
		High level pulse width	tSCKH(8)					1/2		tSCK
×	Ś	(Note 4-4-3)	tSCKHA(8a)		 USB, SIO0 continuous transfer mode, AIF SIO4 DMCOPY not used at the same time. When CMOS output type is selected. See Fig. 8. 		tSCKH(8) + (5/3)tCYC		tSCKH(8) + (10/3)tCYC	
Serial clock	Output clock		tSCKHA(8b)		 USB used at the same time. SIO0 continuous transfer mode, AIF, SIO4, and DMCOPY not used at the same time. When CMOS output type is selected See Fig. 8. 	2.7 to 5.5	tSCKH(8) + (5/3)tCYC		tSCKH(8) + (19/3)tCYC	tCYC
			tSCKHA(8c)		 USB, SIO0 continuous transfer mode, SIO4, and DMCOPY used at the same time. AIF not used at the same time. When CMOS output type is selected. See Fig. 8. 		tSCKH(8) + (5/3)tCYC		tSCKH(8) + (43/3)tCYC	
nput	Da	ta setup time	tsDI(4)	SO9(P25), SI9(P26)	Must be specified with respect to rising edge of SIOCLK. See Fig. 8.		0.03			
Serial input	Da	ta hold time	thDI(4)			2.7 to 5.5	0.03			
Serial output	Οι	SI9(P26) to falling edge of SIC • Must be specified as the beginning of outp			2.7 to 5.5			(1/3)tCYC +0.05	μS	

Note 4-4-3: When using the serial clock output, make sure that the load at the SCK9 (P27) pin meets the following conditions:

Clock rise time tSCKR $< 0.037 \mu s$ (see Figure 12.) at Ta=+25°C, VDD=3.3V

Deservation	Oursehal	Die /Deeserie	Conditions	Specification					
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
High/low level pulse width	tP1H(1) tP1L(1)	INT0(P70), INT1(P71), INT2(P72), INT4(P20 to P23), INT5(P24 to P27), INT6(P20), INT7(P24)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	2.7 to 5.5	1				
	tPIH(2) tPIL(2)	INT3(P73) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	2			tCYC	
	tPIH(3) tPIL(3)	INT3(P73) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are nabled. 	2.7 to 5.5	64				
	tPIH(4) tPIL(4)	INT3(P73) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	256				
	tPIL(5)	RMIN(P73)	Recognized by the infrared remote control receiver circuit as a signal	2.7 to 5.5	4			RMCK (Note 5-1)	
	tPIL(6)	RES	Resetting is enabled.	2.7 to 5.5	200			μS	

Pulse Input Conditions at Ta = -40 °C to +85 °C, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0$ V

Note 5-1: Represents the period of the reference clock (1 tCYC to 128 tCYC or the source frequency of the subclock) for the infrared remote control receiver circuit.

AD Converter Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Description	0					Specific	cation		
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
Resolution	N	AN0(P00) to		3.0 to 5.5		8		bit	
Absolute accuracy	ET	AN7(P07), AN8(P70),	(Note 6-1)	3.0 to 5.5			±1.5	LSB	
Conversion time	TCAD	AN9(P71),	AD conversion time=32×tCYC		15.68		97.92		
		AN10(XT1), AN11(XT2)	(when ADCR2=0) (Note 6-2)	4.5 to 5.5	(tCYC=		(tCYC=		
					0.490µs)		3.06µs)		
					23.52		97.92		
				3.0 to 5.5	(tCYC=		(tCYC=		
					0.735µs)		3.06µs)	μs	
			AD conversion time=64×tCYC		18.82		97.92		
				(when ADCR2=1) (Note 6-2)	4.5 to 5.5	(tCYC=		(tCYC=	
					0. 294µs)		1.53µs)		
					47.04		97.92		
				3.0 to 5.5	(tCYC=		(tCYC=		
					0.735µs)		1.53µs)		
Analog input voltage range	VAIN			3.0 to 5.5	V _{SS}		V _{DD}	V	
Analog port	IAINH		VAIN=V _{DD}	3.0 to 5.5			1		
input current	IAINL	1	VAIN=V _{SS}	3.0 to 5.5	-1			μA	

Note 6-1: The quantization error ($\pm 1/2$ LSB) is excluded from the absolute accuracy.

Note 6-2: The conversion time refers to the period from the time when an instruction for starting a conversion process is issued to the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = V_{SS}2 = V_{SS}3 = 0V$

Parameter	Symbol	Pin/	Conditions			Specif	ication	
Farameter	Symbol	Remarks		V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1 =V _{DD} 2 =V _{DD} 3	 FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side 	4.5 to 5.5		9.8	24	
(Note 7-1)	IDDOP(2)		 Internal PLL oscillation stopped Internal RC oscillation stopped USB circuit stopped 1/1 frequency division ratio 	3.0 to 3.6		5.7	14	
	IDDOP(3)		FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side Internal PLL oscillation mode active	4.5 to 5.5		15	35	
	IDDOP(4)		Internal RC oscillation hode active Internal RC oscillation stopped USB circuit active 1/1 frequency division ratio	3.0 to 3.6		7.7	20	mA
	IDDOP(5)		• FmCF=12MHz ceramic oscillation mode	4.5 to 5.5		6.7	16	
	IDDOP(6)		 FsX'tal=32.768kHz crystal oscillation mode System clock set to 6MHz side 	3.0 to 3.6		3.9	9.0	
	IDDOP(7)		Internal RC oscillation stopped1/2 frequency division ratio	2.7 to 3.0		3.2	7.3	
	IDDOP(8)		• FmCF=0Hz(oscillation stopped)	4.5 to 5.5		0.72	3.4	
	IDDOP(9)		 FsX'tal=32.768kHz crystal oscillation mode System clock set to internal RC oscillation. 	3.0 to 3.6		0.41	1.9	
	IDDOP(10)		1/2 frequency division ratio	2.7 to 3.0		0.35	1.5	
	IDDOP(11)		 FmCF=0Hz(oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode 	4.5 to 5.5		45	184	
	IDDOP(12)		 System clock set to crystal oscillation. (32.768kHz) 	3.0 to 3.6		18	65	μΑ
	IDDOP(13)		 Internal RC oscillation stopped 1/2 frequency division ratio 	2.7 to 3.0		14	47	
HALT mode consumption current (Note7-1)	IDDHALT(1)		HALT mode FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		4.9	12	
	IDDHALT(2)		 Internal PLL oscillation stopped Internal RC oscillation stopped USB circuit stopped 1/1 frequency division ratio 	3.0 to 3.6		2.7	6.4	
	IDDHALT(3)		HALT mode FmCF=12MHz ceramic oscillation mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 12MHz side	4.5 to 5.5		9.5	23	
	IDDHALT(4)		 Internal PLL oscillation mode active Internal RC oscillation stopped USB circuit active 1/1 frequency division ratio 	3.0 to 3.6		4.7	12	mA
	IDDHALT(5)		HALT mode FmCF=12MHz ceramic oscillation mode	4.5 to 5.5		3.0	7.3	
	IDDHALT(6) IDDHALT(7)		FsX'tal=32.768kHz crystal oscillation mode System clock set to 6MHz side	3.0 to 3.6		1.6	3.8	
			 Internal RC oscillation stopped 1/2 frequency division ratio 	2.7 to 3.0		1.3	2.9	
	IDDHALT(8)		HALT mode	4.5 to 5.5		0.41	2.0	
	IDDHALT(9)		 FmCF=0Hz(oscillation stopped) FsX'tal=32.768kHz crystal oscillation mode 	3.0 to 3.6		0.20	0.95	
	IDDHALT(10)		System clock set to internal RC oscillation.1/2 frequency division ratio	2.7 to 3.0		0.17	0.70	

Note 7-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

Characteristics of a Sample Main System Clock Oscillation Circuit

Given below are the characteristics of a sample main system clock oscillation circuit that are measured using an our company-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 shows the characteristics of a oscillation circuit when USB host function is not used.

If USB host function is to be used, it is absolutely recommended to use an oscillator that satisfies the precision and stability according to the USB standards.

		¥ ¥												
Nominal	Vendor Name					Vendor		Cir	cuit Const	ant	Operating Voltage		lation tion Time	Demerius
Frequency						Oscillator Name	C1 [pF]	C2 [pF]	Rd1 [Ω]	Range [V]	typ [ms]	max [ms]	Remarks	
6MHz	MURATA	CSTCR6M00GH5L**-R0	(39)	(39)	1k	2.7 to 5.5	0.1	0.5						
8MHz	MURATA	CSTCE8M00GH5L**-R0	(33)	(33)	470	3.0 to 5.5	0.1	0.5	C1 and C2					
10MHz	MURATA	CSTCE10M0GH5L**-R0	(33)	(33)	330	3.0 to 5.5	0.1	0.5	integrated SMD type					
12MHz	MURATA	CSTCE12M0GH5L**-R0	(33)	(33)	330	3.0 to 5.5	0.1	0.5						

Table 1 Characteristics of a Sample Main System Clock Oscillator Circuit with a Ceramic Oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

- Till the oscillation gets stabilized after VDD goes above the operating voltage lower limit.
- Till the oscillation gets stabilized after the instruction for starting the main clock oscillation circuit is executed
- Till the oscillation gets stabilized after the HOLD mode is reset.
- Till the oscillation gets stabilized after the X'tal HOLD mode is reset with CFSTOP (OCR register, bit 0) set to 0

Characteristics of a Sample Subsystem Clock Oscillator Circuit

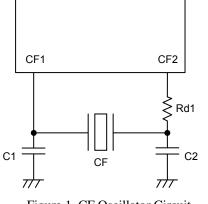

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using an our company-designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscinator Circuit with a Crystal Oscinator										
Nominal	Vendor	O sillatan Nama		Circuit C	Constant		Operating Voltage	Oscil Stabiliza	lation tion Time	Demedia
Frequency	Name	Oscillator Name	C3 [pF]	C4 [pF]	Rf [Ω]	Rd2 [Ω]	Range [V]	typ [s]	max [s]	Remarks
32.768kHz	EPSON TOYOCOM	MC-306	18	18	OPEN	560k	2.7 to 5.5	1.1	3.0	Applicable CL value=12.5pF SMD type

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized in the following cases (see Figure 4):

- Till the oscillation gets stabilized after the instruction for starting the subclock oscillation circuit is executed
- Till the oscillation gets stabilized after the HOLD mode is reset with EXTOSC (OCR register, bit 6) set to 1
- Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

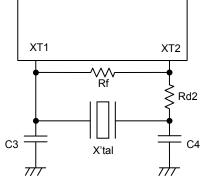


Figure 1. CF Oscillator Circuit

Figure 2. Crystal Oscillator Circuit

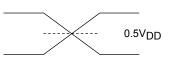
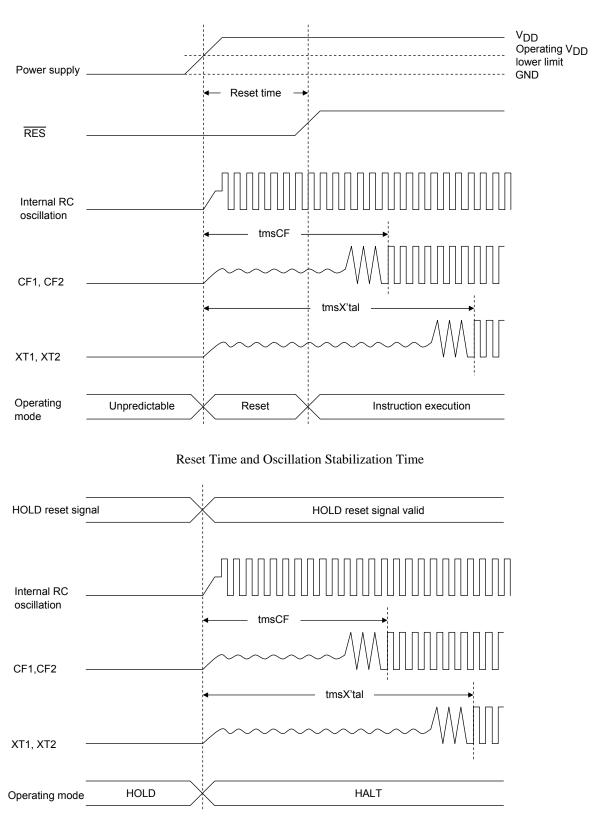
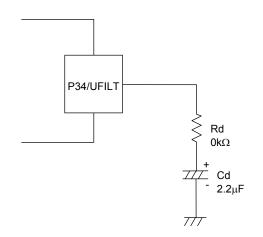
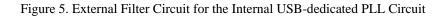




Figure 3. AC Timing Measurement Point



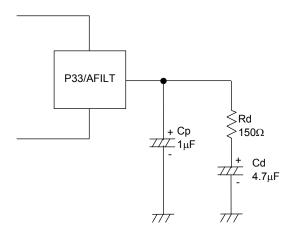
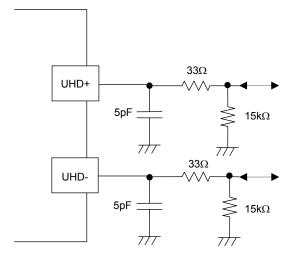

HOLD Reset Signal and Oscillation Stabilization Time

Figure 4. Oscillation Stabilization Time


When using the internal PLL circuit to generate the 48MHz clock for USB, it is necessary to connect a filter circuit such to the P34/UFILT pin such as that shown in the left Fig.

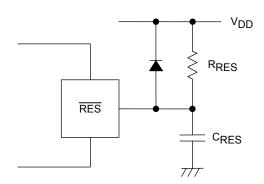

To generate the master clock for the audio interface using the internal PLL circuit, it is necessary to connect a filter circuit to the P33/AFILT pin that is shown in the left Fig.

Figure 6. External Filter Circuit for Audio Interface (Used with Internal PLL Circuit)

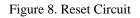

It's necessary to adjust the Circuit Constant of the USB Port Peripheral Circuit for each mounting board.

Figure 7. USB Port Peripheral Circuit

Note:

Determine the value of C_{RES} and R_{RES} so that the reset signal is present for a period of 200 μ s after the supply voltage goes beyond the lower limit of the IC's operating voltage.

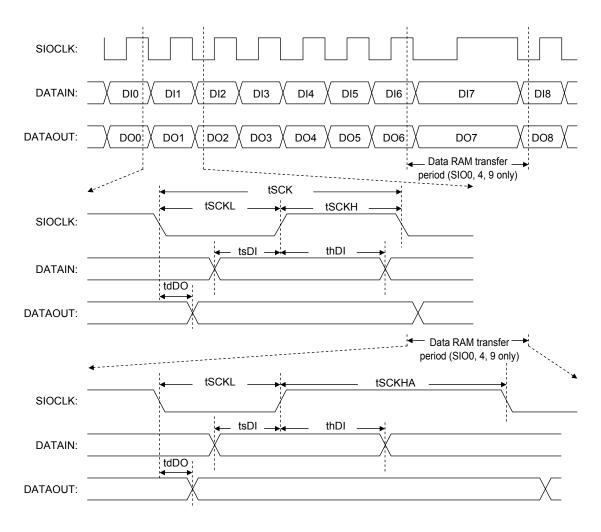


Figure 9. Serial Input/Output Waveform

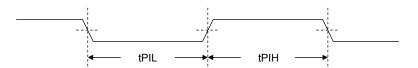


Figure 10. Pulse Input Timing Signal Waveform

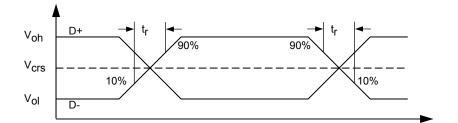
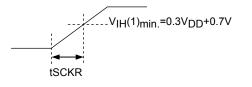



Figure 11. USB Data Signal Timing and Voltage Level

tSCKR:

Defined as the time period from the time the state of the output starts changing till the time it reaches the minimum value of $V_{IH}(1)$.

Figure 12. Serial Clock Output Timing Signal Waveform

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)			
LC87F1HC4BUWA-2H	SPQFP48 7x7 / SQFP48 (Pb-Free)	2500 / Tray JEDEC			

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright l