

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	95
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 53x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk61fx512vmd15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PK61 and MK61

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

Q K## A M FFF T PP CC N

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
K##	Kinetis family	• K61
A	Key attribute	 F = Cortex-M4 w/ DSP and FPU
Μ	Flash memory type	 N = Program flash only X = Program flash and FlexMemory
FFF	Program flash memory size	 512 = 512 KB 1M0 = 1 MB

Table continues on the next page

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage1	-0.3	3.8	V
I _{DD}	Digital supply current	—	300	mA
V _{DIO}	Digital input voltage (except $\overline{\text{RESET}},$ EXTAL0/XTAL0, and EXTAL1/XTAL1) 2	-0.3	5.5	V
V _{AIO}	Analog ³ , RESET , EXTAL0/XTAL0, and EXTAL1/XTAL1 input voltage	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB0_DP}	USB0_DP input voltage	-0.3	3.63	V
V _{USB1_DP}	USB1_DP input voltage	-0.3	3.63	V
V _{USB0_DM}	USB0_DM input voltage	-0.3	3.63	V
V _{USB1_DM}	USB1_DM input voltage	-0.3	3.63	V
VREGIN	USB regulator input	-0.3	6.0	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. It applies for all port pins except Tamper pins.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• @ -40 to 25°C	_	2.68	4.22	μA	
	• @ 70°C	—	8.8	10.74	μA	
	• @ 105°C	—	37.28	43.61	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	• @ -40 to 25°C	—	2.46	4.02	μA	
	• @ 70°C	—	7.04	8.99	μA	
	• @ 105°C	—	30.68	37.04	μA	
I _{DD_VBAT}	Average current when CPU is not accessing RTC registers at 3.0 V					6
	• @ -40 to 25°C	—	0.89	1.10	μA	
	• @ 70°C	—	1.28	1.85	μA	
	• @ 105°C	—	3.10	4.30	μA	

Table 6. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 150 MHz core and system clock, 75 MHz bus, 50 MHz FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks disabled.
- 3. 150 MHz core and system clock, 75 MHz bus, 50 MHz FlexBus clock, and 25 MHz flash clock. MCG configured for PEE mode. All peripheral clocks enabled, but peripherals are not in active operation.
- 4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.
- 5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 6. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. MCG in PEE mode at greater than 100 MHz frequencies.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

General

Figure 3. Run mode supply current vs. core frequency

Symbol	Description	Min.	Max.	Unit	Notes
t _{io50}	Port rise and fall time (high drive strength)				6
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	7	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	3	ns	—
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	28	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	14	ns	—
t _{io50}	Port rise and fall time (low drive strength)				7
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	18	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	9	ns	—
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	48	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	—
t _{io60}	Port rise and fall time (high drive strength)				6
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	6	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	3	ns	—
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	28	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	14	ns	—
t _{io60}	Port rise and fall time (low drive strength)				7
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	18	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	6	ns	—
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	48	ns	_
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	—

Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load
- 6. 25 pF load
- 7. 15 pF load

rempheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• f _{vco} = 180 MHz	—	100	—	ps	
	• f _{vco} = 360 MHz	—	75		ps	
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					10
	• f _{vco} = 180 MHz	—	600	—	ps	
	• f _{vco} = 360 MHz	—	300		ps	

Table 15. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation
 (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. Accumulated jitter depends on VCO frequency and VDIV.

6.3.2 Oscillator electrical specifications

6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	—	200	—	μA	
	• 8 MHz (RANGE=01)	—	300	—	μA	
	• 16 MHz	—	950	—	μA	
	• 24 MHz	_	1.2	—	mA	
	• 32 MHz	—	1.5	—	mA	
I _{DDOSC}	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
		_	400	_	μA	

Table continues on the next page...

rempheral operating requirements and behaviors

6.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	_	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	1
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—		60	MHz	2, 3
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	1000		ms	4, 5
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)		500		ms	-
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	—	1	—	ms	

1. Frequencies less than 8 MHz are not in the PLL range.

2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

- 4. Proper PC board layout procedures must be followed to achieve specifications.
- 5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz oscillator electrical characteristics

6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor	_	100	—	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32	—	5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation		0.6		V

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2
	Data Flas	sh				
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	_	years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K		cycles	2
	FlexRAM as EE	EPROM	•			
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	_	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
n _{nvmcycee}	Cycling endurance for EEPROM backup	20 K	50 K		cycles	2
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	70 K	175 K	_	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	630 K	1.6 M	_	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	2.5 M	6.4 M	_	writes	
n _{nvmwree2k}	 EEPROM backup to FlexRAM ratio = 2,048 	10 M	25 M	_	writes	

Table 23. NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values assume all 16-bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_subsystem = $\frac{\text{EEPROM} - 2 \times \text{EEESPLIT} \times \text{EEESIZE}}{\text{EEESPLIT} \times \text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycee}}$

where

- Writes_subsystem minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)
- EEPROM allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with the Program Partition command
- EEESPLIT FlexRAM split factor for subsystem; entered with the Program Partition command
- EEESIZE allocated FlexRAM based on DEPART; entered with the Program Partition command
- Write_efficiency
 - 0.25 for 8-bit writes to FlexRAM
 - 0.50 for 16-bit or 32-bit writes to FlexRAM
- n_{nvmcycee} EEPROM-backup cycling endurance

Figure 11. EEPROM backup writes to FlexRAM

rempheral operating requirements and behaviors

Num	Description	Min.	Max.	Unit
t _{WP}	NFC_WP pulse width	T _L – 1	—	ns
t _{ALS}	NFC_ALE setup time	2T _H + T _L	—	ns
t _{ALH}	NFC_ALE hold time	T _H + T _L		ns
t _{DS}	Data setup time	T _L – 1	_	ns
t _{DH}	Data hold time	T _H – 1	_	ns
t _{WC}	Write cycle time	T _H + T _L – 1	—	ns
t _{WH}	NFC_WE hold time	T _H – 1	_	ns
t _{RR}	Ready to NFC_RE low	4T _H + 3T _L + 90	_	ns
t _{RP}	NFC_RE pulse width	T _L + 1		ns
t _{RC}	Read cycle time	T _L + T _H – 1	_	ns
t _{REH}	NFC_RE high hold time	T _H – 1		ns
t _{IS}	Data input setup time	11		ns

Table 25. NFC specifications (continued)

Figure 13. Command latch cycle timing

							-
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	f _{ADACK}
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample ti	mes			1
TUE	Total unadjusted	12-bit modes	—	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.2	-0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	—	±1.0	-2.7 to	LSB ⁴	5
		 <12-bit modes 	_	±0.5	+1.9		
					–0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		<12-bit modes	—	-1.4	-1.8		
EQ	Quantization error	16-bit modes	—	-1 to 0	_	LSB ⁴	
		 ≤13-bit modes 	_	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8	—	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	—	bite	
		• Avg = 4	11.4	13.1		013	
						bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 >	KENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	_	-94	_	-10	
		16 bit single anded made				aв	
			—	-85	—		
		• Avy = 32					
SFDR	Spurious free	16-bit differential mode	82	05	_	dB	7
	dynamic range• Avg = 32			35	_	dR	
		16-hit single-ended mode	79	00			
I	1		10	00	l	l	1

)
--	---

Table continues on the next page...

Symbol	Description	Conditions	Min. Typ. ¹ Ma		Max.	Unit	Notes
							f _{VDDA} = 50Hz, 60Hz
CMRR	Common mode	Gain=1	_	-84	—	dB	V _{CM} =
	rejection ratio	• Gain=64	-	-85	_	dB	500mVpp, f _{VCM} = 50Hz, 100Hz
V _{OFS}	Input offset voltage	Chopping disabled (ADC_PGA[PGACHPb]	_	2.4	—	mV	Output offset = V _{OES} *(Gain+1)
		=1) • Chopping enabled (ADC_PGA[PGACHPb] =0)	_	0.2	_	mV	
T _{GSW}	Gain switching settling time		_	_	10	μs	5
dG/dT	Gain drift over full	Gain=1	_	6	10	ppm/°C	
	temperature range	• Gain=64	_	31	42	ppm/°C	
dG/dV _{DDA}	Gain drift over	• Gain=1	—	0.07	0.21	%/V	V _{DDA} from 1.71
	supply voltage	Gain=64	_	0.14	0.31	%/V	to 3.6V
E _{IL}	Input leakage error	All modes		$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
V _{PP,DIFF}	Maximum differential input		$\left(\frac{\min(v)}{v}\right)$	√ _x ,V _{DDA} −V _x) Gain	<u>-0.2)×4</u>)	V	6
	olghar ownig		where V	_x = V _{REFPG}	_A × 0.583		
SNR	Signal-to-noise	Gain=1	80	90	—	dB	16-bit
	ratio	• Gain=64	52	66	_	dB	differential mode, Average=32
THD	Total harmonic	Gain=1	85	100	—	dB	16-bit
	distortion	• Gain=64	49	95	_	dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free	Gain=1	85	105	_	dB	16-bit
	dynamic range	• Gain=64	53	88	_	dB	differential
							Average=32, f _{in} =100Hz
ENOB	Effective number	Gain=1, Average=4	11.6	13.4	—	bits	16-bit
	OT DITS	• Gain=1, Average=8	8.0	13.6	-	bits	differential mode,f _{in} =100Hz
		• Gain=64, Average=4	7.2	9.6	-	bits	
		• Gain=64, Average=8	6.3	9.6	—	bits	
			12.8	14.5	_	bits	

Table 31. 16-bit ADC with PGA characteristics (continued)

Table continues on the next page...

Figure 26. Offset at half scale vs. temperature

6.6.4 Voltage reference electrical specifications

Table 35.	VREF full-range	operating	requirements
-----------	-----------------	-----------	--------------

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
T _A	Temperature	Operating temperature range of the device		°C	
CL	Output load capacitance	1(00	nF	1, 2

1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.

 The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

6.8.1 Ethernet switching specifications

The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface.

6.8.1.1 MII signal switching specifications

The following timing specs meet the requirements for MII style interfaces for a range of transceiver devices.

Symbol	Description	Min.	Max.	Unit
—	RXCLK frequency	—	25	MHz
MII1	RXCLK pulse width high	35%	65%	RXCLK
				period
MII2	RXCLK pulse width low	35%	65%	RXCLK
				period
MII3	RXD[3:0], RXDV, RXER to RXCLK setup	5		ns
MII4	RXCLK to RXD[3:0], RXDV, RXER hold	5		ns
_	TXCLK frequency		25	MHz
MII5	TXCLK pulse width high	35%	65%	TXCLK
				period
MII6	TXCLK pulse width low	35%	65%	TXCLK
				period
MII7	TXCLK to TXD[3:0], TXEN, TXER invalid	2	_	ns
MII8	TXCLK to TXD[3:0], TXEN, TXER valid		25	ns

Table 39. MII signal switching specifications

Figure 27. RMII/MII transmit signal timing diagram

rempheral operating requirements and behaviors

Figure 36. I2S/SAI timing — master modes

Table 52. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	4.5	_	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid Multiple SAI Synchronous mode 	_	21	ns
	All other modes	_	15	
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

144 MAP BGA	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
F12	PTB6	ADC1_SE12	ADC1_SE12	PTB6				FB_AD23			
F11	PTB7	ADC1_SE13	ADC1_SE13	PTB7				FB_AD22			
F10	PTB8	DISABLED		PTB8		UART3_RTS_ b		FB_AD21			
F9	PTB9	DISABLED		PTB9	SPI1_PCS1	UART3_CTS_ b		FB_AD20			
E12	PTB10	ADC1_SE14	ADC1_SE14	PTB10	SPI1_PCS0	UART3_RX	I2S1_TX_ BCLK	FB_AD19	FTM0_FLT1		
E11	PTB11	ADC1_SE15	ADC1_SE15	PTB11	SPI1_SCK	UART3_TX	I2S1_TX_FS	FB_AD18	FTM0_FLT2		
H7	VSS	VSS	VSS								
F5	VDD	VDD	VDD								
E10	PTB16	TSI0_CH9	TSI0_CH9	PTB16	SPI1_SOUT	UART0_RX	I2S1_TXD0	FB_AD17	EWM_IN		
E9	PTB17	TSI0_CH10	TSI0_CH10	PTB17	SPI1_SIN	UART0_TX	I2S1_TXD1	FB_AD16	EWM_OUT_b		
D12	PTB18	TSI0_CH11	TSI0_CH11	PTB18	CAN0_TX	FTM2_CH0	I2S0_TX_ BCLK	FB_AD15	FTM2_QD_ PHA		
D11	PTB19	TSI0_CH12	TSI0_CH12	PTB19	CAN0_RX	FTM2_CH1	I2S0_TX_FS	FB_OE_b	FTM2_QD_ PHB		
D10	PTB20	ADC2_SE4a	ADC2_SE4a	PTB20	SPI2_PCS0			FB_AD31/ NFC_DATA15	CMP0_OUT		
D9	PTB21	ADC2_SE5a	ADC2_SE5a	PTB21	SPI2_SCK			FB_AD30/ NFC_DATA14	CMP1_OUT		
C12	PTB22	DISABLED		PTB22	SPI2_SOUT			FB_AD29/ NFC_DATA13	CMP2_OUT		
C11	PTB23	DISABLED		PTB23	SPI2_SIN	SPI0_PCS5		FB_AD28/ NFC_DATA12	CMP3_OUT		
B12	PTC0	ADC0_SE14/ TSI0_CH13	ADC0_SE14/ TSI0_CH13	PTC0	SPI0_PCS4	PDB0_EXTRG		FB_AD14/ NFC_DATA11	12S0_TXD1		
B11	PTC1/ LLWU_P6	ADC0_SE15/ TSI0_CH14	ADC0_SE15/ TSI0_CH14	PTC1/ LLWU_P6	SPI0_PCS3	UART1_RTS_ b	FTM0_CH0	FB_AD13/ NFC_DATA10	I2S0_TXD0		
A12	PTC2	ADC0_SE4b/ CMP1_IN0/ TSI0_CH15	ADC0_SE4b/ CMP1_IN0/ TSI0_CH15	PTC2	SPI0_PCS2	UART1_CTS_ b	FTM0_CH1	FB_AD12/ NFC_DATA9	12S0_TX_FS		
A11	PTC3/ LLWU_P7	CMP1_IN1	CMP1_IN1	PTC3/ LLWU_P7	SPI0_PCS1	UART1_RX	FTM0_CH2	CLKOUT	I2S0_TX_ BCLK		
H8	VSS	VSS	VSS								
A9	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3	FB_AD11/ NFC_DATA8	CMP1_OUT	I2S1_TX_ BCLK	
D8	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0	FB_AD10/ NFC_DATA7	CMP0_OUT	I2S1_TX_FS	
C8	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_EXTRG	I2S0_RX_ BCLK	FB_AD9/ NFC_DATA6	I2S0_MCLK		
B8	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN	USB_SOF_ OUT	I2S0_RX_FS	FB_AD8/ NFC_DATA5			
A8	PTC8	ADC1_SE4b/ CMP0_IN2	ADC1_SE4b/ CMP0_IN2	PTC8		FTM3_CH4	I2S0_MCLK	FB_AD7/ NFC_DATA4			

K61 Sub-Family, Rev.6, 09/2015.

NP____

	7	
	7	

144 Map Bga	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
B9	PTD9	DISABLED		PTD9	I2C0_SDA	UART5_TX			FB_A17/ NFC_ALE		
B3	PTD10	DISABLED		PTD10		UART5_RTS_ b			FB_A18/ NFC_RE		
B2	PTD11	DISABLED		PTD11	SPI2_PCS0	UART5_CTS_ b	SDHC0_ CLKIN		FB_A19		
B1	PTD12	DISABLED		PTD12	SPI2_SCK	FTM3_FLT0	SDHC0_D4		FB_A20		
C3	PTD13	DISABLED		PTD13	SPI2_SOUT		SDHC0_D5		FB_A21		
C2	PTD14	DISABLED		PTD14	SPI2_SIN		SDHC0_D6		FB_A22		
C1	PTD15	DISABLED		PTD15	SPI2_PCS1		SDHC0_D7		FB_A23		
M5	NC	NC	NC								
A10	NC	NC	NC								
B10	NC	NC	NC								
C10	NC	NC	NC								

8.3 K61 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Pinout

nevision History

	1	2	3	4	5	6	7	8	9	10	11	12	_
A	PTD7	PTD6/ LLWU_P15	PTD5	PTD4/ LLWU_P14	PTD0/ LLWU_P12	PTC16	PTC12	PTC8	PTC4/ LLWU_P8	NC	PTC3/ LLWU_P7	PTC2	A
в	PTD12	PTD11	PTD10	PTD3	PTC19	PTC15	PTC11/ LLWU_P11	PTC7	PTD9	NC	PTC1/ LLWU_P6	PTC0	в
с	PTD15	PTD14	PTD13	PTD2/ LLWU_P13	PTC18	PTC14	PTC10	PTC6/ LLWU_P10	PTD8	NC	PTB23	PTB22	с
D	PTE2/ LLWU_P1	PTE1/ LLWU_P0	PTE0	PTD1	PTC17	PTC13	PTC9	PTC5/ LLWU_P9	PTB21	PTB20	PTB19	PTB18	D
E	PTE6	PTE5	PTE4/ LLWU_P2	PTE3	VDD	VDD	VDD	VDD	PTB17	PTB16	PTB11	PTB10	E
F	PTE10	PTE9	PTE8	PTE7	VDD	VSS	VSS	VDD	PTB9	PTB8	PTB7	PTB6	F
G	VOUT33	VREGIN	PTE12	PTE11	VREFH	VREFL	VSS	VSS	PTB5	PTB4	PTB3	PTB2	G
н	USB0_DP	USB0_DM	VSS	TAMPER4	VDDA	VSSA	VSS	VSS	PTB1	PTB0/ LLWU_P5	PTA29	PTA28	н
J	PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1	PGA2_DM/ ADC2_DM0/ ADC0_DM1 ADC3_DM3/	ADC0_SE16/ CMP1_IN2/ ADC0_SE21	TAMPER3	PTA0	PTA1	PTA6	PTA7	PTA13/ LLWU_P4	PTA27	PTA26	PTA25	J
к	PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1	PGA3_DM/ ADC3_DM0/ ADC2_DM3/ ADC1_DM1	ADC1_SE16/ CMP2_IN2/ ADC0_SE22	TAMPER2	TAMPER1	PTA2	PTA3	PTA8	PTA12	PTA16	PTA17	PTA24	к
L	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC1_OUT/ CMP0_IN4/ CMP2_IN3/ ADC1_SE23	TAMPER0/ RTC_ WAKEUP_B	VBAT	PTA4/ LLWU_P3	PTA9	PTA11	PTA14	PTA15	RESET_b	L
М	PGA1_DP/ ADC1_DP0/ ADC0_DP3	PGA1_DM/ ADC1_DM0/ ADC0_DM3	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	TAMPER5	NC	EXTAL32	XTAL32	PTA5	PTA10	VSS	PTA19	PTA18	м
,	1	2	3	4	5	6	7	8	9	10	11	12	,

Figure 42. K61 144 MAPBGA Pinout Diagram

9 Revision History

The following table provides a revision history for this document.

 Table 59.
 Revision History

Rev. No.	Date	Substantial Changes
3	3/2012	Initial public release

Table continues on the next page...

Rev. No.	Date	Substantial Changes
4	10/2012	Replaced TBDs throughout.
5	10/2013	Changes for 4N96B mask set:
		 Min VDD operating requirement specification updated to support operation down to 1.71V.
		New specifications:
		 Updated Vdd_ddr min specification. Added Vodpu specification. Removed loz, loz_ddr, and loz_tamper Hi-Z leakage specifications. They have been replaced by new lina, lind, and Zind specifications. Fpll_ref_acc specification has been added. I²C module was previously covered by the general switching specifications. To provide more detail on I²C operation a dedicated Inter-Integrated Circuit Interface (I²C) timing section has been added.
		Modified specifications:
		 Vref_ddr max spec has been updated. Tpor spec has been split into two specifications based on VDD slew rate. Trd1allx and Trd1alln max have been updated. 16-bit ADC Temp sensor slope and Temp sensor voltage (Vtemp25) have been modified. The typical values that were listed previously have been updated, and min and max specifications have been added.
		Corrections:
		 Some versions of the datasheets listed incorrect clock mode information in the "Diagram: Typical IDD_RUN operating behavior section." These errors have been corrected. Fintf_ft specification was previously shown as a max value. It has been corrected to be shown as a typical value as originally intended. Corrected DDR write and read timing diagrams to show the correct location of the Tcmv specification. SDHC peripheral 50MHz high speed mode options were left out of the last datasheet. These have been added to the SDHC specifications section.
6	09/2015	 Updated the footnotes of Thermal Attributes table Removed Power Sequencing section Added footnote to ambient temperature specification of Thermal Operating requirements Removed "USB HS/LS/FS on-the-go controller with on-chip high speed transceiver" from features section Updated Terminology and guidelines section Updated the footnotes and the values of Power consumption operating behaviors table Added Notes in USB electrical specification section Updated I2C timing table

Table 59. Revision History (continued)