

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details		
Product Status	Active	
Core Processor	ARM® Cortex®-M0+	
Core Size	32-Bit Single-Core	
Speed	48MHz	
Connectivity	I ² C, SPI, UART/USART, USB	
Peripherals	DMA, I ² S, LCD, LVD, POR, PWM, WDT	
Number of I/O	50	
Program Memory Size	256KB (256K x 8)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	32K x 8	
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V	
Data Converters	A/D 16x16b; D/A 1x12b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 105°C (TA)	
Mounting Type	Surface Mount	
Package / Case	64-LFBGA	
Supplier Device Package	64-MAPBGA (5x5)	
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl43z256vmp4	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Operating Characteristics

• Voltage range: 1.71 to 3.6 V

Flash write voltage range: 1.71 to 3.6 V
Temperature range: -40 to 105 °C

Packages

- 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm thickness
- 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm thickness

Low Power

- Down to 54uA/MHz in very low power run mode
- Down to 1.96uA in VLLS3 mode (RAM + RTC retained)
- · Six flexible static modes

Timers

- One 6-channel Timer/PWM module
- Two 2-channel Timer/PWM modules
- One low-power timer
- Periodic interrupt timer
- · Real time clock

Security and Integrity

- 80-bit unique identification number per chip
- · Advanced flash security

I/O

• Up to 50 general-purpose input/output pins (GPIO) and 6 high-drive pad

Ordering Information

Pro	duct	Mer	nory	Pa	ckage	IO and ADC cha		annel
Part number	Marking (Line1/ Line2)	Flash (KB)	SRAM (KB)	Pin count	Package	GPIOs	GPIOs (INT/HD) ¹	ADC channels (SE/DP)
MKL43Z128VLH4	MKL43Z128V//LH4	128	16	64	LQFP	50	31/6	16/2
MKL43Z256VLH4	MKL43Z256V//LH4	256	32	64	LQFP	50	31/6	16/2
MKL43Z128VMP4	M43P7V	128	16	64	MAPBGA	50	31/6	16/2
MKL43Z256VMP4	M43P8V	256	32	64	MAPBGA	50	31/6	16/2

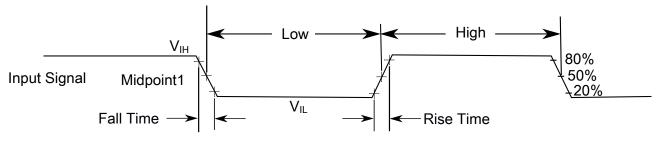
1. INT: interrupt pin numbers; HD: high drive pin numbers

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Product Brief	The Product Brief contains concise overview/summary information to enable quick evaluation of a device for design suitability.	KLX3PB ¹
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL43P64M48SF6RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	This document.
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_1N71K ¹
Package drawing	Package dimensions are provided in package drawings.	64-LQFP: 98ASS23234W ¹ 64 MAPBGA: 98ASA00420D ¹

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

1.4 Voltage and current operating ratings


Table 4. Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
V _{REGIN}	USB regulator input	-0.3	6.0	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is $V_{IL} + (V_{IH} - V_{IL}) / 2$

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30 pF loads$
- Slew rate disabled
- Normal drive strength

Table 7. Voltage and current operating behaviors (continued)

Symbol	Description	Min.	Max.	Unit	Notes
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 5 \text{ mA}$ • $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OL} = 1.5 \text{ mA}$	_	0.5	V	
V _{OL}	Output low voltage — high drive pad				1
	• $2.7 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}, \text{I}_{OL} = 18 \text{ mA}$	_	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}, \text{I}_{OL} = 6 \text{ mA}$	_	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range	_	1	μA	2
I _{IN}	Input leakage current (per pin) at 25 °C	_	0.025	μA	2
I _{IN}	Input leakage current (total all pins) for full temperature range	_	64	μА	2
I _{OZ}	Hi-Z (off-state) leakage current (per pin)	_	1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	3

^{1.} PTB0, PTB1, PTC3, PTC4, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.

2.2.4 Power mode transition operating behaviors

All specifications except t_{POR} and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 48 MHz
- Bus and flash clock = 24 MHz
- HIRC clock mode

Table 8. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip.	_	_	300	μs	1
	• VLLS0 → RUN	_	152	166	μs	
	• VLLS1 → RUN	_	152	166	μs	
	• VLLS3 → RUN	_	93	104	μs	

^{2.} Measured at V_{DD} = 3.6 V

^{3.} Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• LLS → RUN					
		_	7.5	8	μs	
	VLPS → RUN					
		_	7.5	8	μs	
	• STOP → RUN					
		_	7.5	8	μs	

^{1.} Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

Table 9. Power consumption operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	_	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	5.76	6.40	mA	
	• at 105 °C	_	6.04	6.68		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.21	3.85	mA	
	• at 105 °C	_	3.49	4.13		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	6.45	7.09	mA	
	• at 105 °C	_	6.75	7.39		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V					2
		_	3.95	4.59		
		_	4.23	4.87	mA	

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 25 °C					
	• at 105 °C					
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 12 MHz core/6 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C		2.68	3.32	mA	
	• at 105 °C	_	2.96	3.60		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock enable 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	_	8.08	8.72	mA	
	• at 105 °C	_	8.39	9.03		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in flash all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	3.90	4.54	mA	
	• at 105 °C	_	4.21	4.85		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in Flash all peripheral clock disable, 24 MHz core/12 MHz flash, V _{DD} = 3.0 V		2.66	3.30	m A	
	• at 25 °C	_			mA	
	• at 105 °C	_	2.94	3.58		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock disable, 12 MHz core/6 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	2.03	2.67	mA	
	• at 105 °C	_	2.31	2.95		
I _{DD_RUN}	Run mode current—48M HIRC mode, Running While(1) loop in Flash all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	_	5.52	6.16	mA	
	• at 105 °C	_	5.83	6.47		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock disable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C		5.29	5.93	mA	
	• at 105 °C	_	5.56	6.20		
I _{DD_RUN}	Run mode current—48M HIRC mode, running While(1) loop in SRAM all peripheral clock enable, 48 MHz core/24 MHz flash, V _{DD} = 3.0 V					
		_	6.91	7.55	mA	
		_	7.19	7.91		

Table 9. Power consumption operating behaviors (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• at 50 °C	_	10.26	17.62		
	• at 85 °C	_	33.49	60.19	μA	
	• at 105 °C	_	102.92	162.20		
I _{DD_LLS}	Low-leakage stop mode current, all peripheral disable, at 3.0 V • at 25 °C and below	_	2.06	3.33	μΑ	
	• at 50 °C		4.72	6.85		
	• at 70 °C	_	8.13	13.30		
	• at 85 °C	_	13.34	24.70		
	• at 105 °C	_	41.08	52.43		
I _{DD_LLS}	Low-leakage stop mode current with RTC current, at 3.0 V • at 25 °C and below	_	2.46 5.12	3.73 7.25	μА	
	• at 50 °C					
	• at 70 °C	_	8.53	11.78		
	• at 85 °C		13.74	18.91		
	• at 105 °C	_	41.48	52.83		
I _{DD_LLS}	Low-leakage stop mode current with RTC current, at 1.8 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C • at 105 °C	- - - -	2.35 4.91 8.32 13.44 40.47	2.70 6.75 11.78 18.21 51.85	μА	3
I _{DD_VLLS3}	Very-low-leakage stop mode 3 current, all peripheral disable, at 3.0 V • at 25 °C and below • at 50 °C • at 70 °C • at 85 °C	- - - -	1.45 3.37 5.76 9.72 30.41	1.85 4.39 8.48 14.30 37.50	μА	
I _{DD_VLLS3}	at 105 °C Very-low-leakage stop mode 3 current with RTC current, at 3.0 V				μА	3
	• at 25 °C and below	_	2.05	2.45	μΑ	
	• at 50 °C	_	3.97	4.99		
	• at 70 °C	_	6.36	9.08		
	• at 85 °C	_	10.32	14.73		
	• at 105 °C	_	31.01	38.10		

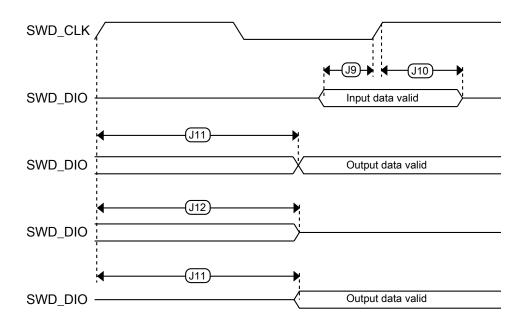


Figure 5. Serial wire data timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG-Lite specifications

Table 18. IRC48M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD}	Supply current	_	400	500	μΑ	_
f _{IRC}	Output frequency	_	48	_	MHz	_
Δf _{irc48m_ol_lv}	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over temperature	_	± 0.5	± 1.5	%f _{irc48m}	1
Δf _{irc48m_ol_hv}	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over temperature	_	± 0.5	± 1.0	%f _{irc48m}	1

Table 18. IRC48M specification (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
Tj	Period jitter (RMS)	_	35	150	ps	
T _{su}	Startup time	_	2	3	μs	_

1. The maximum value represents characterized results equivalent to mean plus or minus three times the standard deviation (mean +/-3sigma).

Table 19. IRC8M/2M specification

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_2M}	Supply current in 2 MHz mode	_	14	17	μΑ	_
I _{DD_8M}	Supply current in 8 MHz mode	_	30	35	μΑ	_
f _{IRC_2M}	Output frequency	_	2	_	MHz	_
f _{IRC_8M}	Output frequency	_	8	_	MHz	_
f _{IRC_T_2M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	_
f _{IRC_T_8M}	Output frequency range (trimmed)	_	_	±3	%f _{IRC}	_
T _{su_2M}	Startup time	_	_	12.5	μs	_
T _{su_8M}	Startup time	_	_	12.5	μs	_

Table 27. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
					-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		• <12-bit modes	_	-1.4	-1.8		V _{DDA} ⁵
E _Q	Quantization	16-bit modes	_	-1 to 0	_	LSB ⁴	
	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective	16-bit differential mode				bits	6
	number of bits	• Avg = 32	12.8	14.5		bits	
		• Avg = 4	11.9	13.8	_		
		16-bit single-ended mode			_	bits	
		• Avg = 32	400	40.0		bits	
		• Avg = 4	12.2	13.9	_		
	Oi-mark to main	See ENOB	11.4	13.1	_		
SINAD	Signal-to-noise plus distortion	6.02 × ENOB + 1.76			1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	_	-94	_	dB	
		16-bit single-ended mode		05		u.b	
		• Avg = 32	_	-85	_		
SFDR	Spurious free	16-bit differential mode			_	dB	7
	dynamic range	• Avg = 32	82	95		dB	
		16-bit single-ended mode	78	90	_	иь	
		• Avg = 32	. •				
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

^{1.} All accuracy numbers assume the ADC is calibrated with $V_{\mbox{\scriptsize REFH}}$ = $V_{\mbox{\scriptsize DDA}}$

Peripheral operating requirements and behaviors

- 2. Typical values assume $V_{DDA} = 3.0 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 2.0 \text{ MHz}$ unless otherwise stated. Typical values are for reference only and are not tested in production.
- 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

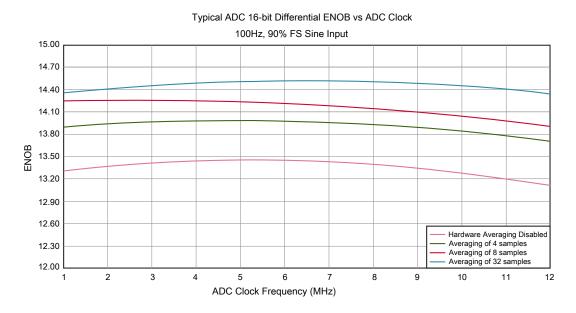


Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode

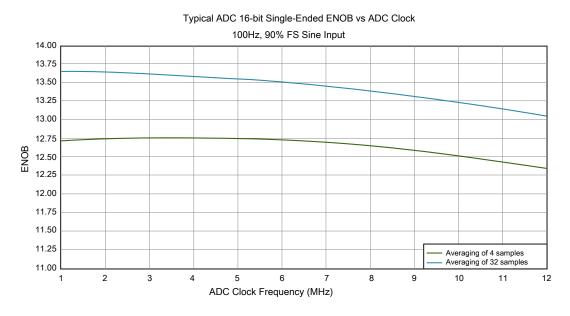


Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

Peripheral operating requirements and behaviors

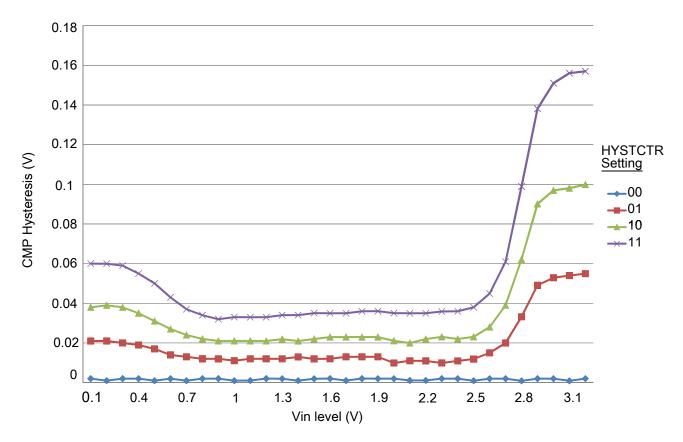


Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

3.6.4 12-bit DAC electrical characteristics

3.6.4.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V_{DDA}	Supply voltage		3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
C _L	Output load capacitance	_	100	pF	2
ΙL	Output load current	_	1	mA	

- 1. The DAC reference can be selected to be V_{DDA} or V_{REFH} .
- 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

3.6.4.2 12-bit DAC operating behaviors Table 34. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL}	Supply current — low-power mode	_	_	250	μΑ	
I _{DDA_DACH}	Supply current — high-speed mode	_	_	900	μΑ	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	_	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	_	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF		_	V_{DACR}	mV	
INL	Integral non-linearity error — high speed mode	_	_	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	_	_	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	_	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, V _{DDA} ≥ 2.4 V	60	_	90	dB	
T_CO	Temperature coefficient offset voltage	_	3.7	_	μV/C	6
T_GE	Temperature coefficient gain error	_	0.000421	_	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	_	_	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	High power (SP _{HP})	1.2	1.7	_		
	Low power (SP _{LP})	0.05	0.12	_		
BW	3dB bandwidth				kHz	
	High power (SP _{HP})	550	_	_		
	Low power (SP _{LP})	40	_	_		

- 1. Settling within ±1 LSB
- 2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV
- 4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V
- 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} 100 mV
- 6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

Peripheral operating requirements and behaviors

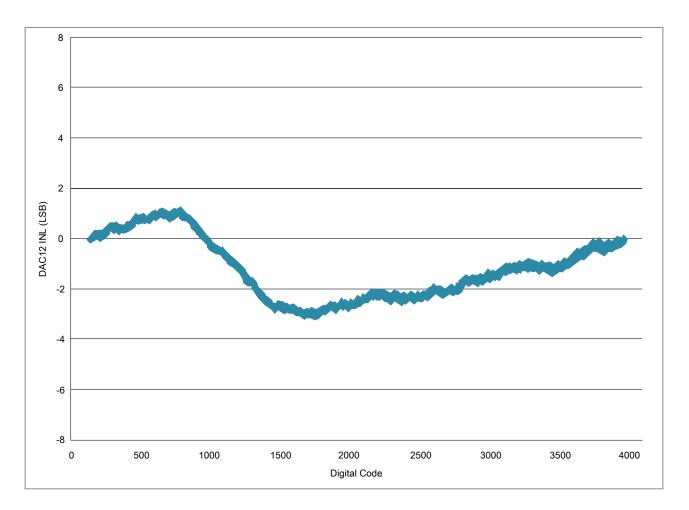


Figure 12. Typical INL error vs. digital code

NOTE

The IRC48M do not meet the USB jitter specifications for certification for Host mode operation.

This device cannot support Host mode operation.

3.8.2 USB VREG electrical specifications Table 35. USB VREG electrical specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
VREGIN	Input supply voltage	2.7	_	5.5	V	
I _{DDon}	Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V	_	125	186	μA	
I _{DDstby}	Quiescent current — Standby mode, load current equal zero	_	1.1	10	μA	
I _{DDoff}	Quiescent current — Shutdown mode					
	 VREGIN = 5.0 V and temperature=25 °C 	_	650	_	nA	
	Across operating voltage and temperature	_	_	4	μA	
I _{LOADrun}	Maximum load current — Run mode	_	_	120	mA	
I _{LOADstby}	Maximum load current — Standby mode	_	_	1	mA	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) > 3.6 V					
	Run mode	3	3.3	3.6	V	
	Standby mode	2.1	2.8	3.6	V	
V _{Reg33out}	Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode	2.1	_	3.6	V	2
C _{OUT}	External output capacitor	1.76	2.2	8.16	μF	
ESR	External output capacitor equivalent series resistance	1	_	100	mΩ	
I _{LIM}	Short circuit current	_	290	_	mA	

^{1.} Typical values assume VREGIN = 5.0 V, Temp = $25 \,^{\circ}\text{C}$ unless otherwise stated.

^{2.} Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to I_{Load}.

Table 46. LCD electricals (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• RVTRIM=1110	_	0.99	_		
	• RVTRIM=0001	_	1.01	_		
	• RVTRIM=1001	_	1.02	_		
	• RVTRIM=0101	_	1.03	_		
	• RVTRIM=1101	_	1.05	_		
	• RVTRIM=0011	_	1.06	_		
	• RVTRIM=1011	_	1.07	_		
	• RVTRIM=0111	_	1.08	_		
	• RVTRIM=1111	_	1.09	_		
Δ_{RTRIM}	V _{IREG} TRIM resolution	_	_	3.0	% V _{IREG}	
I _{VIREG}	V _{IREG} current adder — RVEN = 1	_	1	_	μA	
I _{RBIAS}	RBIAS current adder					
	• LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF)	_	10	_	μΑ	
	• LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF)	_	1	_	μΑ	
R _{RBIAS}	RBIAS resistor values					
	• LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF)	_	0.28	_	МΩ	
	• LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF)	_	2.98	_	ΜΩ	
VLL1	VLL1 voltage	_	_	V _{IREG}	V	4
VLL2	VLL2 voltage	_	_	2 x V _{IREG}	V	4
VLL3	VLL3 voltage			3 x V _{IREG}	V	4
VLL1	VLL1 voltage	_	_	V _{DDA} / 3	V	5
VLL2	VLL2 voltage	_	_	V _{DDA} / 1.5	V	5
VLL3	VLL3 voltage	_	_	V_{DDA}	V	5

- 1. The actual value used could vary with tolerance.
- 2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.
- 3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} 0.15 V
- 4. VLL1, VLL2 and VLL3 are a function of V_{IREG} only when the regulator is enabled (GCR[RVEN]=1) and the charge pump is enabled (GCR[CPSEL]=1).
- 5. VLL1, VLL2 and VLL3 are a function of V_{DDA} only under either of the following conditions:
 - The charge pump is enabled (GCR[CPSEL]=1), the regulator is disabled (GCR[RVEN]=0), and VLL3 = V_{DDA} through the internal power switch (GCR[VSUPPLY]=0).
 - The resistor bias string is enabled (GCR[CPSEL]=0), the regulator is disabled (GCR[RVEN]=0), and VLL3 is connected to V_{DDA} externally (GCR[VSUPPLY]=1).

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number				
64-pin LQFP	98ASS23234W				
64-pin MAPBGA	98ASA00420D				

5 Pinouts and Packaging

5.1 KL43 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

NOTE

VREFH can act as VREF_OUT when VREFV1 module is enabled.

64 MAP BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
A1	1	PTE0	DISABLED	LCD_P48	PTE0/ CLKOUT32K	SPI1_MISO	LPUART1_TX	RTC_CLKOUT	CMP0_OUT	I2C1_SDA	LCD_P48
B1	2	PTE1	DISABLED	LCD_P49	PTE1	SPI1_MOSI	LPUART1_RX		SPI1_MISO	I2C1_SCL	LCD_P49
_	3	VDD	VDD	VDD							
C4	4	VSS	VSS	VSS							
E1	5	USB0_DP	USB0_DP	USB0_DP							
D1	6	USB0_DM	USB0_DM	USB0_DM							
E2	7	VOUT33	VOUT33	VOUT33							
D2	8	VREGIN	VREGIN	VREGIN							

Pinouts and Packaging

64 MAP BGA	64 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
B2	63	PTD6/ LLWU_P15	LCD_P46/ ADC0_SE7b	LCD_P46/ ADC0_SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_RX		SPI1_MISO	FXIO0_D6	LCD_P46
A2	64	PTD7	LCD_P47	LCD_P47	PTD7	SPI1_MISO	LPUART0_TX		SPI1_MOSI	FXIO0_D7	LCD_P47

5.2 KL43 Family Pinouts

Figure below shows the 64 LQFP pinouts

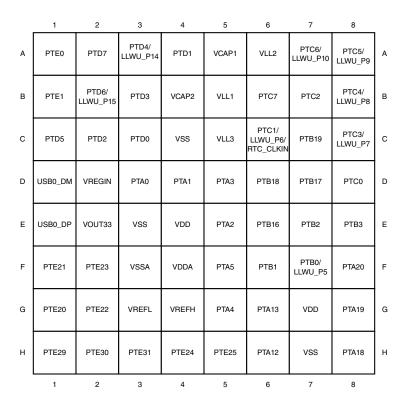


Figure 24. 64 MAPBGA Pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the Web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers:

7 Part identification

8 Terminology and guidelines

8.1 Definitions

Key terms are defined in the following table:

Term	Definition
Rating	A minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:
	 Operating ratings apply during operation of the chip. Handling ratings apply when the chip is not powered.
	NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings.
Operating requirement	A specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip
Operating behavior	A specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions
Typical value	A specified value for a technical characteristic that:
	 Lies within the range of values specified by the operating behavior Is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions
	NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.

8.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3 IRM	1.2	V

Operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

Operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
	Digital I/O weak pullup/pulldown current	10 tank	70	130	μΑ

8.3 Typical-value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	°C
V_{DD}	3.3 V supply voltage	3.3	V