Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. ### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|-------------------------------------------------------------| | Product Status | Active | | Number of LABs/CLBs | 427200 | | Number of Logic Elements/Cells | 1150000 | | Total RAM Bits | 68857856 | | Number of I/O | 600 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.98V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FCBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/10ax115n2f40e1sg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Key Advantages of Intel Arria 10 Devices** Table 2. Key Advantages of the Intel Arria 10 Device Family | Advantage | Supporting Feature | |-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Enhanced core architecture | Built on TSMC's 20 nm process technology 60% higher performance than the previous generation of mid-range FPGAs 15% higher performance than the fastest previous-generation FPGA | | High-bandwidth integrated transceivers | <ul> <li>Short-reach rates up to 25.8 Gigabits per second (Gbps)</li> <li>Backplane capability up to 12.5 Gbps</li> <li>Integrated 10GBASE-KR and 40GBASE-KR4 Forward Error Correction (FEC)</li> </ul> | | Improved logic integration and hard IP blocks | 8-input adaptive logic module (ALM) Up to 65.6 megabits (Mb) of embedded memory Variable-precision digital signal processing (DSP) blocks Fractional synthesis phase-locked loops (PLLs) Hard PCI Express Gen3 IP blocks Hard memory controllers and PHY up to 2,400 Megabits per second (Mbps) | | Second generation hard<br>processor system (HPS) with<br>integrated ARM* Cortex*-A9*<br>MPCore* processor | Tight integration of a dual-core ARM Cortex-A9 MPCore processor, hard IP, and an FPGA in a single Intel Arria 10 system-on-a-chip (SoC) Supports over 128 Gbps peak bandwidth with integrated data coherency between the processor and the FPGA fabric | | Advanced power savings | Comprehensive set of advanced power saving features Power-optimized MultiTrack routing and core architecture Up to 40% lower power compared to previous generation of mid-range FPGAs Up to 60% lower power compared to previous generation of high-end FPGAs | ## **Summary of Intel Arria 10 Features** Table 3. Summary of Features for Intel Arria 10 Devices | Feature | Description | |---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Technology | TSMC's 20-nm SoC process technology Allows operation at a lower V <sub>CC</sub> level of 0.82 V instead of the 0.9 V standard V <sub>CC</sub> core voltage | | Packaging | <ul> <li>1.0 mm ball-pitch Fineline BGA packaging</li> <li>0.8 mm ball-pitch Ultra Fineline BGA packaging</li> <li>Multiple devices with identical package footprints for seamless migration between different FPGA densities</li> <li>Devices with compatible package footprints allow migration to next generation high-end Stratix® 10 devices</li> <li>RoHS, leaded<sup>(1)</sup>, and lead-free (Pb-free) options</li> </ul> | | High-performance<br>FPGA fabric | <ul> <li>Enhanced 8-input ALM with four registers</li> <li>Improved multi-track routing architecture to reduce congestion and improve compilation time</li> <li>Hierarchical core clocking architecture</li> <li>Fine-grained partial reconfiguration</li> </ul> | | Internal memory blocks | M20K—20-Kb memory blocks with hard error correction code (ECC) Memory logic array block (MLAB)—640-bit memory | | | continued | <sup>(1)</sup> Contact Intel for availability. #### A10-OVERVIEW | 2018.04.09 | Feature | | Description | | | | | |--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--| | Embedded Hard IP<br>blocks | Variable-precision DSP | <ul> <li>Native support for signal processing precision levels from 18 x 19 to 54 x 54</li> <li>Native support for 27 x 27 multiplier mode</li> <li>64-bit accumulator and cascade for systolic finite impulse responses (FIRs)</li> <li>Internal coefficient memory banks</li> <li>Preadder/subtractor for improved efficiency</li> <li>Additional pipeline register to increase performance and reduce power</li> <li>Supports floating point arithmetic: <ul> <li>Perform multiplication, addition, subtraction, multiply-add, multiply-subtract, and complex multiplication.</li> <li>Supports multiplication with accumulation capability, cascade summation, and cascade subtraction capability.</li> <li>Dynamic accumulator reset control.</li> <li>Support direct vector dot and complex multiplication chaining multiply floating point DSP blocks.</li> </ul> </li> </ul> | | | | | | | Memory controller | DDR4, DDR3, and DDR3L | | | | | | | PCI Express* | PCI Express (PCIe*) Gen3 (x1, x2, x4, or x8), Gen2 (x1, x2, x4, or x8) and Gen1 (x1, x2, x4, or x8) hard IP with complete protocol stack, endpoint, and root port | | | | | | | Transceiver I/O | 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) PCS hard IPs that support: | | | | | | Core clock networks | <ul> <li>667 MHz external</li> <li>800 MHz LVDS in</li> <li>Global, regional, and</li> </ul> | c clocking, depending on the application:<br>I memory interface clocking with 2,400 Mbps DDR4 interface<br>terface clocking with 1,600 Mbps LVDS interface<br>I peripheral clock networks<br>are not used can be gated to reduce dynamic power | | | | | | Phase-locked loops<br>(PLLs) | High-resolution fractional synthesis PLLs: — Precision clock synthesis, clock delay compensation, and zero delay buffering (ZDB) — Support integer mode and fractional mode — Fractional mode support with third-order delta-sigma modulation Integer PLLs: — Adjacent to general purpose I/Os — Support external memory and LVDS interfaces | | | | | | | FPGA General-purpose<br>I/Os (GPIOs) | On-chip termination | ry pair can be configured as receiver or transmitter<br>(OCT)<br>-ended LVTTL/LVCMOS interfacing | | | | | | External Memory<br>Interface | <ul><li>DDR4—speeds up</li><li>DDR3—speeds up</li></ul> | oller— DDR4, DDR3, and DDR3L support to 1,200 MHz/2,400 Mbps to 1,067 MHz/2,133 Mbps ler—provides support for RLDRAM 3 <sup>(2)</sup> , QDR IV <sup>(2)</sup> , and QDR II+ continued | | | | | | Feature | | Description | |--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Low-power serial<br>transceivers | - Intel Arria 10 GT- Backplane support: - Intel Arria 10 GX- Intel Arria 10 GT- Extended range dow ATX transmit PLLs w Electronic Dispersion module Adaptive linear and of | —1 Gbps to 17.4 Gbps —1 Gbps to 25.8 Gbps —up to 12.5 | | HPS<br>(Intel Arria 10 SX<br>devices only) | Processor and system | Dual-core ARM Cortex-A9 MPCore processor—1.2 GHz CPU with 1.5 GHz overdrive capability 256 KB on-chip RAM and 64 KB on-chip ROM System peripherals—general-purpose timers, watchdog timers, direct memory access (DMA) controller, FPGA configuration manager, and clock and reset managers Security features—anti-tamper, secure boot, Advanced Encryption Standard (AES) and authentication (SHA) ARM CoreSight* JTAG debug access port, trace port, and on-chip trace storage | | | External interfaces | Hard memory interface—Hard memory controller (2,400 Mbps DDR4, and 2,133 Mbps DDR3), Quad serial peripheral interface (QSPI) flash controller, NAND flash controller, direct memory access (DMA) controller, Secure Digital/MultiMediaCard (SD/MMC) controller Communication interface— 10/100/1000 Ethernet media access control (MAC), USB On-The-GO (OTG) controllers, I²C controllers, UART 16550, serial peripheral interface (SPI), and up to 62 HPS GPIO interfaces (48 direct-share I/Os) | | | Interconnects to core | High-performance ARM AMBA* AXI bus bridges that support simultaneous read and write HPS-FPGA bridges—include the FPGA-to-HPS, HPS-to-FPGA, and lightweight HPS-to-FPGA bridges that allow the FPGA fabric to issue transactions to slaves in the HPS, and vice versa Configuration bridge that allows HPS configuration manager to configure the core logic via dedicated 32-bit configuration port FPGA-to-HPS SDRAM controller bridge—provides configuration interfaces for the multiport front end (MPFE) of the HPS SDRAM controller | | Configuration | Enhanced 256-bit ad | comprehensive design protection to protect your valuable IP investments dvanced encryption standard (AES) design security with authentication obtocol (CvP) using PCIe Gen1, Gen2, or Gen3 | | | | continued | $<sup>^{(2)}</sup>$ Intel Arria 10 devices support this external memory interface using hard PHY with soft memory controller. Table 6. Maximum Resource Counts for Intel Arria 10 GX Devices (GX 570, GX 660, GX 900, and GX 1150) | Re | source | | Produc | t Line | | |------------------------------|-------------------------|---------|-----------|-----------|-----------| | | | GX 570 | GX 660 | GX 900 | GX 1150 | | Logic Elements | s (LE) (K) | 570 | 660 | 900 | 1,150 | | ALM | | 217,080 | 251,680 | 339,620 | 427,200 | | Register | | 868,320 | 1,006,720 | 1,358,480 | 1,708,800 | | Memory (Kb) | M20K | 36,000 | 42,620 | 48,460 | 54,260 | | | MLAB | 5,096 | 5,788 | 9,386 | 12,984 | | Variable-precision DSP Block | | 1,523 | 1,687 | 1,518 | 1,518 | | 18 x 19 Multip | lier | 3,046 | 3,374 | 3,036 | 3,036 | | PLL | Fractional<br>Synthesis | 16 | 16 | 32 | 32 | | | I/O | 16 | 16 | 16 | 16 | | 17.4 Gbps Trai | nsceiver | 48 | 48 | 96 | 96 | | GPIO (3) | | 696 | 696 | 768 | 768 | | LVDS Pair (4) | | 324 | 324 | 384 | 384 | | PCIe Hard IP Block | | 2 | 2 | 4 | 4 | | Hard Memory | Controller | 16 | 16 | 16 | 16 | ## **Package Plan** ## Table 7. Package Plan for Intel Arria 10 GX Devices (U19, F27, and F29) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | U19<br>(19 mm × 19 mm,<br>484-pin UBGA) | | | | F27<br>mm × 27 n<br>72-pin FBG/ | | F29<br>(29 mm × 29 mm,<br>780-pin FBGA) | | | | |--------------|-----------------------------------------|----------|------|---------|---------------------------------|------|-----------------------------------------|----------|------|--| | | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | | | GX 160 | 48 | 192 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | | | GX 220 | 48 | 192 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | | | GX 270 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | | | GX 320 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | | | GX 480 | _ | _ | _ | _ | _ | _ | 48 | 312 | 12 | | ### Table 8. Package Plan for Intel Arria 10 GX Devices (F34, F35, NF40, and KF40) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | F34<br>(35 mm × 35 mm,<br>1152-pin FBGA) | | | | F35<br>(35 mm × 35 mm,<br>1152-pin FBGA) | | KF40<br>(40 mm × 40 mm,<br>1517-pin FBGA) | | | NF40<br>(40 mm × 40 mm,<br>1517-pin FBGA) | | | |--------------|------------------------------------------|-------------|------|------------|------------------------------------------|------|-------------------------------------------|-------------|------|-------------------------------------------|-------------|------| | | 3 V<br>I/O | LVDS<br>I/O | XCVR | | GX 270 | 48 | 336 | 24 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | GX 320 | 48 | 336 | 24 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | GX 480 | 48 | 444 | 24 | 48 | 348 | 36 | _ | _ | _ | _ | _ | _ | | GX 570 | 48 | 444 | 24 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | GX 660 | 48 | 444 | 24 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | GX 900 | _ | 504 | 24 | _ | _ | _ | _ | _ | _ | _ | 600 | 48 | | GX 1150 | _ | 504 | 24 | _ | _ | _ | _ | _ | _ | _ | 600 | 48 | #### Table 9. Package Plan for Intel Arria 10 GX Devices (RF40, NF45, SF45, and UF45) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | RF40<br>(40 mm × 40 mm,<br>1517-pin FBGA) | | | NF45<br>(45 mm × 45 mm)<br>1932-pin FBGA) | | SF45<br>(45 mm × 45 mm)<br>1932-pin FBGA) | | | UF45<br>(45 mm × 45 mm)<br>1932-pin FBGA) | | | | |--------------|-------------------------------------------|-------------|------|-------------------------------------------|-------------|-------------------------------------------|------------|-------------|-------------------------------------------|------------|-------------|------| | | 3 V<br>I/O | LVDS<br>I/O | XCVR | | GX 900 | _ | 342 | 66 | _ | 768 | 48 | _ | 624 | 72 | _ | 480 | 96 | | GX 1150 | _ | 342 | 66 | _ | 768 | 48 | _ | 624 | 72 | _ | 480 | 96 | #### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. #### **Intel Arria 10 GT** This section provides the available options, maximum resource counts, and package plan for the Intel Arria 10 GT devices. The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Intel FPGA Product Selector. #### **Related Information** Intel FPGA Product Selector Provides the latest information on Intel products. ### **Available Options** Figure 2. Sample Ordering Code and Available Options for Intel Arria 10 GT Devices #### **Maximum Resources** Table 10. Maximum Resource Counts for Intel Arria 10 GT Devices | Reso | urce | Produc | ct Line | | |------------------------------|----------------------|-------------------|-------------------|--| | | | GT 900 | GT 1150 | | | Logic Elements (LE) (K) | | 900 | 1,150 | | | ALM | | 339,620 | 427,200 | | | Register | | 1,358,480 | 1,708,800 | | | Memory (Kb) | M20K | 48,460 | 54,260 | | | | MLAB | 9,386 | 12,984 | | | Variable-precision DSP Block | | 1,518 | 1,518 | | | 18 x 19 Multiplier | | 3,036 | 3,036 | | | PLL | Fractional Synthesis | 32 | 32 | | | | I/O | 16 | 16 | | | Transceiver | 17.4 Gbps | 72 <sup>(5)</sup> | 72 <sup>(5)</sup> | | | | 25.8 Gbps | 6 | 6 | | | GPIO <sup>(6)</sup> | | 624 | 624 | | | LVDS Pair <sup>(7)</sup> | | 312 | 312 | | | PCIe Hard IP Block | | 4 | 4 | | | Hard Memory Controller | | 16 | 16 | | #### **Related Information** Intel Arria 10 GT Channel Usage Configuring GT/GX channels in Intel Arria 10 GT devices. #### **Package Plan** #### Table 11. Package Plan for Intel Arria 10 GT Devices Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | SF45<br>(45 mm × 45 mm, 1932-pin FBGA) | | | | | | | |--------------|----------------------------------------|----------|------|--|--|--|--| | | 3 V I/O | LVDS I/O | XCVR | | | | | | GT 900 | _ | 624 | 72 | | | | | | GT 1150 | _ | 624 | 72 | | | | | <sup>(5)</sup> If all 6 GT channels are in use, 12 of the GX channels are not usable. <sup>(6)</sup> The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os. <sup>(7)</sup> Each LVDS I/O pair can be used as differential input or output. #### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. #### **Intel Arria 10 SX** This section provides the available options, maximum resource counts, and package plan for the Intel Arria 10 SX devices. The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Intel FPGA Product Selector. #### **Related Information** Intel FPGA Product Selector Provides the latest information on Intel products. #### **Available Options** Figure 3. Sample Ordering Code and Available Options for Intel Arria 10 SX Devices #### **Related Information** Transceiver Performance for Intel Arria 10 GX/SX Devices Provides more information about the transceiver speed grade. | Product Line | U19<br>(19 mm × 19 mm,<br>484-pin UBGA) | | (19 mm × 19 mm, (27 mm × 2 | | nm × 27 | | | F29<br>(29 mm × 29 mm,<br>780-pin FBGA) | | F34<br>(35 mm × 35 mm,<br>1152-pin FBGA) | | | |--------------|-----------------------------------------|-------------|----------------------------|------------|-------------|------|------------|-----------------------------------------|------|------------------------------------------|-------------|------| | | 3 V<br>I/O | LVDS<br>I/O | XCVR | | SX 480 | _ | _ | _ | _ | _ | _ | 48 | 312 | 12 | 48 | 444 | 24 | | SX 570 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 48 | 444 | 24 | | SX 660 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 48 | 444 | 24 | ### Table 14. Package Plan for Intel Arria 10 SX Devices (F35, KF40, and NF40) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | <b>Product Line</b> | F35<br>(35 mm × 35 mm,<br>1152-pin FBGA) | | | | KF40<br>(40 mm × 40 mm,<br>1517-pin FBGA) | | | NF40<br>(40 mm × 40 mm,<br>1517-pin FBGA) | | | |---------------------|------------------------------------------|----------|------|---------|-------------------------------------------|------|---------|-------------------------------------------|------|--| | | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | | | SX 270 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | | SX 320 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | | SX 480 | 48 | 348 | 36 | _ | _ | _ | _ | _ | _ | | | SX 570 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | | SX 660 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | #### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. ### I/O Vertical Migration for Intel Arria 10 Devices #### Figure 4. Migration Capability Across Intel Arria 10 Product Lines - The arrows indicate the migration paths. The devices included in each vertical migration path are shaded. Devices with fewer resources in the same path have lighter shades. - To achieve the full I/O migration across product lines in the same migration path, restrict I/Os and transceivers usage to match the product line with the lowest I/O and transceiver counts. - An LVDS I/O bank in the source device may be mapped to a 3 V I/O bank in the target device. To use memory interface clock frequency higher than 533 MHz, assign external memory interface pins only to banks that are LVDS I/O in both devices. - There may be nominal 0.15 mm package height difference between some product lines in the same package type. - Some migration paths are not shown in the Intel Quartus Prime software Pin Migration View. | Variant Product | | | Package | | | | | | | | | | |---------------------|---------|----------|----------|----------|----------|----------|----------|----------|------|------|----------|----------| | Variant | Line | U19 | F27 | F29 | F34 | F35 | KF40 | NF40 | RF40 | NF45 | SF45 | UF45 | | | GX 160 | <b>1</b> | <b>1</b> | <b>1</b> | | | | | | | | | | | GX 220 | <b>+</b> | | | | | | | | | | | | | GX 270 | | | | 1 | <b>1</b> | | | | | | | | | GX 320 | | <b>V</b> | | | | | | | | | | | Intel® Arria® 10 GX | GX 480 | | | <b>V</b> | | | | | | | | | | | GX 570 | | | | | | <b>1</b> | 1 | | | | | | | GX 660 | | | | | <b>V</b> | <b>\</b> | | | | | | | | GX 900 | | | | | | | | 1 | 1 | <b></b> | 1 | | | GX 1150 | | | | <b>V</b> | | | <b>+</b> | + | + | | <b>+</b> | | Intel Arria 10 GT | GT 900 | | | | | | | | | | | | | intel Afria 10 G1 | GT 1150 | | | | | | | | | | <b>V</b> | | | | SX 160 | 1 | 1 | 1 | | | | | | | | | | | SX 220 | + | | | | | | | | | | | | | SX 270 | | | | 1 | <b>†</b> | | | | | | | | Intel Arria 10 SX | SX 320 | | <b>V</b> | | | | | | | | | | | | SX 480 | | | <b>V</b> | | | | | | | | | | | SX 570 | | | | | | <b>†</b> | <b>†</b> | | | | | | | SX 660 | | | | <b>V</b> | | | | | | | | Note: To verify the pin migration compatibility, use the **Pin Migration View** window in the Intel Quartus Prime software Pin Planner. ## **Adaptive Logic Module** Intel Arria 10 devices use a 20 nm ALM as the basic building block of the logic fabric. The ALM architecture is the same as the previous generation FPGAs, allowing for efficient implementation of logic functions and easy conversion of IP between the device generations. The ALM, as shown in following figure, uses an 8-input fracturable look-up table (LUT) with four dedicated registers to help improve timing closure in register-rich designs and achieve an even higher design packing capability than the traditional two-register per LUT architecture. Figure 5. ALM for Intel Arria 10 Devices The Intel Quartus Prime software optimizes your design according to the ALM logic structure and automatically maps legacy designs into the Intel Arria 10 ALM architecture. ### **Variable-Precision DSP Block** The Intel Arria 10 variable precision DSP blocks support fixed-point arithmetic and floating-point arithmetic. Features for fixed-point arithmetic: - High-performance, power-optimized, and fully registered multiplication operations - 18-bit and 27-bit word lengths - Two 18 x 19 multipliers or one 27 x 27 multiplier per DSP block - Built-in addition, subtraction, and 64-bit double accumulation register to combine multiplication results - Cascading 19-bit or 27-bit when pre-adder is disabled and cascading 18-bit when pre-adder is used to form the tap-delay line for filtering applications - Cascading 64-bit output bus to propagate output results from one block to the next block without external logic support - Hard pre-adder supported in 19-bit and 27-bit modes for symmetric filters - Internal coefficient register bank in both 18-bit and 27-bit modes for filter implementation - 18-bit and 27-bit systolic finite impulse response (FIR) filters with distributed output adder - Biased rounding support ### **Types of Embedded Memory** The Intel Arria 10 devices contain two types of memory blocks: - 20 Kb M20K blocks—blocks of dedicated memory resources. The M20K blocks are ideal for larger memory arrays while still providing a large number of independent ports. - 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dual-purpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide and shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Intel Arria 10 devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. ### **Embedded Memory Capacity in Intel Arria 10 Devices** Table 18. Embedded Memory Capacity and Distribution in Intel Arria 10 Devices | | Product | M2 | 20K | ML | Total RAM Bit | | |-------------------|---------|-------|--------------|--------|---------------|--------| | Variant | Line | Block | RAM Bit (Kb) | Block | RAM Bit (Kb) | (Kb) | | Intel Arria 10 GX | GX 160 | 440 | 8,800 | 1,680 | 1,050 | 9,850 | | | GX 220 | 587 | 11,740 | 2,703 | 1,690 | 13,430 | | | GX 270 | 750 | 15,000 | 3,922 | 2,452 | 17,452 | | | GX 320 | 891 | 17,820 | 4,363 | 2,727 | 20,547 | | | GX 480 | 1,431 | 28,620 | 6,662 | 4,164 | 32,784 | | | GX 570 | 1,800 | 36,000 | 8,153 | 5,096 | 41,096 | | | GX 660 | 2,131 | 42,620 | 9,260 | 5,788 | 48,408 | | | GX 900 | 2,423 | 48,460 | 15,017 | 9,386 | 57,846 | | | GX 1150 | 2,713 | 54,260 | 20,774 | 12,984 | 67,244 | | Intel Arria 10 GT | GT 900 | 2,423 | 48,460 | 15,017 | 9,386 | 57,846 | | | GT 1150 | 2,713 | 54,260 | 20,774 | 12,984 | 67,244 | | Intel Arria 10 SX | SX 160 | 440 | 8,800 | 1,680 | 1,050 | 9,850 | | | SX 220 | 587 | 11,740 | 2,703 | 1,690 | 13,430 | | | SX 270 | 750 | 15,000 | 3,922 | 2,452 | 17,452 | | | SX 320 | 891 | 17,820 | 4,363 | 2,727 | 20,547 | | | SX 480 | 1,431 | 28,620 | 6,662 | 4,164 | 32,784 | | | SX 570 | 1,800 | 36,000 | 8,153 | 5,096 | 41,096 | | | SX 660 | 2,131 | 42,620 | 9,260 | 5,788 | 48,408 | ### **Embedded Memory Configurations for Single-port Mode** #### Table 19. Single-port Embedded Memory Configurations for Intel Arria 10 Devices This table lists the maximum configurations supported for single-port RAM and ROM modes. | Memory Block | Depth (bits) | Programmable Width | |--------------|--------------|--------------------| | MLAB | 32 | x16, x18, or x20 | | | 64 (10) | x8, x9, x10 | | M20K | 512 | x40, x32 | | | 1K | x20, x16 | | | 2K | x10, x8 | | | 4K | x5, x4 | | | 8K | x2 | | | 16K | x1 | #### **Clock Networks and PLL Clock Sources** The clock network architecture is based on Intel's global, regional, and peripheral clock structure. This clock structure is supported by dedicated clock input pins, fractional clock synthesis PLLs, and integer I/O PLLs. #### **Clock Networks** The Intel Arria 10 core clock networks are capable of up to 800 MHz fabric operation across the full industrial temperature range. For the external memory interface, the clock network supports the hard memory controller with speeds up to 2,400 Mbps in a quarter-rate transfer. To reduce power consumption, the Intel Quartus Prime software identifies all unused sections of the clock network and powers them down. ### Fractional Synthesis and I/O PLLs Intel Arria 10 devices contain up to 32 fractional synthesis PLLs and up to 16 I/O PLLs that are available for both specific and general purpose uses in the core: - Fractional synthesis PLLs—located in the column adjacent to the transceiver blocks - I/O PLLs-located in each bank of the 48 I/Os ### **Fractional Synthesis PLLs** You can use the fractional synthesis PLLs to: - Reduce the number of oscillators that are required on your board - Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source <sup>(10)</sup> Supported through software emulation and consumes additional MLAB blocks. Each transceiver channel contains a channel PLL that can be used as the CMU PLL or clock data recovery (CDR) PLL. In CDR mode, the channel PLL recovers the receiver clock and data in the transceiver channel. Up to 80 independent data rates can be configured on a single Intel Arria 10 device. Table 23. PMA Features of the Transceivers in Intel Arria 10 Devices | Feature | Capability | |------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Chip-to-Chip Data Rates | 1 Gbps to 17.4 Gbps (Intel Arria 10 GX devices)<br>1 Gbps to 25.8 Gbps (Intel Arria 10 GT devices) | | Backplane Support | Drive backplanes at data rates up to 12.5 Gbps | | Optical Module Support | SFP+/SFP, XFP, CXP, QSFP/QSFP28, CFP/CFP2/CFP4 | | Cable Driving Support | SFP+ Direct Attach, PCI Express over cable, eSATA | | Transmit Pre-Emphasis | 4-tap transmit pre-emphasis and de-emphasis to compensate for system channel loss | | Continuous Time Linear<br>Equalizer (CTLE) | Dual mode, high-gain, and high-data rate, linear receive equalization to compensate for system channel loss | | Decision Feedback Equalizer (DFE) | 7-fixed and 4-floating tap DFE to equalize backplane channel loss in the presence of crosstalk and noisy environments | | Variable Gain Amplifier | Optimizes the signal amplitude prior to the CDR sampling and operates in fixed and adaptive modes | | Altera Digital Adaptive<br>Parametric Tuning (ADAPT) | Fully digital adaptation engine to automatically adjust all link equalization parameters—including CTLE, DFE, and variable gain amplifier blocks—that provide optimal link margin without intervention from user logic | | Precision Signal Integrity<br>Calibration Engine (PreSICE) | Hardened calibration controller to quickly calibrate all transceiver control parameters on power-up, which provides the optimal signal integrity and jitter performance | | Advanced Transmit (ATX)<br>PLL | Low jitter ATX (LC tank based) PLLs with continuous tuning range to cover a wide range of standard and proprietary protocols | | Fractional PLLs | On-chip fractional frequency synthesizers to replace on-board crystal oscillators and reduce system cost | | Digitally Assisted Analog<br>CDR | Superior jitter tolerance with fast lock time | | Dynamic Partial<br>Reconfiguration | Allows independent control of the Avalon memory-mapped interface of each transceiver channel for the highest transceiver flexibility | | Multiple PCS-PMA and PCS-<br>PLD interface widths | 8-, 10-, 16-, 20-, 32-, 40-, or 64-bit interface widths for flexibility of deserialization width, encoding, and reduced latency | ### **PCS Features** This table summarizes the Intel Arria 10 transceiver PCS features. You can use the transceiver PCS to support a wide range of protocols ranging from 1 Gbps to 25.8 Gbps. | PCS | Description | |---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Standard PCS | Operates at a data rate up to 12 Gbps Supports protocols such as PCI-Express, CPRI 4.2+, GigE, IEEE 1588 in Hard PCS Implements other protocols using Basic/Custom (Standard PCS) transceiver configuration rules. | | Enhanced PCS | Performs functions common to most serial data industry standards, such as word alignment, encoding/decoding, and framing, before data is sent or received off-chip through the PMA Handles data transfer to and from the FPGA fabric Handles data transfer internally to and from the PMA Provides frequency compensation Performs channel bonding for multi-channel low skew applications | | PCIe Gen3 PCS | <ul> <li>Supports the seamless switching of Data and Clock between the Gen1, Gen2, and Gen3 data rates</li> <li>Provides support for PIPE 3.0 features</li> <li>Supports the PIPE interface with the Hard IP enabled, as well as with the Hard IP bypassed</li> </ul> | #### **Related Information** - PCIe Gen1, Gen2, and Gen3 Hard IP on page 26 - Interlaken Support on page 26 - 10 Gbps Ethernet Support on page 26 ### **PCS Protocol Support** This table lists some of the protocols supported by the Intel Arria 10 transceiver PCS. For more information about the blocks in the transmitter and receiver data paths, refer to the related information. | Protocol | Data Rate<br>(Gbps) | Transceiver IP | PCS Support | |----------------------------------------------|---------------------|-----------------------------|-----------------------------------| | PCIe Gen3 x1, x2, x4, x8 | 8.0 | Native PHY (PIPE) | Standard PCS and PCIe<br>Gen3 PCS | | PCIe Gen2 x1, x2, x4, x8 | 5.0 | Native PHY (PIPE) | Standard PCS | | PCIe Gen1 x1, x2, x4, x8 | 2.5 | Native PHY (PIPE) | Standard PCS | | 1000BASE-X Gigabit Ethernet | 1.25 | Native PHY | Standard PCS | | 1000BASE-X Gigabit Ethernet with IEEE 1588v2 | 1.25 | Native PHY | Standard PCS | | 10GBASE-R | 10.3125 | Native PHY | Enhanced PCS | | 10GBASE-R with IEEE 1588v2 | 10.3125 | Native PHY | Enhanced PCS | | 10GBASE-R with KR FEC | 10.3125 | Native PHY | Enhanced PCS | | 10GBASE-KR and 1000BASE-X | 10.3125 | 1G/10GbE and 10GBASE-KR PHY | Standard PCS and<br>Enhanced PCS | | Interlaken (CEI-6G/11G) | 3.125 to 17.4 | Native PHY | Enhanced PCS | | SFI-S/SFI-5.2 | 11.2 | Native PHY | Enhanced PCS | | 10G SDI | 10.692 | Native PHY | Enhanced PCS | | | • | | continued | | Protocol | Data Rate<br>(Gbps) | Transceiver IP | PCS Support | |----------------------|----------------------------------|----------------|--------------| | CPRI 6.0 (64B/66B) | 0.6144 to<br>10.1376 | Native PHY | Enhanced PCS | | CPRI 4.2 (8B/10B) | 0.6144 to<br>9.8304 | Native PHY | Standard PCS | | OBSAI RP3 v4.2 | 0.6144 to 6.144 | Native PHY | Standard PCS | | SD-SDI/HD-SDI/3G-SDI | 0.143 <sup>(12)</sup> to<br>2.97 | Native PHY | Standard PCS | #### **Related Information** #### Intel Arria 10 Transceiver PHY User Guide Provides more information about the supported transceiver protocols and PHY IP, the PMA architecture, and the standard, enhanced, and PCIe Gen3 PCS architecture. ### **SoC with Hard Processor System** Each SoC device combines an FPGA fabric and a hard processor system (HPS) in a single device. This combination delivers the flexibility of programmable logic with the power and cost savings of hard IP in these ways: - Reduces board space, system power, and bill of materials cost by eliminating a discrete embedded processor - Allows you to differentiate the end product in both hardware and software, and to support virtually any interface standard - Extends the product life and revenue through in-field hardware and software updates <sup>(12)</sup> The 0.143 Gbps data rate is supported using oversampling of user logic that you must implement in the FPGA fabric. ### **FPGA Configuration and HPS Booting** The FPGA fabric and HPS in the SoC FPGA must be powered at the same time. You can reduce the clock frequencies or gate the clocks to reduce dynamic power. Once powered, the FPGA fabric and HPS can be configured independently thus providing you with more design flexibility: - You can boot the HPS independently. After the HPS is running, the HPS can fully or partially reconfigure the FPGA fabric at any time under software control. The HPS can also configure other FPGAs on the board through the FPGA configuration controller. - Configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric. ### **Hardware and Software Development** For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Platform Designer system integration tool in the Intel Quartus Prime software. For software development, the ARM-based SoC FPGA devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Intel SoC FPGAs follows the same steps as those for other SoC devices from other manufacturers. Support for Linux\*, VxWorks\*, and other operating systems are available for the SoC FPGAs. For more information on the operating systems support availability, contact the Intel FPGA sales team. You can begin device-specific firmware and software development on the Intel SoC FPGA Virtual Target. The Virtual Target is a fast PC-based functional simulation of a target development system—a model of a complete development board. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware. ## **Dynamic and Partial Reconfiguration** The Intel Arria 10 devices support dynamic and partial reconfiguration. You can use dynamic and partial reconfiguration simultaneously to enable seamless reconfiguration of both the device core and transceivers. ### **Dynamic Reconfiguration** You can reconfigure the PMA and PCS blocks while the device continues to operate. This feature allows you to change the data rates, protocol, and analog settings of a channel in a transceiver bank without affecting on-going data transfer in other transceiver banks. This feature is ideal for applications that require dynamic multiprotocol or multirate support. ### **Partial Reconfiguration** Using partial reconfiguration, you can reconfigure some parts of the device while keeping the device in operation. | Scheme | Data<br>Width | Max Clock<br>Rate<br>(MHz) | Max Data<br>Rate<br>(Mbps) | Decompression | Design<br>Security <sup>(1</sup><br>4) | Partial<br>Reconfiguration<br>(15) | Remote<br>System<br>Update | |------------------------------------------------|----------------------------|----------------------------|----------------------------|---------------|----------------------------------------|------------------------------------|----------------------------| | Fast passive | 8 bits | 100 | 3200 | Yes | Yes | Yes <sup>(17)</sup> | PFL IP | | parallel (FPP)<br>through CPLD or | 16 bits | | | Yes | Yes | | core | | external<br>microcontroller | 32 bits | | | Yes | Yes | | | | Configuration via | 16 bits | 100 | 3200 | Yes | Yes | Yes <sup>(17)</sup> | _ | | HPS | 32 bits | | | Yes | Yes | | | | Configuration via<br>Protocol [CvP<br>(PCIe*)] | x1, x2,<br>x4, x8<br>lanes | _ | 8000 | Yes | Yes | Yes <sup>(16)</sup> | _ | You can configure Intel Arria 10 devices through PCIe using Configuration via Protocol (CvP). The Intel Arria 10 CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement. #### **SEU Error Detection and Correction** Intel Arria 10 devices offer robust and easy-to-use single-event upset (SEU) error detection and correction circuitry. The detection and correction circuitry includes protection for Configuration RAM (CRAM) programming bits and user memories. The CRAM is protected by a continuously running CRC error detection circuit with integrated ECC that automatically corrects one or two errors and detects higher order multi-bit errors. When more than two errors occur, correction is available through reloading of the core programming file, providing a complete design refresh while the FPGA continues to operate. The physical layout of the Intel Arria 10 CRAM array is optimized to make the majority of multi-bit upsets appear as independent single-bit or double-bit errors which are automatically corrected by the integrated CRAM ECC circuitry. In addition to the CRAM protection, the M20K memory blocks also include integrated ECC circuitry and are layout-optimized for error detection and correction. The MLAB does not have ECC. ## **Power Management** Intel Arria 10 devices leverage the advanced 20 nm process technology, a low 0.9 V core power supply, an enhanced core architecture, and several optional power reduction techniques to reduce total power consumption by as much as 40% compared to Arria V devices and as much as 60% compared to Stratix V devices. <sup>(13)</sup> Enabling either compression or design security features affects the maximum data rate. Refer to the Intel Arria 10 Device Datasheet for more information. <sup>(14)</sup> Encryption and compression cannot be used simultaneously. <sup>(15)</sup> Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Intel for support. <sup>(17)</sup> Supported at a maximum clock rate of 100 MHz. The optional power reduction techniques in Intel Arria 10 devices include: - SmartVID—a code is programmed into each device during manufacturing that allows a smart regulator to operate the device at lower core V<sub>CC</sub> while maintaining performance - **Programmable Power Technology**—non-critical timing paths are identified by the Intel Quartus Prime software and the logic in these paths is biased for low power instead of high performance - **Low Static Power Options**—devices are available with either standard static power or low static power while maintaining performance Furthermore, Intel Arria 10 devices feature Intel's industry-leading low power transceivers and include a number of hard IP blocks that not only reduce logic resources but also deliver substantial power savings compared to soft implementations. In general, hard IP blocks consume up to 90% less power than the equivalent soft logic implementations. ### **Incremental Compilation** The Intel Quartus Prime software incremental compilation feature reduces compilation time and helps preserve performance to ease timing closure. The incremental compilation feature enables the partial reconfiguration flow for Intel Arria 10 devices. Incremental compilation supports top-down, bottom-up, and team-based design flows. This feature facilitates modular, hierarchical, and team-based design flows where different designers compile their respective design sections in parallel. Furthermore, different designers or IP providers can develop and optimize different blocks of the design independently. These blocks can then be imported into the top level project. ## **Document Revision History for Intel Arria 10 Device Overview** | Document<br>Version | Changes | |---------------------|----------------------------------------------------------------------------------------------------------| | 2018.04.09 | Updated the lowest $V_{CC}$ from 0.83 V to 0.82 V in the topic listing a summary of the device features. | | Date | Version | Changes | |--------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------| | January 2018 | 2018.01.17 | Updated the maximum data rate for HPS (Intel Arria 10 SX devices external memory interface DDR3 controller from 2,166 Mbps to 2,133 Mbps. | | | | Updated maximum frequency supported for half rate QDRII and QDRII + SRAM to 633 MHz in Memory Standards Supported by the Soft Memory Controller table. | | | | Updated transceiver backplane capability to 12.5 Gbps. | | | | Removed transceiver speed grade 5 in Sample Ordering Core and<br>Available Options for Intel Arria 10 GX Devices figure. | | | ı | continued | | Date | Version | Changes | |----------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | December 2015 | 2015.12.14 | Updated the number of M20K memory blocks for Arria 10 GX 660 from 2133 to 2131 and corrected the total RAM bit from 48,448 Kb to 48,408 Kb. | | | | Corrected the number of DSP blocks for Arria 10 GX 660 from 1688 to 1687 in the table listing floating-point arithmetic resources. | | November 2015 | 2015.11.02 | • Updated the maximum resources for Arria 10 GX 220, GX 320, GX 480, GX 660, SX 220, SX 320, SX 480, and SX 660. | | | | Updated resource count for Arria 10 GX 320, GX 480, GX 660, SX 320, SX 480, a SX 660 devices in <b>Number of Multipliers in Intel Arria 10 Devices</b> table. | | | | <ul> <li>Updated the available options for Arria 10 GX, GT, and SX.</li> <li>Changed instances of <i>Quartus II</i> to <i>Quartus Prime</i>.</li> </ul> | | June 2015 | 2015.06.15 | Corrected label for Intel Arria 10 GT product lines in the vertical migration figure. | | May 2015 | 2015.05.15 | Corrected the DDR3 half rate and quarter rate maximum frequencies in the table that lists the memory standards supported by the Intel Arria 10 hard memory controller. | | May 2015 | 2015.05.04 | Added support for 13.5G JESD204b in the Summary of Features table. Added support for 13.5G JESD204b in the Summary of Features table. | | | | Added a link to Arria 10 GT Channel Usage in the Arria 10 GT Package Plan topic. | | | | Added a note to the table, Maximum Resource Counts for Arria 10 GT devices. | | | | Updated the power requirements of the transceivers in the Low Power Serial Transceivers topic. | | January 2015 | 2015.01.23 | Added floating point arithmetic features in the Summary of Features table. | | | | Updated the total embedded memory from 38.38 megabits (Mb) to 65.6 Mb. | | | | Updated the table that lists the memory standards supported by Intel<br>Arria 10 devices. | | | | <ul> <li>Removed support for DDR3U, LPDDR3 SDRAM, RLDRAM 2, and DDR2.</li> <li>Moved RLDRAM 3 support from hard memory controller to soft memory controller. RLDRAM 3 support uses hard PHY with soft memory controller.</li> </ul> | | | | Added soft memory controller support for QDR IV. | | | | Updated the maximum resource count table to include the number of hard memory controllers available in each device variant. | | | | Updated the transceiver PCS data rate from 12.5 Gbps to 12 Gbps. | | | | Updated the max clock rate of PS, FPP x8, FPP x16, and Configuration via HPS from 125 MHz to 100 MHz. | | | | Added a feature for fractional synthesis PLLs: PLL cascading. | | | | Updated the HPS programmable general-purpose I/Os from 54 to 62. | | September 2014 | 2014.09.30 | Corrected the 3 V I/O and LVDS I/O counts for F35 and F36 packages of Arria 10 GX. | | | | Corrected the 3 V I/O, LVDS I/O, and transceiver counts for the NF40 package of the Arria GX 570 and 660. | | | | Removed 3 V I/O, LVDS I/O, and transceiver counts for the NF40 package of the Arria GX 900 and 1150. The NF40 package is not available for Arria 10 GX 900 and 1150. | | | | continued |