Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Active | | Number of LABs/CLBs | 183590 | | Number of Logic Elements/Cells | 480000 | | Total RAM Bits | 5664768 | | Number of I/O | 396 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 100°C (TJ) | | Package / Case | 1152-BBGA, FCBGA | | Supplier Device Package | 1152-FBGA, FC (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/10ax048k3f35e2sg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | Feature | | Description | |--|--|--| | Low-power serial
transceivers | - Intel Arria 10 GT- Backplane support: - Intel Arria 10 GX- Intel Arria 10 GT- Extended range dow ATX transmit PLLs w Electronic Dispersion module Adaptive linear and of | —1 Gbps to 17.4 Gbps —1 Gbps to 25.8 Gbps —up to 12.5 | | HPS
(Intel Arria 10 SX
devices only) | Processor and system | Dual-core ARM Cortex-A9 MPCore processor—1.2 GHz CPU with 1.5 GHz overdrive capability 256 KB on-chip RAM and 64 KB on-chip ROM System peripherals—general-purpose timers, watchdog timers, direct memory access (DMA) controller, FPGA configuration manager, and clock and reset managers Security features—anti-tamper, secure boot, Advanced Encryption Standard (AES) and authentication (SHA) ARM CoreSight* JTAG debug access port, trace port, and on-chip trace storage | | | External interfaces | Hard memory interface—Hard memory controller (2,400 Mbps DDR4, and 2,133 Mbps DDR3), Quad serial peripheral interface (QSPI) flash controller, NAND flash controller, direct memory access (DMA) controller, Secure Digital/MultiMediaCard (SD/MMC) controller Communication interface— 10/100/1000 Ethernet media access control (MAC), USB On-The-GO (OTG) controllers, I²C controllers, UART 16550, serial peripheral interface (SPI), and up to 62 HPS GPIO interfaces (48 direct-share I/Os) | | | Interconnects to core | High-performance ARM AMBA* AXI bus bridges that support simultaneous read and write HPS-FPGA bridges—include the FPGA-to-HPS, HPS-to-FPGA, and lightweight HPS-to-FPGA bridges that allow the FPGA fabric to issue transactions to slaves in the HPS, and vice versa Configuration bridge that allows HPS configuration manager to configure the core logic via dedicated 32-bit configuration port FPGA-to-HPS SDRAM controller bridge—provides configuration interfaces for the multiport front end (MPFE) of the HPS SDRAM controller | | Configuration | Enhanced 256-bit ad | comprehensive design protection to protect your valuable IP investments dvanced encryption standard (AES) design security with authentication obtocol (CvP) using PCIe Gen1, Gen2, or Gen3 | | | | continued | $^{^{(2)}}$ Intel Arria 10 devices support this external memory interface using hard PHY with soft memory controller. | Feature | Description | |--------------------|--| | | Dynamic reconfiguration of the transceivers and PLLs Fine-grained partial reconfiguration of the core fabric Active Serial x4 Interface | | Power management | SmartVID Low static power device options Programmable Power Technology Intel Quartus Prime integrated power analysis | | Software and tools | Intel Quartus Prime design suite Transceiver toolkit Platform Designer system integration tool DSP Builder for Intel FPGAs OpenCL™ support Intel SoC FPGA Embedded Design Suite (EDS) | Intel Arria 10 Transceiver PHY Overview Provides details on Intel Arria 10 transceivers. # **Intel Arria 10 Device Variants and Packages** #### Table 4. **Device Variants for the Intel Arria 10 Device Family** | Variant | Description | |-------------------|---| | Intel Arria 10 GX | FPGA featuring 17.4 Gbps transceivers for short reach applications with 12.5 backplane driving capability. | | Intel Arria 10 GT | FPGA featuring: 17.4 Gbps transceivers for short reach applications with 12.5 backplane driving capability. 25.8 Gbps transceivers for supporting CAUI-4 and CEI-25G applications with CFP2 and CFP4 modules. | | Intel Arria 10 SX | SoC integrating ARM-based HPS and FPGA featuring 17.4 Gbps transceivers for short reach applications with 12.5 backplane driving capability. | ### **Intel Arria 10 GX** This section provides the available options, maximum resource counts, and package plan for the Intel Arria 10 GX devices. The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Intel FPGA Product Selector. ### **Related Information** Intel FPGA Product Selector Provides the latest information on Intel products. ### **Maximum Resources** Table 5. Maximum Resource Counts for Intel Arria 10 GX Devices (GX 160, GX 220, GX 270, GX 320, and GX 480) | Resc | ource | | | Product Line | | | |------------------------------|-------------------------|---------|---------|---------------------|---------|---------| | | | GX 160 | GX 220 | GX 270 | GX 320 | GX 480 | | Logic Elements | (LE) (K) | 160 | 220 | 270 | 320 | 480 | | ALM | | 61,510 | 80,330 | 101,620 | 119,900 | 183,590 | | Register | | 246,040 | 321,320 | 406,480 | 479,600 | 734,360 | | Memory (Kb) | M20K | 8,800 | 11,740 | 15,000 | 17,820 | 28,620 | | | MLAB | 1,050 | 1,690 | 2,452 | 2,727 | 4,164 | | Variable-precision DSP Block | | 156 | 192 | 830 | 985 | 1,368 | | 18 x 19 Multipli | er | 312 | 384 | 1,660 | 1,970 | 2,736 | | PLL | Fractional
Synthesis | 6 | 6 | 8 | 8 | 12 | | | I/O | 6 | 6 | 8 | 8 | 12 | | 17.4 Gbps Trans | sceiver | 12 | 12 | 24 | 24 | 36 | | GPIO (3) | | 288 | 288 | 384 | 384 | 492 | | LVDS Pair (4) | | 120 | 120 | 168 | 168 | 222 | | PCIe Hard IP Bl | ock | 1 | 1 | 2 | 2 | 2 | | Hard Memory C | ontroller | 6 | 6 | 8 | 8 | 12 | $^{^{(3)}}$ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os. ⁽⁴⁾ Each LVDS I/O pair can be used as differential input or output. Table 6. Maximum Resource Counts for Intel Arria 10 GX Devices (GX 570, GX 660, GX 900, and GX 1150) | Re | source | | Produc | t Line | | |------------------------------|-------------------------|---------|-----------|-----------|-----------| | | | GX 570 | GX 660 | GX 900 | GX 1150 | | Logic Elements | s (LE) (K) | 570 | 660 | 900 | 1,150 | | ALM | | 217,080 | 251,680 | 339,620 | 427,200 | | Register | | 868,320 | 1,006,720 | 1,358,480 | 1,708,800 | | Memory (Kb) | M20K | 36,000 | 42,620 | 48,460 | 54,260 | | | MLAB | 5,096 | 5,788 | 9,386 | 12,984 | | Variable-precision DSP Block | | 1,523 | 1,687 | 1,518 | 1,518 | | 18 x 19 Multip | lier | 3,046 | 3,374 | 3,036 | 3,036 | | PLL | Fractional
Synthesis | 16 | 16 | 32 | 32 | | | I/O | 16 | 16 | 16 | 16 | | 17.4 Gbps Trai | nsceiver | 48 | 48 | 96 | 96 | | GPIO (3) | | 696 | 696 | 768 | 768 | | LVDS Pair (4) | | 324 | 324 | 384 | 384 | | PCIe Hard IP B | Block | 2 | 2 | 4 | 4 | | Hard Memory | Controller | 16 | 16 | 16 | 16 | # **Package Plan** # Table 7. Package Plan for Intel Arria 10 GX Devices (U19, F27, and F29) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | U19
(19 mm × 19 mm,
484-pin UBGA) | | | | F27
mm × 27 n
72-pin FBG/ | | F29
(29 mm × 29 mm,
780-pin FBGA) | | | |--------------|---|----------|------|-----------------------|---------------------------------|----|---|----------|------| | | 3 V I/O | LVDS I/O | XCVR | 3 V I/O LVDS I/O XCVR | | | 3 V I/O | LVDS I/O | XCVR | | GX 160 | 48 | 192 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | | GX 220 | 48 | 192 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | | GX 270 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | | GX 320 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | | GX 480 | _ | _ | _ | _ | _ | _ | 48 | 312 | 12 | ### **Available Options** Figure 2. Sample Ordering Code and Available Options for Intel Arria 10 GT Devices #### **Maximum Resources** Table 12. Maximum Resource Counts for Intel Arria 10 SX Devices | Reso | urce | | | 1 | Product Line | | | | |-----------------------------------|-------------------------|---------|---------|---------|--------------|---------|---------|-----------| | | | SX 160 | SX 220 | SX 270 | SX 320 | SX 480 | SX 570 | SX 660 | | Logic Elements | s (LE) (K) | 160 | 220 | 270 | 320 | 480 | 570 | 660 | | ALM | | 61,510 | 80,330 | 101,620 | 119,900 | 183,590 | 217,080 | 251,680 | | Register | | 246,040 | 321,320 | 406,480 | 479,600 | 734,360 | 868,320 | 1,006,720 | | Memory (Kb) | M20K | 8,800 | 11,740 | 15,000 | 17,820 | 28,620 | 36,000 | 42,620 | | | MLAB | 1,050 | 1,690 | 2,452 | 2,727 | 4,164 | 5,096 | 5,788 | | Variable-precision DSP Block | | 156 | 192 | 830 | 985 | 1,368 | 1,523 | 1,687 | | 18 x 19 Multip | lier | 312 | 384 | 1,660 | 1,970 | 2,736 | 3,046 | 3,374 | | PLL | Fractional
Synthesis | 6 | 6 | 8 | 8 | 12 | 16 | 16 | | | I/O | 6 | 6 | 8 | 8 | 12 | 16 | 16 | | 17.4 Gbps Trai | nsceiver | 12 | 12 | 24 | 24 | 36 | 48 | 48 | | GPIO (8) | | 288 | 288 | 384 | 384 | 492 | 696 | 696 | | LVDS Pair (9) | | 120 | 120 | 168 | 168 | 174 | 324 | 324 | | PCIe Hard IP E | Block | 1 | 1 | 2 | 2 | 2 | 2 | 2 | | Hard Memory | Controller | 6 | 6 | 8 | 8 | 12 | 16 | 16 | | ARM Cortex-A9 MPCore
Processor | | Yes ### **Package Plan** Table 13. Package Plan for Intel Arria 10 SX Devices (U19, F27, F29, and F34) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line U19
(19 mm × 19 mm,
484-pin UBGA) | | | F27
(27 mm × 27 mm,
672-pin FBGA) | | | F29
(29 mm × 29 mm,
780-pin FBGA) | | | F34
(35 mm × 35 mm,
1152-pin FBGA) | | | | |--|------------|-------------|---|------------|-------------|---|------------|-------------|--|------------|-------------|------| | | 3 V
I/O | LVDS
I/O | XCVR | | SX 160 | 48 | 144 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | _ | _ | _ | | SX 220 | 48 | 144 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | _ | _ | _ | | SX 270 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | 48 | 336 | 24 | | SX 320 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | 48 | 336 | 24 | | 5,, 320 | | | | | | | | | | | conti | | ⁽⁸⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os. ⁽⁹⁾ Each LVDS I/O pair can be used as differential input or output. | Product Line | U19
(19 mm × 19 mm,
484-pin UBGA) | | F27
(27 mm × 27 mm,
672-pin FBGA) | | | F29
(29 mm × 29 mm,
780-pin FBGA) | | | F34
(35 mm × 35 mm,
1152-pin FBGA) | | | | |--------------|---|-------------|---|------------|-------------|---|------------|-------------|--|------------|-------------|------| | | 3 V
I/O | LVDS
I/O | XCVR | | SX 480 | _ | _ | _ | _ | _ | _ | 48 | 312 | 12 | 48 | 444 | 24 | | SX 570 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 48 | 444 | 24 | | SX 660 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 48 | 444 | 24 | ### Table 14. Package Plan for Intel Arria 10 SX Devices (F35, KF40, and NF40) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | F35
(35 mm × 35 mm,
1152-pin FBGA) | | | | KF40
mm × 40 n
17-pin FBG | | NF40
(40 mm × 40 mm,
1517-pin FBGA) | | | |---------------------|--|----------|------|---------|---------------------------------|------|---|----------|------| | | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | | SX 270 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | SX 320 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | SX 480 | 48 | 348 | 36 | _ | _ | _ | _ | _ | _ | | SX 570 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | SX 660 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | ### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. ### **Types of Embedded Memory** The Intel Arria 10 devices contain two types of memory blocks: - 20 Kb M20K blocks—blocks of dedicated memory resources. The M20K blocks are ideal for larger memory arrays while still providing a large number of independent ports. - 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dual-purpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide and shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Intel Arria 10 devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. ### **Embedded Memory Capacity in Intel Arria 10 Devices** Table 18. Embedded Memory Capacity and Distribution in Intel Arria 10 Devices | | Product | M2 | 20K | ML | .AB | Total RAM Bit | |-------------------|---------|-------|--------------|--------|--------------|---------------| | Variant | Line | Block | RAM Bit (Kb) | Block | RAM Bit (Kb) | (Kb) | | Intel Arria 10 GX | GX 160 | 440 | 8,800 | 1,680 | 1,050 | 9,850 | | | GX 220 | 587 | 11,740 | 2,703 | 1,690 | 13,430 | | | GX 270 | 750 | 15,000 | 3,922 | 2,452 | 17,452 | | | GX 320 | 891 | 17,820 | 4,363 | 2,727 | 20,547 | | | GX 480 | 1,431 | 28,620 | 6,662 | 4,164 | 32,784 | | | GX 570 | 1,800 | 36,000 | 8,153 | 5,096 | 41,096 | | | GX 660 | 2,131 | 42,620 | 9,260 | 5,788 | 48,408 | | | GX 900 | 2,423 | 48,460 | 15,017 | 9,386 | 57,846 | | | GX 1150 | 2,713 | 54,260 | 20,774 | 12,984 | 67,244 | | Intel Arria 10 GT | GT 900 | 2,423 | 48,460 | 15,017 | 9,386 | 57,846 | | | GT 1150 | 2,713 | 54,260 | 20,774 | 12,984 | 67,244 | | Intel Arria 10 SX | SX 160 | 440 | 8,800 | 1,680 | 1,050 | 9,850 | | | SX 220 | 587 | 11,740 | 2,703 | 1,690 | 13,430 | | | SX 270 | 750 | 15,000 | 3,922 | 2,452 | 17,452 | | | SX 320 | 891 | 17,820 | 4,363 | 2,727 | 20,547 | | | SX 480 | 1,431 | 28,620 | 6,662 | 4,164 | 32,784 | | | SX 570 | 1,800 | 36,000 | 8,153 | 5,096 | 41,096 | | | SX 660 | 2,131 | 42,620 | 9,260 | 5,788 | 48,408 | #### Intel Arria 10 Device Datasheet Lists the memory interface performance according to memory interface standards, rank or chip select configurations, and Intel Arria 10 device speed grades. ### PCIe Gen1, Gen2, and Gen3 Hard IP Intel Arria 10 devices contain PCIe hard IP that is designed for performance and ease-of-use: - Includes all layers of the PCIe stack—transaction, data link and physical layers. - Supports PCIe Gen3, Gen2, and Gen1 Endpoint and Root Port in x1, x2, x4, or x8 lane configuration. - Operates independently from the core logic—optional configuration via protocol (CvP) allows the PCIe link to power up and complete link training in less than 100 ms while the Intel Arria 10 device completes loading the programming file for the rest of the FPGA. - Provides added functionality that makes it easier to support emerging features such as Single Root I/O Virtualization (SR-IOV) and optional protocol extensions. - Provides improved end-to-end datapath protection using ECC. - Supports FPGA configuration via protocol (CvP) using PCIe at Gen3, Gen2, or Gen1 speed. #### **Related Information** PCS Features on page 30 ### **Enhanced PCS Hard IP for Interlaken and 10 Gbps Ethernet** ### **Interlaken Support** The Intel Arria 10 enhanced PCS hard IP provides integrated Interlaken PCS supporting rates up to 25.8 Gbps per lane. The Interlaken PCS is based on the proven functionality of the PCS developed for Intel's previous generation FPGAs, which demonstrated interoperability with Interlaken ASSP vendors and third-party IP suppliers. The Interlaken PCS is present in every transceiver channel in Intel Arria 10 devices. #### **Related Information** PCS Features on page 30 ### **10 Gbps Ethernet Support** The Intel Arria 10 enhanced PCS hard IP supports 10GBASE-R PCS compliant with IEEE 802.3 10 Gbps Ethernet (10GbE). The integrated hard IP support for 10GbE and the 10 Gbps transceivers save external PHY cost, board space, and system power. Figure 7. Device Chip Overview for Intel Arria 10 GX and GT Devices Figure 8. Device Chip Overview for Intel Arria 10 SX Devices ### **PMA Features** Intel Arria 10 transceivers provide exceptional signal integrity at data rates up to 25.8 Gbps. Clocking options include ultra-low jitter ATX PLLs (LC tank based), clock multiplier unit (CMU) PLLs, and fractional PLLs. Each transceiver channel contains a channel PLL that can be used as the CMU PLL or clock data recovery (CDR) PLL. In CDR mode, the channel PLL recovers the receiver clock and data in the transceiver channel. Up to 80 independent data rates can be configured on a single Intel Arria 10 device. Table 23. PMA Features of the Transceivers in Intel Arria 10 Devices | Feature | Capability | |--|--| | Chip-to-Chip Data Rates | 1 Gbps to 17.4 Gbps (Intel Arria 10 GX devices)
1 Gbps to 25.8 Gbps (Intel Arria 10 GT devices) | | Backplane Support | Drive backplanes at data rates up to 12.5 Gbps | | Optical Module Support | SFP+/SFP, XFP, CXP, QSFP/QSFP28, CFP/CFP2/CFP4 | | Cable Driving Support | SFP+ Direct Attach, PCI Express over cable, eSATA | | Transmit Pre-Emphasis | 4-tap transmit pre-emphasis and de-emphasis to compensate for system channel loss | | Continuous Time Linear
Equalizer (CTLE) | Dual mode, high-gain, and high-data rate, linear receive equalization to compensate for system channel loss | | Decision Feedback Equalizer (DFE) | 7-fixed and 4-floating tap DFE to equalize backplane channel loss in the presence of crosstalk and noisy environments | | Variable Gain Amplifier | Optimizes the signal amplitude prior to the CDR sampling and operates in fixed and adaptive modes | | Altera Digital Adaptive
Parametric Tuning (ADAPT) | Fully digital adaptation engine to automatically adjust all link equalization parameters—including CTLE, DFE, and variable gain amplifier blocks—that provide optimal link margin without intervention from user logic | | Precision Signal Integrity
Calibration Engine (PreSICE) | Hardened calibration controller to quickly calibrate all transceiver control parameters on power-up, which provides the optimal signal integrity and jitter performance | | Advanced Transmit (ATX)
PLL | Low jitter ATX (LC tank based) PLLs with continuous tuning range to cover a wide range of standard and proprietary protocols | | Fractional PLLs | On-chip fractional frequency synthesizers to replace on-board crystal oscillators and reduce system cost | | Digitally Assisted Analog
CDR | Superior jitter tolerance with fast lock time | | Dynamic Partial
Reconfiguration | Allows independent control of the Avalon memory-mapped interface of each transceiver channel for the highest transceiver flexibility | | Multiple PCS-PMA and PCS-
PLD interface widths | 8-, 10-, 16-, 20-, 32-, 40-, or 64-bit interface widths for flexibility of deserialization width, encoding, and reduced latency | ### **PCS Features** This table summarizes the Intel Arria 10 transceiver PCS features. You can use the transceiver PCS to support a wide range of protocols ranging from 1 Gbps to 25.8 Gbps. | PCS | Description | |---------------|--| | Standard PCS | Operates at a data rate up to 12 Gbps Supports protocols such as PCI-Express, CPRI 4.2+, GigE, IEEE 1588 in Hard PCS Implements other protocols using Basic/Custom (Standard PCS) transceiver configuration rules. | | Enhanced PCS | Performs functions common to most serial data industry standards, such as word alignment, encoding/decoding, and framing, before data is sent or received off-chip through the PMA Handles data transfer to and from the FPGA fabric Handles data transfer internally to and from the PMA Provides frequency compensation Performs channel bonding for multi-channel low skew applications | | PCIe Gen3 PCS | Supports the seamless switching of Data and Clock between the Gen1, Gen2, and Gen3 data rates Provides support for PIPE 3.0 features Supports the PIPE interface with the Hard IP enabled, as well as with the Hard IP bypassed | - PCIe Gen1, Gen2, and Gen3 Hard IP on page 26 - Interlaken Support on page 26 - 10 Gbps Ethernet Support on page 26 ### **PCS Protocol Support** This table lists some of the protocols supported by the Intel Arria 10 transceiver PCS. For more information about the blocks in the transmitter and receiver data paths, refer to the related information. | Protocol | Data Rate
(Gbps) | Transceiver IP | PCS Support | |--|---------------------|-----------------------------|-----------------------------------| | PCIe Gen3 x1, x2, x4, x8 | 8.0 | Native PHY (PIPE) | Standard PCS and PCIe
Gen3 PCS | | PCIe Gen2 x1, x2, x4, x8 | 5.0 | Native PHY (PIPE) | Standard PCS | | PCIe Gen1 x1, x2, x4, x8 | 2.5 | Native PHY (PIPE) | Standard PCS | | 1000BASE-X Gigabit Ethernet | 1.25 | Native PHY | Standard PCS | | 1000BASE-X Gigabit Ethernet with IEEE 1588v2 | 1.25 | Native PHY | Standard PCS | | 10GBASE-R | 10.3125 | Native PHY | Enhanced PCS | | 10GBASE-R with IEEE 1588v2 | 10.3125 | Native PHY | Enhanced PCS | | 10GBASE-R with KR FEC | 10.3125 | Native PHY | Enhanced PCS | | 10GBASE-KR and 1000BASE-X | 10.3125 | 1G/10GbE and 10GBASE-KR PHY | Standard PCS and
Enhanced PCS | | Interlaken (CEI-6G/11G) | 3.125 to 17.4 | Native PHY | Enhanced PCS | | SFI-S/SFI-5.2 | 11.2 | Native PHY | Enhanced PCS | | 10G SDI | 10.692 | Native PHY | Enhanced PCS | | | • | | continued | | Protocol | Data Rate
(Gbps) | Transceiver IP | PCS Support | |----------------------|----------------------------------|----------------|--------------| | CPRI 6.0 (64B/66B) | 0.6144 to Native PHY 10.1376 | | Enhanced PCS | | CPRI 4.2 (8B/10B) | 0.6144 to Native PHY 9.8304 | | Standard PCS | | OBSAI RP3 v4.2 | 0.6144 to 6.144 | Native PHY | Standard PCS | | SD-SDI/HD-SDI/3G-SDI | 0.143 ⁽¹²⁾ to
2.97 | Native PHY | Standard PCS | ### Intel Arria 10 Transceiver PHY User Guide Provides more information about the supported transceiver protocols and PHY IP, the PMA architecture, and the standard, enhanced, and PCIe Gen3 PCS architecture. ### **SoC with Hard Processor System** Each SoC device combines an FPGA fabric and a hard processor system (HPS) in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in these ways: - Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor - Allows you to differentiate the end product in both hardware and software, and to support virtually any interface standard - Extends the product life and revenue through in-field hardware and software updates ⁽¹²⁾ The 0.143 Gbps data rate is supported using oversampling of user logic that you must implement in the FPGA fabric. Figure 9. HPS Block Diagram This figure shows a block diagram of the HPS with the dual ARM Cortex-A9 MPCore processor. # **Key Advantages of 20-nm HPS** The 20-nm HPS strikes a balance between enabling maximum software compatibility with 28-nm SoCs while still improving upon the 28-nm HPS architecture. These improvements address the requirements of the next generation target markets such as wireless and wireline communications, compute and storage equipment, broadcast and military in terms of performance, memory bandwidth, connectivity via backplane and security. #### Table 24. **Improvements in 20 nm HPS** This table lists the key improvements of the 20 nm HPS compared to the 28 nm HPS. | Advantages/
Improvements | Description | |---|--| | Increased performance and overdrive capability | While the nominal processor frequency is 1.2 GHz, the 20 nm HPS offers an "overdrive" feature which enables a higher processor operating frequency. This requires a higher supply voltage value that is unique to the HPS and may require a separate regulator. | | Increased processor memory bandwidth and DDR4 support | Up to 64-bit DDR4 memory at 2,400 Mbps support is available for the processor. The hard memory controller for the HPS comprises a multi-port front end that manages connections to a single port memory controller. The multi-port front end allows logic core and the HPS to share ports and thereby the available bandwidth of the memory controller. | | Flexible I/O sharing | An advanced I/O pin muxing scheme allows improved sharing of I/O between the HPS and the core logic. The following types of I/O are available for SoC: 17 dedicated I/Os—physically located inside the HPS block and are not accessible to logic within the core. The 17 dedicated I/Os are used for HPS clock, resets, and | | | interfacing with boot devices, QSPI, and SD/MMC. 48 direct shared I/O—located closest to the HPS block and are ideal for high speed HPS peripherals such as EMAC, USB, and others. There is one bank of 48 I/Os that supports direct sharing where the 48 I/Os can be shared 12 I/Os at a time. Standard (shared) I/O—all standard I/Os can be shared by the HPS peripherals and any logic within the core. For designs where more than 48 I/Os are required to fully use all the peripherals in the HPS, these I/Os can be connected through the core logic. | | EMAC core | Three EMAC cores are available in the HPS. The EMAC cores enable an application to support two redundant Ethernet connections; for example, backplane, or two EMAC cores for managing IEEE 1588 time stamp information while allowing a third EMAC core for debug and configuration. All three EMACs can potentially share the same time stamps, simplifying the 1588 time stamping implementation. A new serial time stamp interface allows core logic to access and read the time stamp values. The integrated EMAC controllers can be connected to external Ethernet PHY through the provided MDIO or I ² C interface. | | On-chip memory | The on-chip memory is updated to 256 KB support and can support larger data sets and real time algorithms. | | ECC enhancements | Improvements in L2 Cache ECC management allow identification of errors down to the address level. ECC enhancements also enable improved error injection and status reporting via the introduction of new memory mapped access to syndrome and data signals. | | HPS to FPGA Interconnect
Backbone | Although the HPS and the Logic Core can operate independently, they are tightly coupled via a high-bandwidth system interconnect built from high-performance ARM AMBA AXI bus bridges. IP bus masters in the FPGA fabric have access to HPS bus slaves via the FPGA-to-HPS interconnect. Similarly, HPS bus masters have access to bus slaves in the core fabric via the HPS-to-FPGA bridge. Both bridges are AMBA AXI-3 compliant and support simultaneous read and write transactions. Up to three masters within the core fabric can share the HPS SDRAM controller with the processor. Additionally, the processor can be used to configure the core fabric under program control via a dedicated 32-bit configuration port. | | FPGA configuration and HPS booting | The FPGA fabric and HPS in the SoCs are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power. You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility. | | Security | New security features have been introduced for anti-tamper management, secure boot, encryption (AES), and authentication (SHA). | #### Features of the HPS The HPS has the following features: - 1.2-GHz, dual-core ARM Cortex-A9 MPCore processor with up to 1.5-GHz via overdrive - ARMv7-A architecture that runs 32-bit ARM instructions, 16-bit and 32-bit Thumb instructions, and 8-bit Java byte codes in Jazelle style - Superscalar, variable length, out-of-order pipeline with dynamic branch prediction - Instruction Efficiency 2.5 MIPS/MHz, which provides total performance of 7500 MIPS at 1.5 GHz - · Each processor core includes: - 32 KB of L1 instruction cache, 32 KB of L1 data cache - Single- and double-precision floating-point unit and NEON media engine - CoreSight debug and trace technology - Snoop Control Unit (SCU) and Acceleration Coherency Port (ACP) - 512 KB of shared L2 cache - 256 KB of scratch RAM - Hard memory controller with support for DDR3, DDR4 and optional error correction code (ECC) support - Multiport Front End (MPFE) Scheduler interface to the hard memory controller - 8-channel direct memory access (DMA) controller - QSPI flash controller with SIO, DIO, QIO SPI Flash support - NAND flash controller (ONFI 1.0 or later) with DMA and ECC support, updated to support 8 and 16-bit Flash devices and new command DMA to offload CPU for fast power down recovery - Updated SD/SDIO/MMC controller to eMMC 4.5 with DMA with CE-ATA digital command support - 3 10/100/1000 Ethernet media access control (MAC) with DMA - 2 USB On-the-Go (OTG) controllers with DMA - 5 I²C controllers (3 can be used by EMAC for MIO to external PHY) - 2 UART 16550 Compatible controllers - 4 serial peripheral interfaces (SPI) (2 Master, 2 Slaves) - 62 programmable general-purpose I/Os, which includes 48 direct share I/Os that allows the HPS peripherals to connect directly to the FPGA I/Os - 7 general-purpose timers - 4 watchdog timers - Anti-tamper, Secure Boot, Encryption (AES) and Authentication (SHA) ### **FPGA Configuration and HPS Booting** The FPGA fabric and HPS in the SoC FPGA must be powered at the same time. You can reduce the clock frequencies or gate the clocks to reduce dynamic power. Once powered, the FPGA fabric and HPS can be configured independently thus providing you with more design flexibility: - You can boot the HPS independently. After the HPS is running, the HPS can fully or partially reconfigure the FPGA fabric at any time under software control. The HPS can also configure other FPGAs on the board through the FPGA configuration controller. - Configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric. ### **Hardware and Software Development** For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Platform Designer system integration tool in the Intel Quartus Prime software. For software development, the ARM-based SoC FPGA devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Intel SoC FPGAs follows the same steps as those for other SoC devices from other manufacturers. Support for Linux*, VxWorks*, and other operating systems are available for the SoC FPGAs. For more information on the operating systems support availability, contact the Intel FPGA sales team. You can begin device-specific firmware and software development on the Intel SoC FPGA Virtual Target. The Virtual Target is a fast PC-based functional simulation of a target development system—a model of a complete development board. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware. # **Dynamic and Partial Reconfiguration** The Intel Arria 10 devices support dynamic and partial reconfiguration. You can use dynamic and partial reconfiguration simultaneously to enable seamless reconfiguration of both the device core and transceivers. ### **Dynamic Reconfiguration** You can reconfigure the PMA and PCS blocks while the device continues to operate. This feature allows you to change the data rates, protocol, and analog settings of a channel in a transceiver bank without affecting on-going data transfer in other transceiver banks. This feature is ideal for applications that require dynamic multiprotocol or multirate support. ### **Partial Reconfiguration** Using partial reconfiguration, you can reconfigure some parts of the device while keeping the device in operation. Instead of placing all device functions in the FPGA fabric, you can store some functions that do not run simultaneously in external memory and load them only when required. This capability increases the effective logic density of the device, and lowers cost and power consumption. In the Intel solution, you do not have to worry about intricate device architecture to perform a partial reconfiguration. The partial reconfiguration capability is built into the Intel Quartus Prime design software, making such time-intensive task simple. Intel Arria 10 devices support partial reconfiguration in the following configuration options: - Using an internal host: - All supported configuration modes where the FPGA has access to external memory devices such as serial and parallel flash memory. - Configuration via Protocol [CvP (PCIe)] - Using an external host—passive serial (PS), fast passive parallel (FPP) x8, FPP x16, and FPP x32 I/O interface. ## **Enhanced Configuration and Configuration via Protocol** Table 25. Configuration Schemes and Features of Intel Arria 10 Devices Intel Arria 10 devices support 1.8 V programming voltage and several configuration schemes. | Scheme | Data
Width | Max Clock
Rate
(MHz) | Max Data
Rate
(Mbps)
(13) | Decompression | Design
Security ⁽¹
4) | Partial
Reconfiguration
(15) | Remote
System
Update | |--|------------------|----------------------------|------------------------------------|---------------|--|------------------------------------|---| | JTAG | 1 bit | 33 | 33 | _ | _ | Yes ⁽¹⁶⁾ | _ | | Active Serial (AS)
through the
EPCQ-L
configuration
device | 1 bit,
4 bits | 100 | 400 | Yes | Yes | Yes ⁽¹⁶⁾ | Yes | | Passive serial (PS)
through CPLD or
external
microcontroller | 1 bit | 100 | 100 | Yes | Yes | Yes ⁽¹⁶⁾ | Parallel
Flash
Loader
(PFL) IP
core | | | continued | | | | | | ntinued | ⁽¹³⁾ Enabling either compression or design security features affects the maximum data rate. Refer to the Intel Arria 10 Device Datasheet for more information. ⁽¹⁴⁾ Encryption and compression cannot be used simultaneously. ⁽¹⁵⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Intel for support. ⁽¹⁶⁾ Partial configuration can be performed only when it is configured as internal host. | Scheme | Data
Width | Max Clock
Rate
(MHz) | Max Data
Rate
(Mbps) | Decompression | Design
Security ⁽¹
4) | Partial
Reconfiguration
(15) | Remote
System
Update | |--|----------------------------|----------------------------|----------------------------|---------------|--|------------------------------------|----------------------------| | Fast passive | 8 bits | 100 | 3200 | Yes | Yes | Yes ⁽¹⁷⁾ | PFL IP | | parallel (FPP)
through CPLD or | 16 bits | | | Yes | Yes | | core | | external
microcontroller | 32 bits | | | Yes | Yes | | | | Configuration via | 16 bits | 100 | 3200 | Yes | Yes | Yes ⁽¹⁷⁾ | _ | | HPS | 32 bits | | | Yes | Yes | | | | Configuration via
Protocol [CvP
(PCIe*)] | x1, x2,
x4, x8
lanes | _ | 8000 | Yes | Yes | Yes ⁽¹⁶⁾ | _ | You can configure Intel Arria 10 devices through PCIe using Configuration via Protocol (CvP). The Intel Arria 10 CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement. ### **SEU Error Detection and Correction** Intel Arria 10 devices offer robust and easy-to-use single-event upset (SEU) error detection and correction circuitry. The detection and correction circuitry includes protection for Configuration RAM (CRAM) programming bits and user memories. The CRAM is protected by a continuously running CRC error detection circuit with integrated ECC that automatically corrects one or two errors and detects higher order multi-bit errors. When more than two errors occur, correction is available through reloading of the core programming file, providing a complete design refresh while the FPGA continues to operate. The physical layout of the Intel Arria 10 CRAM array is optimized to make the majority of multi-bit upsets appear as independent single-bit or double-bit errors which are automatically corrected by the integrated CRAM ECC circuitry. In addition to the CRAM protection, the M20K memory blocks also include integrated ECC circuitry and are layout-optimized for error detection and correction. The MLAB does not have ECC. # **Power Management** Intel Arria 10 devices leverage the advanced 20 nm process technology, a low 0.9 V core power supply, an enhanced core architecture, and several optional power reduction techniques to reduce total power consumption by as much as 40% compared to Arria V devices and as much as 60% compared to Stratix V devices. ⁽¹³⁾ Enabling either compression or design security features affects the maximum data rate. Refer to the Intel Arria 10 Device Datasheet for more information. ⁽¹⁴⁾ Encryption and compression cannot be used simultaneously. ⁽¹⁵⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Intel for support. ⁽¹⁷⁾ Supported at a maximum clock rate of 100 MHz. | Date | Version | Changes | |----------------|------------|---| | December 2015 | 2015.12.14 | Updated the number of M20K memory blocks for Arria 10 GX 660 from 2133 to 2131 and corrected the total RAM bit from 48,448 Kb to 48,408 Kb. | | | | Corrected the number of DSP blocks for Arria 10 GX 660 from 1688 to 1687 in the table listing floating-point arithmetic resources. | | November 2015 | 2015.11.02 | • Updated the maximum resources for Arria 10 GX 220, GX 320, GX 480, GX 660, SX 220, SX 320, SX 480, and SX 660. | | | | Updated resource count for Arria 10 GX 320, GX 480, GX 660, SX 320, SX 480, a SX 660 devices in Number of Multipliers in Intel Arria 10 Devices table. | | | | Updated the available options for Arria 10 GX, GT, and SX. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>. | | June 2015 | 2015.06.15 | Corrected label for Intel Arria 10 GT product lines in the vertical migration figure. | | May 2015 | 2015.05.15 | Corrected the DDR3 half rate and quarter rate maximum frequencies in the table that lists the memory standards supported by the Intel Arria 10 hard memory controller. | | May 2015 | 2015.05.04 | Added support for 13.5G JESD204b in the Summary of Features table. Added support for 13.5G JESD204b in the Summary of Features table. | | | | Added a link to Arria 10 GT Channel Usage in the Arria 10 GT Package Plan topic. | | | | Added a note to the table, Maximum Resource Counts for Arria 10 GT devices. | | | | Updated the power requirements of the transceivers in the Low Power Serial Transceivers topic. | | January 2015 | 2015.01.23 | Added floating point arithmetic features in the Summary of Features table. | | | | Updated the total embedded memory from 38.38 megabits (Mb) to 65.6 Mb. | | | | Updated the table that lists the memory standards supported by Intel
Arria 10 devices. | | | | Removed support for DDR3U, LPDDR3 SDRAM, RLDRAM 2, and DDR2. Moved RLDRAM 3 support from hard memory controller to soft memory controller. RLDRAM 3 support uses hard PHY with soft memory controller. | | | | Added soft memory controller support for QDR IV. | | | | Updated the maximum resource count table to include the number of hard memory controllers available in each device variant. | | | | Updated the transceiver PCS data rate from 12.5 Gbps to 12 Gbps. | | | | Updated the max clock rate of PS, FPP x8, FPP x16, and Configuration via HPS from 125 MHz to 100 MHz. | | | | Added a feature for fractional synthesis PLLs: PLL cascading. | | | | Updated the HPS programmable general-purpose I/Os from 54 to 62. | | September 2014 | 2014.09.30 | Corrected the 3 V I/O and LVDS I/O counts for F35 and F36 packages of Arria 10 GX. | | | | Corrected the 3 V I/O, LVDS I/O, and transceiver counts for the NF40 package of the Arria GX 570 and 660. | | | | Removed 3 V I/O, LVDS I/O, and transceiver counts for the NF40 package of the Arria GX 900 and 1150. The NF40 package is not available for Arria 10 GX 900 and 1150. | | | | continued |