Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Active | | Number of LABs/CLBs | 427200 | | Number of Logic Elements/Cells | 1150000 | | Total RAM Bits | 68857856 | | Number of I/O | 504 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1152-BBGA, FCBGA | | Supplier Device Package | 1152-FCBGA (35x35) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/10ax115h4f34i3lg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong #### A10-OVERVIEW | 2018.04.09 | Feature | | Description | | | |--------------------------------------|--|--|--|--| | Embedded Hard IP
blocks | Variable-precision DSP | Native support for signal processing precision levels from 18 x 19 to 54 x 54 Native support for 27 x 27 multiplier mode 64-bit accumulator and cascade for systolic finite impulse responses (FIRs) Internal coefficient memory banks Preadder/subtractor for improved efficiency Additional pipeline register to increase performance and reduce power Supports floating point arithmetic: Perform multiplication, addition, subtraction, multiply-add, multiply-subtract, and complex multiplication. Supports multiplication with accumulation capability, cascade summation, and cascade subtraction capability. Dynamic accumulator reset control. Support direct vector dot and complex multiplication chaining multiply floating point DSP blocks. | | | | | Memory controller | DDR4, DDR3, and DDR3L | | | | | PCI Express* | PCI Express (PCIe*) Gen3 (x1, x2, x4, or x8), Gen2 (x1, x2, x4, or x8) and Gen1 (x1, x2, x4, or x8) hard IP with complete protocol stack, endpoint, and root port | | | | | Transceiver I/O | 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) PCS hard IPs that support: | | | | Core clock networks | 667 MHz external 800 MHz LVDS in Global, regional, and | c clocking, depending on the application:
I memory interface clocking with 2,400 Mbps DDR4 interface
terface clocking with 1,600 Mbps LVDS interface
I peripheral clock networks
are not used can be gated to reduce dynamic power | | | | Phase-locked loops
(PLLs) | High-resolution fractional synthesis PLLs: — Precision clock synthesis, clock delay compensation, and zero delay buffering (ZDB) — Support integer mode and fractional mode — Fractional mode support with third-order delta-sigma modulation Integer PLLs: — Adjacent to general purpose I/Os — Support external memory and LVDS interfaces | | | | | FPGA General-purpose
I/Os (GPIOs) | 1.6 Gbps LVDS—every pair can be configured as receiver or transmitter On-chip termination (OCT) 1.2 V to 3.0 V single-ended LVTTL/LVCMOS interfacing | | | | | External Memory
Interface | Hard memory controller— DDR4, DDR3, and DDR3L support DDR4—speeds up to 1,200 MHz/2,400 Mbps DDR3—speeds up to 1,067 MHz/2,133 Mbps Soft memory controller—provides support for RLDRAM 3 ⁽²⁾ , QDR IV ⁽²⁾ , and QDR II+ continued | | | | | Feature | | Description | | | | |--|---|--|--|--|--| | Low-power serial
transceivers | - Intel Arria 10 GX - Intel Arria 10 GT- Backplane support: - Intel Arria 10 GX Intel Arria 10 GT- Extended range dow ATX transmit PLLs w Electronic Dispersion module Adaptive linear and of Transmitter pre-emp | Intel Arria 10 GX—up to 12.5 Intel Arria 10 GT—up to 12.5 Extended range down to 125 Mbps with oversampling ATX transmit PLLs with user-configurable fractional synthesis capability Electronic Dispersion Compensation (EDC) support for XFP, SFP+, QSFP, and CFP optical | | | | | HPS
(Intel Arria 10 SX
devices only) | Processor and system | Dual-core ARM Cortex-A9 MPCore processor—1.2 GHz CPU with 1.5 GHz overdrive capability 256 KB on-chip RAM and 64 KB on-chip ROM System peripherals—general-purpose timers, watchdog timers, direct memory access (DMA) controller, FPGA configuration manager, and clock and reset managers Security features—anti-tamper, secure boot, Advanced Encryption Standard (AES) and authentication (SHA) ARM CoreSight* JTAG debug access port, trace port, and on-chip trace storage | | | | | | External interfaces | Hard memory interface—Hard memory controller (2,400 Mbps DDR4, and 2,133 Mbps DDR3), Quad serial peripheral interface (QSPI) flash controller, NAND flash controller, direct memory access (DMA) controller, Secure Digital/MultiMediaCard (SD/MMC) controller Communication interface— 10/100/1000 Ethernet media access control (MAC), USB On-The-GO (OTG) controllers, I²C controllers, UART 16550, serial peripheral interface (SPI), and up to 62 HPS GPIO interfaces (48 direct-share I/Os) | | | | | | Interconnects to core | High-performance ARM AMBA* AXI bus bridges that support simultaneous read and write HPS-FPGA bridges—include the FPGA-to-HPS, HPS-to-FPGA, and lightweight HPS-to-FPGA bridges that allow the FPGA fabric to issue transactions to slaves in the HPS, and vice versa Configuration bridge that allows HPS configuration manager to configure the core logic via dedicated 32-bit configuration port FPGA-to-HPS SDRAM controller bridge—provides configuration interfaces for the multiport front end (MPFE) of the HPS SDRAM controller | | | | | Configuration | Enhanced 256-bit ad | comprehensive design protection to protect your valuable IP investments dvanced encryption standard (AES) design security with authentication obtocol (CvP) using PCIe Gen1, Gen2, or Gen3 | | | | | | | continued | | | | $^{^{(2)}}$ Intel Arria 10 devices support this external memory interface using hard PHY with soft memory controller. ### **Available Options** Figure 1. Sample Ordering Code and Available Options for Intel Arria 10 GX Devices #### **Related Information** Transceiver Performance for Intel Arria 10 GX/SX Devices Provides more information about the transceiver speed grade. #### **Maximum Resources** Table 5. Maximum Resource Counts for Intel Arria 10 GX Devices (GX 160, GX 220, GX 270, GX 320, and GX 480) | Resc | ource | | Product Line | | | | | | | |------------------------------|-------------------------|---------|--------------|---------|---------|---------|--|--|--| | | | GX 160 | GX 220 | GX 270 | GX 320 | GX 480 | | | | | Logic Elements | (LE) (K) | 160 | 220 | 270 | 320 | 480 | | | | | ALM | | 61,510 | 80,330 | 101,620 | 119,900 | 183,590 | | | | | Register | | 246,040 | 321,320 | 406,480 | 479,600 | 734,360 | | | | | Memory (Kb) | M20K | 8,800 | 11,740 | 15,000 | 17,820 | 28,620 | | | | | | MLAB | 1,050 | 1,690 | 2,452 | 2,727 | 4,164 | | | | | Variable-precision DSP Block | | 156 | 192 | 830 | 985 | 1,368 | | | | | 18 x 19 Multipli | er | 312 | 384 | 1,660 | 1,970 | 2,736 | | | | | PLL | Fractional
Synthesis | 6 | 6 | 8 | 8 | 12 | | | | | | I/O | 6 | 6 | 8 | 8 | 12 | | | | | 17.4 Gbps Trans | sceiver | 12 | 12 | 24 | 24 | 36 | | | | | GPIO (3) | | 288 | 288 | 384 | 384 | 492 | | | | | LVDS Pair (4) | | 120 | 120 | 168 | 168 | 222 | | | | | PCIe Hard IP Block | | 1 | 1 | 2 | 2 | 2 | | | | | Hard Memory C | ontroller | 6 | 6 | 8 | 8 | 12 | | | | $^{^{(3)}}$ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os. ⁽⁴⁾ Each LVDS I/O pair can be used as differential input or output. ### Table 8. Package Plan for Intel Arria 10 GX Devices (F34, F35, NF40, and KF40) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | F34
(35 mm × 35 mm,
1152-pin FBGA) | | F35
(35 mm × 35 mm,
1152-pin FBGA) | | KF40
(40 mm × 40 mm,
1517-pin FBGA) | | NF40
(40 mm × 40 mm,
1517-pin FBGA) | | | | | | |--------------|--|-------------|--|------------|---|------|---|-------------|------|------------|-------------|------| | | 3 V
I/O | LVDS
I/O | XCVR | | GX 270 | 48 | 336 | 24 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | GX 320 | 48 | 336 | 24 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | GX 480 | 48 | 444 | 24 | 48 | 348 | 36 | _ | _ | _ | _ | _ | _ | | GX 570 | 48 | 444 | 24 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | GX 660 | 48 | 444 | 24 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | GX 900 | _ | 504 | 24 | _ | _ | _ | _ | _ | _ | _ | 600 | 48 | | GX 1150 | _ | 504 | 24 | _ | _ | _ | _ | _ | _ | _ | 600 | 48 | ### Table 9. Package Plan for Intel Arria 10 GX Devices (RF40, NF45, SF45, and UF45) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | RF40
(40 mm × 40 mm,
1517-pin FBGA) | | NF45
(45 mm × 45 mm)
1932-pin FBGA) | | SF45
(45 mm × 45 mm)
1932-pin FBGA) | | UF45
(45 mm × 45 mm)
1932-pin FBGA) | | | | | | |--------------|---|-------------|---|------------|---|------|---|-------------|------|------------|-------------|------| | | 3 V
I/O | LVDS
I/O | XCVR | | GX 900 | _ | 342 | 66 | _ | 768 | 48 | _ | 624 | 72 | _ | 480 | 96 | | GX 1150 | _ | 342 | 66 | _ | 768 | 48 | _ | 624 | 72 | _ | 480 | 96 | #### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. #### **Intel Arria 10 GT** This section provides the available options, maximum resource counts, and package plan for the Intel Arria 10 GT devices. The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Intel FPGA Product Selector. #### **Related Information** Intel FPGA Product Selector Provides the latest information on Intel products. ### **Available Options** Figure 2. Sample Ordering Code and Available Options for Intel Arria 10 GT Devices #### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. #### **Intel Arria 10 SX** This section provides the available options, maximum resource counts, and package plan for the Intel Arria 10 SX devices. The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Intel FPGA Product Selector. #### **Related Information** Intel FPGA Product Selector Provides the latest information on Intel products. #### **Available Options** Figure 3. Sample Ordering Code and Available Options for Intel Arria 10 SX Devices #### **Related Information** Transceiver Performance for Intel Arria 10 GX/SX Devices Provides more information about the transceiver speed grade. #### Features for floating-point arithmetic: - A completely hardened architecture that supports multiplication, addition, subtraction, multiply-add, and multiply-subtract - Multiplication with accumulation capability and a dynamic accumulator reset control - · Multiplication with cascade summation capability - Multiplication with cascade subtraction capability - Complex multiplication - Direct vector dot product - Systolic FIR filter **Table 15.** Variable-Precision DSP Block Configurations for Intel Arria 10 Devices | Usage Example | Multiplier Size (Bit) | DSP Block Resources | |---|---------------------------------|---------------------| | Medium precision fixed point | Two 18 x 19 | 1 | | High precision fixed or Single precision floating point | One 27 x 27 | 1 | | Fixed point FFTs | One 19 x 36 with external adder | 1 | | Very high precision fixed point | One 36 x 36 with external adder | 2 | | Double precision floating point | One 54 x 54 with external adder | 4 | #### Table 16. Resources for Fixed-Point Arithmetic in Intel Arria 10 Devices The table lists the variable-precision DSP resources by bit precision for each Intel Arria 10 device. | Variant | Variant Product Line Variable-
precision
DSP Block | | | nput and Output
ons Operator | 18 x 19
Multiplier
Adder Sum | 18 x 18
Multiplier
Adder | | |----------------------|--|-------|-----------------------|---------------------------------|------------------------------------|--------------------------------|--| | | | | 18 x 19
Multiplier | 27 x 27
Multiplier | Mode Mode | Summed with 36 bit Input | | | AIntel Arria 10 | GX 160 | 156 | 312 | 156 | 156 | 156 | | | GX | GX 220 | 192 | 384 | 192 | 192 | 192 | | | | GX 270 | 830 | 1,660 | 830 | 830 | 830 | | | | GX 320 | 984 | 1,968 | 984 | 984 | 984 | | | | GX 480 | 1,368 | 2,736 | 1,368 | 1,368 | 1,368 | | | | GX 570 | 1,523 | 3,046 | 1,523 | 1,523 | 1,523 | | | | GX 660 | 1,687 | 3,374 | 1,687 | 1,687 | 1,687 | | | | GX 900 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | | | GX 1150 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | | Intel Arria 10
GT | GT 900 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | | GI | GT 1150 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | | Intel Arria 10 | SX 160 | 156 | 312 | 156 | 156 | 156 | | | SX | SX 220 | 192 | 384 | 192 | 192 | 192 | | | | SX 270 | 830 | 1,660 | 830 | 830 | 830 | | | | | | | | | continued | | # **Embedded Memory Configurations for Single-port Mode** ### Table 19. Single-port Embedded Memory Configurations for Intel Arria 10 Devices This table lists the maximum configurations supported for single-port RAM and ROM modes. | Memory Block | Depth (bits) | Programmable Width | |--------------|--------------|--------------------| | MLAB | 32 | x16, x18, or x20 | | | 64 (10) | x8, x9, x10 | | M20K | 512 | x40, x32 | | | 1K | x20, x16 | | | 2K | x10, x8 | | | 4K | x5, x4 | | | 8K | x2 | | | 16K | x1 | #### **Clock Networks and PLL Clock Sources** The clock network architecture is based on Intel's global, regional, and peripheral clock structure. This clock structure is supported by dedicated clock input pins, fractional clock synthesis PLLs, and integer I/O PLLs. #### **Clock Networks** The Intel Arria 10 core clock networks are capable of up to 800 MHz fabric operation across the full industrial temperature range. For the external memory interface, the clock network supports the hard memory controller with speeds up to 2,400 Mbps in a quarter-rate transfer. To reduce power consumption, the Intel Quartus Prime software identifies all unused sections of the clock network and powers them down. ### Fractional Synthesis and I/O PLLs Intel Arria 10 devices contain up to 32 fractional synthesis PLLs and up to 16 I/O PLLs that are available for both specific and general purpose uses in the core: - Fractional synthesis PLLs—located in the column adjacent to the transceiver blocks - I/O PLLs-located in each bank of the 48 I/Os # **Fractional Synthesis PLLs** You can use the fractional synthesis PLLs to: - Reduce the number of oscillators that are required on your board - Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source ⁽¹⁰⁾ Supported through software emulation and consumes additional MLAB blocks. - Series (R_S) and parallel (R_T) on-chip termination (OCT) for all I/O banks with OCT calibration to limit the termination impedance variation - On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity - Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture # **External Memory Interface** Intel Arria 10 devices offer massive external memory bandwidth, with up to seven 32-bit DDR4 memory interfaces running at up to 2,400 Mbps. This bandwidth provides additional ease of design, lower power, and resource efficiencies of hardened high-performance memory controllers. The memory interface within Intel Arria 10 FPGAs and SoCs delivers the highest performance and ease of use. You can configure up to a maximum width of 144 bits when using the hard or soft memory controllers. If required, you can bypass the hard memory controller and use a soft controller implemented in the user logic. Each I/O contains a hardened DDR read/write path (PHY) capable of performing key memory interface functionality such as read/write leveling, FIFO buffering to lower latency and improve margin, timing calibration, and on-chip termination. The timing calibration is aided by the inclusion of hard microcontrollers based on Intel's Nios® II technology, specifically tailored to control the calibration of multiple memory interfaces. This calibration allows the Intel Arria 10 device to compensate for any changes in process, voltage, or temperature either within the Intel Arria 10 device itself, or within the external memory device. The advanced calibration algorithms ensure maximum bandwidth and robust timing margin across all operating conditions. In addition to parallel memory interfaces, Intel Arria 10 devices support serial memory technologies such as the Hybrid Memory Cube (HMC). The HMC is supported by the Intel Arria 10 high-speed serial transceivers which connect up to four HMC links, with each link running at data rates up to 15 Gbps. #### **Related Information** ### External Memory Interface Spec Estimator Provides a parametric tool that allows you to find and compare the performance of the supported external memory interfaces in IntelFPGAs. ### **Memory Standards Supported by Intel Arria 10 Devices** The I/Os are designed to provide high performance support for existing and emerging external memory standards. #### Table 20. Memory Standards Supported by the Hard Memory Controller This table lists the overall capability of the hard memory controller. For specific details, refer to the External Memory Interface Spec Estimator and Intel Arria 10 Device Datasheet. | Memory Standard | Rate Support | Ping Pong PHY Support | Maximum Frequency (MHz) | |-----------------|--------------|-----------------------|-------------------------| | DDR4 SDRAM | Quarter rate | Yes | 1,067 | | | | _ | 1,200 | | DDR3 SDRAM | Half rate | Yes | 533 | | | | _ | 667 | | | Quarter rate | Yes | 1,067 | | | | _ | 1,067 | | DDR3L SDRAM | Half rate | Yes | 533 | | | | _ | 667 | | | Quarter rate | Yes | 933 | | | | _ | 933 | | LPDDR3 SDRAM | Half rate | _ | 533 | | | Quarter rate | _ | 800 | ### **Table 21.** Memory Standards Supported by the Soft Memory Controller | Memory Standard | Rate Support | Maximum Frequency
(MHz) | |-----------------------------|--------------|----------------------------| | RLDRAM 3 (11) | Quarter rate | 1,200 | | QDR IV SRAM ⁽¹¹⁾ | Quarter rate | 1,067 | | QDR II SRAM | Full rate | 333 | | | Half rate | 633 | | QDR II+ SRAM | Full rate | 333 | | | Half rate | 633 | | QDR II+ Xtreme SRAM | Full rate | 333 | | | Half rate | 633 | # Table 22. Memory Standards Supported by the HPS Hard Memory Controller The hard processor system (HPS) is available in Intel Arria 10 SoC devices only. | Memory Standard | Rate Support | Maximum Frequency
(MHz) | |-----------------|--------------|----------------------------| | DDR4 SDRAM | Half rate | 1,200 | | DDR3 SDRAM | Half rate | 1,067 | | DDR3L SDRAM | Half rate | 933 | ⁽¹¹⁾ Intel Arria 10 devices support this external memory interface using hard PHY with soft memory controller. #### **Related Information** #### Intel Arria 10 Device Datasheet Lists the memory interface performance according to memory interface standards, rank or chip select configurations, and Intel Arria 10 device speed grades. # PCIe Gen1, Gen2, and Gen3 Hard IP Intel Arria 10 devices contain PCIe hard IP that is designed for performance and ease-of-use: - Includes all layers of the PCIe stack—transaction, data link and physical layers. - Supports PCIe Gen3, Gen2, and Gen1 Endpoint and Root Port in x1, x2, x4, or x8 lane configuration. - Operates independently from the core logic—optional configuration via protocol (CvP) allows the PCIe link to power up and complete link training in less than 100 ms while the Intel Arria 10 device completes loading the programming file for the rest of the FPGA. - Provides added functionality that makes it easier to support emerging features such as Single Root I/O Virtualization (SR-IOV) and optional protocol extensions. - Provides improved end-to-end datapath protection using ECC. - Supports FPGA configuration via protocol (CvP) using PCIe at Gen3, Gen2, or Gen1 speed. #### **Related Information** PCS Features on page 30 # **Enhanced PCS Hard IP for Interlaken and 10 Gbps Ethernet** ### **Interlaken Support** The Intel Arria 10 enhanced PCS hard IP provides integrated Interlaken PCS supporting rates up to 25.8 Gbps per lane. The Interlaken PCS is based on the proven functionality of the PCS developed for Intel's previous generation FPGAs, which demonstrated interoperability with Interlaken ASSP vendors and third-party IP suppliers. The Interlaken PCS is present in every transceiver channel in Intel Arria 10 devices. #### **Related Information** PCS Features on page 30 #### **10 Gbps Ethernet Support** The Intel Arria 10 enhanced PCS hard IP supports 10GBASE-R PCS compliant with IEEE 802.3 10 Gbps Ethernet (10GbE). The integrated hard IP support for 10GbE and the 10 Gbps transceivers save external PHY cost, board space, and system power. #### A10-OVERVIEW | 2018.04.09 The scalable hard IP supports multiple independent 10GbE ports while using a single PLL for all the 10GBASE-R PCS instantiations, which saves on core logic resources and clock networks: - Simplifies multiport 10GbE systems compared to XAUI interfaces that require an external XAUI-to-10G PHY. - Incorporates Electronic Dispersion Compensation (EDC), which enables direct connection to standard 10 Gbps XFP and SFP+ pluggable optical modules. - Supports backplane Ethernet applications and includes a hard 10GBASE-KR Forward Error Correction (FEC) circuit that you can use for 10 Gbps and 40 Gbps applications. The 10 Gbps Ethernet PCS hard IP and 10GBASE-KR FEC are present in every transceiver channel. #### **Related Information** PCS Features on page 30 #### **Low Power Serial Transceivers** Intel Arria 10 FPGAs and SoCs include lowest power transceivers that deliver high bandwidth, throughput and low latency. Intel Arria 10 devices deliver the industry's lowest power consumption per transceiver channel: - 12.5 Gbps transceivers at as low as 242 mW - 10 Gbps transceivers at as low as 168 mW - 6 Gbps transceivers at as low as 117 mW Intel Arria 10 transceivers support various data rates according to application: - Chip-to-chip and chip-to-module applications—from 1 Gbps up to 25.8 Gbps - Long reach and backplane applications—from 1 Gbps up to 12.5 with advanced adaptive equalization - Critical power sensitive applications—from 1 Gbps up to 11.3 Gbps using lower power modes The combination of 20 nm process technology and architectural advances provide the following benefits: - Significant reduction in die area and power consumption - Increase of up to two times in transceiver I/O density compared to previous generation devices while maintaining optimal signal integrity - Up to 72 total transceiver channels—you can configure up to 6 of these channels to run as fast as 25.8 Gbps - All channels feature continuous data rate support up to the maximum rated speed #### **Transceiver Channels** All transceiver channels feature a dedicated Physical Medium Attachment (PMA) and a hardened Physical Coding Sublayer (PCS). - The PMA provides primary interfacing capabilities to physical channels. - The PCS typically handles encoding/decoding, word alignment, and other preprocessing functions before transferring data to the FPGA core fabric. A transceiver channel consists of a PMA and a PCS block. Most transceiver banks have 6 channels. There are some transceiver banks that contain only 3 channels. A wide variety of bonded and non-bonded data rate configurations is possible using a highly configurable clock distribution network. Up to 80 independent transceiver data rates can be configured. The following figures are graphical representations of top views of the silicon die, which correspond to reverse views for flip chip packages. Different Intel Arria 10 devices may have different floorplans than the ones shown in the figures. Each transceiver channel contains a channel PLL that can be used as the CMU PLL or clock data recovery (CDR) PLL. In CDR mode, the channel PLL recovers the receiver clock and data in the transceiver channel. Up to 80 independent data rates can be configured on a single Intel Arria 10 device. Table 23. PMA Features of the Transceivers in Intel Arria 10 Devices | Feature | Capability | | | | |--|--|--|--|--| | Chip-to-Chip Data Rates | 1 Gbps to 17.4 Gbps (Intel Arria 10 GX devices)
1 Gbps to 25.8 Gbps (Intel Arria 10 GT devices) | | | | | Backplane Support | Drive backplanes at data rates up to 12.5 Gbps | | | | | Optical Module Support | SFP+/SFP, XFP, CXP, QSFP/QSFP28, CFP/CFP2/CFP4 | | | | | Cable Driving Support | SFP+ Direct Attach, PCI Express over cable, eSATA | | | | | Transmit Pre-Emphasis | 4-tap transmit pre-emphasis and de-emphasis to compensate for system channel loss | | | | | Continuous Time Linear
Equalizer (CTLE) | Dual mode, high-gain, and high-data rate, linear receive equalization to compensate for system channel loss | | | | | Decision Feedback Equalizer (DFE) | 7-fixed and 4-floating tap DFE to equalize backplane channel loss in the presence of crosstalk and noisy environments | | | | | Variable Gain Amplifier | Optimizes the signal amplitude prior to the CDR sampling and operates in fixed and adaptive modes | | | | | Altera Digital Adaptive
Parametric Tuning (ADAPT) | Fully digital adaptation engine to automatically adjust all link equalization parameters—including CTLE, DFE, and variable gain amplifier blocks—that provide optimal link margin without intervention from user logic | | | | | Precision Signal Integrity
Calibration Engine (PreSICE) | Hardened calibration controller to quickly calibrate all transceiver control parameters on power-up, which provides the optimal signal integrity and jitter performance | | | | | Advanced Transmit (ATX)
PLL | Low jitter ATX (LC tank based) PLLs with continuous tuning range to cover a wide range of standard and proprietary protocols | | | | | Fractional PLLs | On-chip fractional frequency synthesizers to replace on-board crystal oscillators and reduce system cost | | | | | Digitally Assisted Analog
CDR | Superior jitter tolerance with fast lock time | | | | | Dynamic Partial
Reconfiguration | Allows independent control of the Avalon memory-mapped interface of each transceiver channel for the highest transceiver flexibility | | | | | Multiple PCS-PMA and PCS-
PLD interface widths | 8-, 10-, 16-, 20-, 32-, 40-, or 64-bit interface widths for flexibility of deserialization width, encoding, and reduced latency | | | | # **PCS Features** This table summarizes the Intel Arria 10 transceiver PCS features. You can use the transceiver PCS to support a wide range of protocols ranging from 1 Gbps to 25.8 Gbps. | PCS | Description | |---------------|--| | Standard PCS | Operates at a data rate up to 12 Gbps Supports protocols such as PCI-Express, CPRI 4.2+, GigE, IEEE 1588 in Hard PCS Implements other protocols using Basic/Custom (Standard PCS) transceiver configuration rules. | | Enhanced PCS | Performs functions common to most serial data industry standards, such as word alignment, encoding/decoding, and framing, before data is sent or received off-chip through the PMA Handles data transfer to and from the FPGA fabric Handles data transfer internally to and from the PMA Provides frequency compensation Performs channel bonding for multi-channel low skew applications | | PCIe Gen3 PCS | Supports the seamless switching of Data and Clock between the Gen1, Gen2, and Gen3 data rates Provides support for PIPE 3.0 features Supports the PIPE interface with the Hard IP enabled, as well as with the Hard IP bypassed | #### **Related Information** - PCIe Gen1, Gen2, and Gen3 Hard IP on page 26 - Interlaken Support on page 26 - 10 Gbps Ethernet Support on page 26 # **PCS Protocol Support** This table lists some of the protocols supported by the Intel Arria 10 transceiver PCS. For more information about the blocks in the transmitter and receiver data paths, refer to the related information. | Protocol | Data Rate
(Gbps) | Transceiver IP | PCS Support | | |--|---------------------|-----------------------------|-----------------------------------|--| | PCIe Gen3 x1, x2, x4, x8 | 8.0 | Native PHY (PIPE) | Standard PCS and PCIe
Gen3 PCS | | | PCIe Gen2 x1, x2, x4, x8 | 5.0 | Native PHY (PIPE) | Standard PCS | | | PCIe Gen1 x1, x2, x4, x8 | 2.5 | Native PHY (PIPE) | Standard PCS | | | 1000BASE-X Gigabit Ethernet | 1.25 | Native PHY | Standard PCS | | | 1000BASE-X Gigabit Ethernet with IEEE 1588v2 | 1.25 | Native PHY | Standard PCS | | | 10GBASE-R | 10.3125 | Native PHY | Enhanced PCS | | | 10GBASE-R with IEEE 1588v2 | 10.3125 | Native PHY | Enhanced PCS | | | 10GBASE-R with KR FEC | 10.3125 | Native PHY | Enhanced PCS | | | 10GBASE-KR and 1000BASE-X | 10.3125 | 1G/10GbE and 10GBASE-KR PHY | Standard PCS and
Enhanced PCS | | | Interlaken (CEI-6G/11G) | 3.125 to 17.4 | Native PHY | Enhanced PCS | | | SFI-S/SFI-5.2 | 11.2 | Native PHY | Enhanced PCS | | | 10G SDI | 10.692 | Native PHY | Enhanced PCS | | | | • | | continued | | #### Table 24. **Improvements in 20 nm HPS** This table lists the key improvements of the 20 nm HPS compared to the 28 nm HPS. | Advantages/
Improvements | Description | |---|--| | Increased performance and overdrive capability | While the nominal processor frequency is 1.2 GHz, the 20 nm HPS offers an "overdrive" feature which enables a higher processor operating frequency. This requires a higher supply voltage value that is unique to the HPS and may require a separate regulator. | | Increased processor memory bandwidth and DDR4 support | Up to 64-bit DDR4 memory at 2,400 Mbps support is available for the processor. The hard memory controller for the HPS comprises a multi-port front end that manages connections to a single port memory controller. The multi-port front end allows logic core and the HPS to share ports and thereby the available bandwidth of the memory controller. | | Flexible I/O sharing | An advanced I/O pin muxing scheme allows improved sharing of I/O between the HPS and the core logic. The following types of I/O are available for SoC: 17 dedicated I/Os—physically located inside the HPS block and are not accessible to logic within the core. The 17 dedicated I/Os are used for HPS clock, resets, and | | | interfacing with boot devices, QSPI, and SD/MMC. 48 direct shared I/O—located closest to the HPS block and are ideal for high speed HPS peripherals such as EMAC, USB, and others. There is one bank of 48 I/Os that supports direct sharing where the 48 I/Os can be shared 12 I/Os at a time. Standard (shared) I/O—all standard I/Os can be shared by the HPS peripherals and any logic within the core. For designs where more than 48 I/Os are required to fully use all the peripherals in the HPS, these I/Os can be connected through the core logic. | | EMAC core | Three EMAC cores are available in the HPS. The EMAC cores enable an application to support two redundant Ethernet connections; for example, backplane, or two EMAC cores for managing IEEE 1588 time stamp information while allowing a third EMAC core for debug and configuration. All three EMACs can potentially share the same time stamps, simplifying the 1588 time stamping implementation. A new serial time stamp interface allows core logic to access and read the time stamp values. The integrated EMAC controllers can be connected to external Ethernet PHY through the provided MDIO or I ² C interface. | | On-chip memory | The on-chip memory is updated to 256 KB support and can support larger data sets and real time algorithms. | | ECC enhancements | Improvements in L2 Cache ECC management allow identification of errors down to the address level. ECC enhancements also enable improved error injection and status reporting via the introduction of new memory mapped access to syndrome and data signals. | | HPS to FPGA Interconnect
Backbone | Although the HPS and the Logic Core can operate independently, they are tightly coupled via a high-bandwidth system interconnect built from high-performance ARM AMBA AXI bus bridges. IP bus masters in the FPGA fabric have access to HPS bus slaves via the FPGA-to-HPS interconnect. Similarly, HPS bus masters have access to bus slaves in the core fabric via the HPS-to-FPGA bridge. Both bridges are AMBA AXI-3 compliant and support simultaneous read and write transactions. Up to three masters within the core fabric can share the HPS SDRAM controller with the processor. Additionally, the processor can be used to configure the core fabric under program control via a dedicated 32-bit configuration port. | | FPGA configuration and HPS booting | The FPGA fabric and HPS in the SoCs are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power. You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility. | | Security | New security features have been introduced for anti-tamper management, secure boot, encryption (AES), and authentication (SHA). | Instead of placing all device functions in the FPGA fabric, you can store some functions that do not run simultaneously in external memory and load them only when required. This capability increases the effective logic density of the device, and lowers cost and power consumption. In the Intel solution, you do not have to worry about intricate device architecture to perform a partial reconfiguration. The partial reconfiguration capability is built into the Intel Quartus Prime design software, making such time-intensive task simple. Intel Arria 10 devices support partial reconfiguration in the following configuration options: - Using an internal host: - All supported configuration modes where the FPGA has access to external memory devices such as serial and parallel flash memory. - Configuration via Protocol [CvP (PCIe)] - Using an external host—passive serial (PS), fast passive parallel (FPP) x8, FPP x16, and FPP x32 I/O interface. # **Enhanced Configuration and Configuration via Protocol** Table 25. Configuration Schemes and Features of Intel Arria 10 Devices Intel Arria 10 devices support 1.8 V programming voltage and several configuration schemes. | Scheme | Data
Width | Max Clock
Rate
(MHz) | Max Data
Rate
(Mbps)
(13) | Decompression | Design
Security ⁽¹
4) | Partial
Reconfiguration
(15) | Remote
System
Update | |--|------------------|----------------------------|------------------------------------|---------------|--|------------------------------------|---| | JTAG | 1 bit | 33 | 33 | _ | _ | Yes ⁽¹⁶⁾ | _ | | Active Serial (AS)
through the
EPCQ-L
configuration
device | 1 bit,
4 bits | 100 | 400 | Yes | Yes | Yes ⁽¹⁶⁾ | Yes | | Passive serial (PS)
through CPLD or
external
microcontroller | 1 bit | 100 | 100 | Yes | Yes | Yes ⁽¹⁶⁾ | Parallel
Flash
Loader
(PFL) IP
core | | | continued | | | | | со | ntinued | ⁽¹³⁾ Enabling either compression or design security features affects the maximum data rate. Refer to the Intel Arria 10 Device Datasheet for more information. ⁽¹⁴⁾ Encryption and compression cannot be used simultaneously. ⁽¹⁵⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Intel for support. ⁽¹⁶⁾ Partial configuration can be performed only when it is configured as internal host. | Scheme | Data
Width | Max Clock
Rate
(MHz) | Max Data
Rate
(Mbps) | Decompression | Design
Security ⁽¹
4) | Partial
Reconfiguration
(15) | Remote
System
Update | |--|----------------------------|----------------------------|----------------------------|---------------|--|------------------------------------|----------------------------| | Fast passive
parallel (FPP)
through CPLD or
external
microcontroller | 8 bits | 100 | 3200 | Yes | Yes | Yes ⁽¹⁷⁾ | PFL IP
core | | | 16 bits | | | Yes | Yes | | | | | 32 bits | | | Yes | Yes | | | | Configuration via
HPS | 16 bits | 100 | 3200 | Yes | Yes | Yes ⁽¹⁷⁾ | _ | | | 32 bits | | | Yes | Yes | | | | Configuration via
Protocol [CvP
(PCIe*)] | x1, x2,
x4, x8
lanes | _ | 8000 | Yes | Yes | Yes ⁽¹⁶⁾ | _ | You can configure Intel Arria 10 devices through PCIe using Configuration via Protocol (CvP). The Intel Arria 10 CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement. #### **SEU Error Detection and Correction** Intel Arria 10 devices offer robust and easy-to-use single-event upset (SEU) error detection and correction circuitry. The detection and correction circuitry includes protection for Configuration RAM (CRAM) programming bits and user memories. The CRAM is protected by a continuously running CRC error detection circuit with integrated ECC that automatically corrects one or two errors and detects higher order multi-bit errors. When more than two errors occur, correction is available through reloading of the core programming file, providing a complete design refresh while the FPGA continues to operate. The physical layout of the Intel Arria 10 CRAM array is optimized to make the majority of multi-bit upsets appear as independent single-bit or double-bit errors which are automatically corrected by the integrated CRAM ECC circuitry. In addition to the CRAM protection, the M20K memory blocks also include integrated ECC circuitry and are layout-optimized for error detection and correction. The MLAB does not have ECC. # **Power Management** Intel Arria 10 devices leverage the advanced 20 nm process technology, a low 0.9 V core power supply, an enhanced core architecture, and several optional power reduction techniques to reduce total power consumption by as much as 40% compared to Arria V devices and as much as 60% compared to Stratix V devices. ⁽¹³⁾ Enabling either compression or design security features affects the maximum data rate. Refer to the Intel Arria 10 Device Datasheet for more information. ⁽¹⁴⁾ Encryption and compression cannot be used simultaneously. ⁽¹⁵⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Intel for support. ⁽¹⁷⁾ Supported at a maximum clock rate of 100 MHz. | Date | Version | Changes | |----------------|------------|---| | December 2015 | 2015.12.14 | Updated the number of M20K memory blocks for Arria 10 GX 660 from 2133 to 2131 and corrected the total RAM bit from 48,448 Kb to 48,408 Kb. | | | | Corrected the number of DSP blocks for Arria 10 GX 660 from 1688 to 1687 in the table listing floating-point arithmetic resources. | | November 2015 | 2015.11.02 | • Updated the maximum resources for Arria 10 GX 220, GX 320, GX 480, GX 660, SX 220, SX 320, SX 480, and SX 660. | | | | Updated resource count for Arria 10 GX 320, GX 480, GX 660, SX 320, SX 480, a SX 660 devices in Number of Multipliers in Intel Arria 10 Devices table. | | | | Updated the available options for Arria 10 GX, GT, and SX. Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>. | | June 2015 | 2015.06.15 | Corrected label for Intel Arria 10 GT product lines in the vertical migration figure. | | May 2015 | 2015.05.15 | Corrected the DDR3 half rate and quarter rate maximum frequencies in the table that lists the memory standards supported by the Intel Arria 10 hard memory controller. | | May 2015 | 2015.05.04 | Added support for 13.5G JESD204b in the Summary of Features table. | | | | Added a link to Arria 10 GT Channel Usage in the Arria 10 GT Package Plan topic. | | | | Added a note to the table, Maximum Resource Counts for Arria 10 GT devices. | | | | Updated the power requirements of the transceivers in the Low Power Serial Transceivers topic. | | January 2015 | 2015.01.23 | Added floating point arithmetic features in the Summary of Features table. | | | | Updated the total embedded memory from 38.38 megabits (Mb) to 65.6 Mb. | | | | Updated the table that lists the memory standards supported by Intel
Arria 10 devices. | | | | Removed support for DDR3U, LPDDR3 SDRAM, RLDRAM 2, and DDR2. Moved RLDRAM 3 support from hard memory controller to soft memory controller. RLDRAM 3 support uses hard PHY with soft memory controller. | | | | Added soft memory controller support for QDR IV. | | | | Updated the maximum resource count table to include the number of
hard memory controllers available in each device variant. | | | | Updated the transceiver PCS data rate from 12.5 Gbps to 12 Gbps. | | | | Updated the max clock rate of PS, FPP x8, FPP x16, and Configuration via HPS from 125 MHz to 100 MHz. | | | | Added a feature for fractional synthesis PLLs: PLL cascading. | | | | Updated the HPS programmable general-purpose I/Os from 54 to 62. | | September 2014 | 2014.09.30 | Corrected the 3 V I/O and LVDS I/O counts for F35 and F36 packages of Arria 10 GX. | | | | Corrected the 3 V I/O, LVDS I/O, and transceiver counts for the NF40 package of the Arria GX 570 and 660. | | | | Removed 3 V I/O, LVDS I/O, and transceiver counts for the NF40 package of the Arria GX 900 and 1150. The NF40 package is not available for Arria 10 GX 900 and 1150. | | | | continued |