Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Active | | Number of LABs/CLBs | 427200 | | Number of Logic Elements/Cells | 1150000 | | Total RAM Bits | 68857856 | | Number of I/O | 768 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | 0°C ~ 100°C (TJ) | | Package / Case | 1932-BBGA, FCBGA | | Supplier Device Package | 1932-FCBGA (45x45) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/10ax115n3f45e2sg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Contents** | Inte | I [®] Arria [®] 10 Device Overview | 3 | |------|--|------| | | Key Advantages of Intel Arria 10 Devices | 4 | | | Summary of Intel Arria 10 Features | | | | Intel Arria 10 Device Variants and Packages | 7 | | | Intel Arria 10 GX | 7 | | | Intel Arria 10 GT | . 11 | | | Intel Arria 10 SX | . 14 | | | I/O Vertical Migration for Intel Arria 10 Devices | . 17 | | | Adaptive Logic Module | | | | Variable-Precision DSP Block | . 18 | | | Embedded Memory Blocks | . 20 | | | Types of Embedded Memory | 21 | | | Embedded Memory Capacity in Intel Arria 10 Devices | 21 | | | Embedded Memory Configurations for Single-port Mode | | | | Clock Networks and PLL Clock Sources | . 22 | | | Clock Networks | | | | Fractional Synthesis and I/O PLLs | | | | FPGA General Purpose I/O | | | | External Memory Interface | | | | Memory Standards Supported by Intel Arria 10 Devices | | | | PCIe Gen1, Gen2, and Gen3 Hard IP | | | | Enhanced PCS Hard IP for Interlaken and 10 Gbps Ethernet | | | | Interlaken Support | | | | 10 Gbps Ethernet Support | | | | Low Power Serial Transceivers | | | | Transceiver Channels | | | | PMA Features | | | | PCS Features | | | | SoC with Hard Processor System | | | | Key Advantages of 20-nm HPS | | | | Features of the HPS | | | | FPGA Configuration and HPS Booting | 37 | | | Hardware and Software Development | | | | Dynamic and Partial Reconfiguration | | | | Dynamic Reconfiguration | | | | Partial Reconfiguration | | | | Enhanced Configuration and Configuration via Protocol | | | | SEU Error Detection and Correction | | | | Power Management | | | | Incremental Compilation | | | | Document Revision History for Intel Arria 10 Device Overview | 40 | ## Intel® Arria® 10 Device Overview The Intel® Arria® 10 device family consists of high-performance and power-efficient 20 nm mid-range FPGAs and SoCs. Intel Arria 10 device family delivers: - Higher performance than the previous generation of mid-range and high-end FPGAs. - Power efficiency attained through a comprehensive set of power-saving technologies. The Intel Arria 10 devices are ideal for high performance, power-sensitive, midrange applications in diverse markets. Table 1. Sample Markets and Ideal Applications for Intel Arria 10 Devices | Market | Applications | |-----------------------|---| | Wireless | Channel and switch cards in remote radio heads Mobile backhaul | | Wireline | 40G/100G muxponders and transponders 100G line cards Bridging Aggregation | | Broadcast | Studio switches Servers and transport Videoconferencing Professional audio and video | | Computing and Storage | Flash cacheCloud computing serversServer acceleration | | Medical | Diagnostic scanners Diagnostic imaging | | Military | Missile guidance and control Radar Electronic warfare Secure communications | #### **Related Information** Intel Arria 10 Device Handbook: Known Issues Lists the planned updates to the *Intel Arria 10 Device Handbook* chapters. Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services. 1SO 9001:2008 Registered ### **Key Advantages of Intel Arria 10 Devices** Table 2. Key Advantages of the Intel Arria 10 Device Family | Advantage | Supporting Feature | | | |---|--|--|--| | Enhanced core architecture | Built on TSMC's 20 nm process technology 60% higher performance than the previous generation of mid-range FPGAs 15% higher performance than the fastest previous-generation FPGA | | | | High-bandwidth integrated transceivers | Short-reach rates up to 25.8 Gigabits per second (Gbps) Backplane capability up to 12.5 Gbps Integrated 10GBASE-KR and 40GBASE-KR4 Forward Error Correction (FEC) | | | | Improved logic integration and hard IP blocks | 8-input adaptive logic module (ALM) Up to 65.6 megabits (Mb) of embedded memory Variable-precision digital signal processing (DSP) blocks Fractional synthesis phase-locked loops (PLLs) Hard PCI Express Gen3 IP blocks Hard memory controllers and PHY up to 2,400 Megabits per second (Mbps) | | | | Second generation hard
processor system (HPS) with
integrated ARM* Cortex*-A9*
MPCore* processor | Tight integration of a dual-core ARM Cortex-A9 MPCore processor, hard IP, and an FPGA in a single Intel Arria 10 system-on-a-chip (SoC) Supports over 128 Gbps peak bandwidth with integrated data coherency between the processor and the FPGA fabric | | | | Advanced power savings | Comprehensive set of advanced power saving features Power-optimized MultiTrack routing and core architecture Up to 40% lower power compared to previous generation of mid-range FPGAs Up to 60% lower power compared to previous generation of high-end FPGAs | | | ### **Summary of Intel Arria 10 Features** **Table 3.** Summary of Features for Intel Arria 10 Devices | Feature | Description | |---------------------------------|---| | Technology | TSMC's 20-nm SoC process technology Allows operation at a lower V _{CC} level of 0.82 V instead of the 0.9 V standard V _{CC} core voltage | | Packaging | 1.0 mm ball-pitch Fineline BGA packaging 0.8 mm ball-pitch Ultra Fineline BGA packaging Multiple devices with identical package footprints for seamless migration between different FPGA densities Devices with compatible package footprints allow migration to next generation high-end Stratix® 10 devices RoHS, leaded⁽¹⁾, and lead-free (Pb-free) options | | High-performance
FPGA fabric | Enhanced 8-input ALM with four registers Improved multi-track routing architecture to reduce congestion and improve compilation time Hierarchical core clocking architecture Fine-grained partial reconfiguration | | Internal memory blocks | M20K—20-Kb memory blocks with hard error correction code (ECC) Memory logic array block (MLAB)—640-bit memory | | | continued | ⁽¹⁾ Contact Intel for availability. | Feature | Description | |--------------------|--| | | Dynamic reconfiguration of the transceivers and PLLs Fine-grained partial reconfiguration of the core fabric Active Serial x4 Interface | | Power management | SmartVID Low static power device options Programmable Power Technology Intel Quartus Prime integrated power analysis | | Software and tools | Intel Quartus Prime design suite Transceiver toolkit Platform Designer system integration tool DSP Builder for Intel FPGAs OpenCL™ support Intel SoC FPGA Embedded Design Suite (EDS) | #### **Related Information** Intel Arria 10 Transceiver PHY Overview Provides details on Intel Arria 10 transceivers. ### **Intel Arria 10 Device Variants and Packages** #### Table 4. **Device Variants for the Intel Arria 10 Device Family** | Variant | Description | | | |-------------------|---|--|--| | Intel Arria 10 GX | FPGA featuring 17.4 Gbps transceivers for short reach applications with 12.5 backplane driving capability. | | | | Intel Arria 10 GT | FPGA featuring: 17.4 Gbps transceivers for short reach applications with 12.5 backplane driving capability. 25.8 Gbps transceivers for supporting CAUI-4 and CEI-25G applications with CFP2 and CFP4 modules. | | | | Intel Arria 10 SX | SoC integrating ARM-based HPS and FPGA featuring 17.4 Gbps transceivers for short reach applications with 12.5 backplane driving capability. | | | #### **Intel Arria 10 GX** This section provides the available options, maximum resource counts, and package plan for the Intel Arria 10 GX devices. The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Intel FPGA Product Selector. #### **Related Information** Intel FPGA Product Selector Provides the latest information on Intel products. #### **Available Options** Figure 1. Sample Ordering Code and Available Options for Intel Arria 10 GX Devices #### **Related Information** Transceiver Performance for Intel Arria 10 GX/SX Devices Provides more information about the transceiver speed grade. #### **Maximum Resources** Table 5. Maximum Resource Counts for Intel Arria 10 GX Devices (GX 160, GX 220, GX 270, GX 320, and GX 480) | Resource | | Product Line | | | | | |------------------------------|-------------------------|--------------|---------|---------|---------|---------| | | | GX 160 | GX 220 | GX 270 | GX 320 | GX 480 | | Logic Elements | (LE) (K) | 160 | 220 | 270 | 320 | 480 | | ALM | | 61,510 | 80,330 | 101,620 | 119,900 | 183,590 | | Register | | 246,040 | 321,320 | 406,480 | 479,600 | 734,360 | | Memory (Kb) | M20K | 8,800 | 11,740 | 15,000 | 17,820 | 28,620 | | | MLAB | 1,050 | 1,690 | 2,452 | 2,727 | 4,164 | | Variable-precision DSP Block | | 156 | 192 | 830 | 985 | 1,368 | | 18 x 19 Multipli | er | 312 | 384 | 1,660 | 1,970 | 2,736 | | PLL | Fractional
Synthesis | 6 | 6 | 8 | 8 | 12 | | | I/O | 6 | 6 | 8 | 8 | 12 | | 17.4 Gbps Trans | sceiver | 12 | 12 | 24 | 24 | 36 | | GPIO (3) | | 288 | 288 | 384 | 384 | 492 | | LVDS Pair (4) | | 120 | 120 | 168 | 168 | 222 | | PCIe Hard IP Block | | 1 | 1 | 2 | 2 | 2 | | Hard Memory Controller | | 6 | 6 | 8 | 8 | 12 | $^{^{(3)}}$ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os. ⁽⁴⁾ Each LVDS I/O pair can be used as differential input or output. #### **Available Options** Figure 2. Sample Ordering Code and Available Options for Intel Arria 10 GT Devices #### **Maximum Resources** Table 10. Maximum Resource Counts for Intel Arria 10 GT Devices | Resource | | Product Line | | | |------------------------------|----------------------|-------------------|-------------------|--| | | | GT 900 | GT 1150 | | | Logic Elements (LE) (K) | | 900 | 1,150 | | | ALM | | 339,620 | 427,200 | | | Register | | 1,358,480 | 1,708,800 | | | Memory (Kb) | M20K | 48,460 | 54,260 | | | | MLAB | 9,386 | 12,984 | | | Variable-precision DSP Block | | 1,518 | 1,518 | | | 18 x 19 Multiplier | | 3,036 | 3,036 | | | PLL | Fractional Synthesis | 32 | 32 | | | | I/O | 16 | 16 | | | Transceiver | 17.4 Gbps | 72 ⁽⁵⁾ | 72 ⁽⁵⁾ | | | | 25.8 Gbps | 6 | 6 | | | GPIO ⁽⁶⁾ | GPIO ⁽⁶⁾ | | 624 | | | LVDS Pair ⁽⁷⁾ | | 312 | 312 | | | PCIe Hard IP Block | | 4 | 4 | | | Hard Memory Controller | | 16 | 16 | | #### **Related Information** Intel Arria 10 GT Channel Usage Configuring GT/GX channels in Intel Arria 10 GT devices. #### **Package Plan** #### Table 11. Package Plan for Intel Arria 10 GT Devices Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | SF45
(45 mm × 45 mm, 1932-pin FBGA) | | | | |--------------|--|----------|------|--| | | 3 V I/O | LVDS I/O | XCVR | | | GT 900 | _ | 624 | 72 | | | GT 1150 | _ | 624 | 72 | | ⁽⁵⁾ If all 6 GT channels are in use, 12 of the GX channels are not usable. ⁽⁶⁾ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os. ⁽⁷⁾ Each LVDS I/O pair can be used as differential input or output. Figure 5. ALM for Intel Arria 10 Devices The Intel Quartus Prime software optimizes your design according to the ALM logic structure and automatically maps legacy designs into the Intel Arria 10 ALM architecture. #### **Variable-Precision DSP Block** The Intel Arria 10 variable precision DSP blocks support fixed-point arithmetic and floating-point arithmetic. Features for fixed-point arithmetic: - High-performance, power-optimized, and fully registered multiplication operations - 18-bit and 27-bit word lengths - Two 18 x 19 multipliers or one 27 x 27 multiplier per DSP block - Built-in addition, subtraction, and 64-bit double accumulation register to combine multiplication results - Cascading 19-bit or 27-bit when pre-adder is disabled and cascading 18-bit when pre-adder is used to form the tap-delay line for filtering applications - Cascading 64-bit output bus to propagate output results from one block to the next block without external logic support - Hard pre-adder supported in 19-bit and 27-bit modes for symmetric filters - Internal coefficient register bank in both 18-bit and 27-bit modes for filter implementation - 18-bit and 27-bit systolic finite impulse response (FIR) filters with distributed output adder - Biased rounding support #### Features for floating-point arithmetic: - A completely hardened architecture that supports multiplication, addition, subtraction, multiply-add, and multiply-subtract - Multiplication with accumulation capability and a dynamic accumulator reset control - · Multiplication with cascade summation capability - Multiplication with cascade subtraction capability - Complex multiplication - Direct vector dot product - Systolic FIR filter **Table 15.** Variable-Precision DSP Block Configurations for Intel Arria 10 Devices | Usage Example | Multiplier Size (Bit) | DSP Block Resources | | |---|---------------------------------|----------------------------|--| | Medium precision fixed point | Two 18 x 19 | 1 | | | High precision fixed or Single precision floating point | One 27 x 27 | 1 | | | Fixed point FFTs | One 19 x 36 with external adder | 1 | | | Very high precision fixed point | One 36 x 36 with external adder | 2 | | | Double precision floating point | One 54 x 54 with external adder | 4 | | #### Table 16. Resources for Fixed-Point Arithmetic in Intel Arria 10 Devices The table lists the variable-precision DSP resources by bit precision for each Intel Arria 10 device. | Variant | Product Line Variable-
precision
DSP Block | | Independent Input and Output
Multiplications Operator | | 18 x 19
Multiplier | 18 x 18
Multiplier
Adder | |----------------------|--|-----------|--|-----------------------|-----------------------|--------------------------------| | | | DSP Block | 18 x 19
Multiplier | 27 x 27
Multiplier | Adder Sum
Mode | Summed with 36 bit Input | | AIntel Arria 10 | GX 160 | 156 | 312 | 156 | 156 | 156 | | GX | GX 220 | 192 | 384 | 192 | 192 | 192 | | | GX 270 | 830 | 1,660 | 830 | 830 | 830 | | | GX 320 | 984 | 1,968 | 984 | 984 | 984 | | | GX 480 | 1,368 | 2,736 | 1,368 | 1,368 | 1,368 | | | GX 570 | 1,523 | 3,046 | 1,523 | 1,523 | 1,523 | | | GX 660 | 1,687 | 3,374 | 1,687 | 1,687 | 1,687 | | | GX 900 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | | GX 1150 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | Intel Arria 10
GT | GT 900 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | GI | GT 1150 | 1,518 | 3,036 | 1,518 | 1,518 | 1,518 | | Intel Arria 10 | SX 160 | 156 | 312 | 156 | 156 | 156 | | SX | SX 220 | 192 | 384 | 192 | 192 | 192 | | | SX 270 | 830 | 1,660 | 830 | 830 | 830 | | | | | | | | continued | ### **Types of Embedded Memory** The Intel Arria 10 devices contain two types of memory blocks: - 20 Kb M20K blocks—blocks of dedicated memory resources. The M20K blocks are ideal for larger memory arrays while still providing a large number of independent ports. - 640 bit memory logic array blocks (MLABs)—enhanced memory blocks that are configured from dual-purpose logic array blocks (LABs). The MLABs are ideal for wide and shallow memory arrays. The MLABs are optimized for implementation of shift registers for digital signal processing (DSP) applications, wide and shallow FIFO buffers, and filter delay lines. Each MLAB is made up of ten adaptive logic modules (ALMs). In the Intel Arria 10 devices, you can configure these ALMs as ten 32 x 2 blocks, giving you one 32 x 20 simple dual-port SRAM block per MLAB. #### **Embedded Memory Capacity in Intel Arria 10 Devices** Table 18. Embedded Memory Capacity and Distribution in Intel Arria 10 Devices | | Product | M20K | | ML | Total RAM Bit | | |-------------------|---------|-------|--------------|--------|---------------|--------| | Variant | Line | Block | RAM Bit (Kb) | Block | RAM Bit (Kb) | (Kb) | | Intel Arria 10 GX | GX 160 | 440 | 8,800 | 1,680 | 1,050 | 9,850 | | | GX 220 | 587 | 11,740 | 2,703 | 1,690 | 13,430 | | | GX 270 | 750 | 15,000 | 3,922 | 2,452 | 17,452 | | | GX 320 | 891 | 17,820 | 4,363 | 2,727 | 20,547 | | | GX 480 | 1,431 | 28,620 | 6,662 | 4,164 | 32,784 | | | GX 570 | 1,800 | 36,000 | 8,153 | 5,096 | 41,096 | | | GX 660 | 2,131 | 42,620 | 9,260 | 5,788 | 48,408 | | | GX 900 | 2,423 | 48,460 | 15,017 | 9,386 | 57,846 | | | GX 1150 | 2,713 | 54,260 | 20,774 | 12,984 | 67,244 | | Intel Arria 10 GT | GT 900 | 2,423 | 48,460 | 15,017 | 9,386 | 57,846 | | | GT 1150 | 2,713 | 54,260 | 20,774 | 12,984 | 67,244 | | Intel Arria 10 SX | SX 160 | 440 | 8,800 | 1,680 | 1,050 | 9,850 | | | SX 220 | 587 | 11,740 | 2,703 | 1,690 | 13,430 | | | SX 270 | 750 | 15,000 | 3,922 | 2,452 | 17,452 | | | SX 320 | 891 | 17,820 | 4,363 | 2,727 | 20,547 | | | SX 480 | 1,431 | 28,620 | 6,662 | 4,164 | 32,784 | | | SX 570 | 1,800 | 36,000 | 8,153 | 5,096 | 41,096 | | | SX 660 | 2,131 | 42,620 | 9,260 | 5,788 | 48,408 | #### **Embedded Memory Configurations for Single-port Mode** #### Table 19. Single-port Embedded Memory Configurations for Intel Arria 10 Devices This table lists the maximum configurations supported for single-port RAM and ROM modes. | Memory Block | Depth (bits) | Programmable Width | |--------------|--------------|--------------------| | MLAB | 32 | x16, x18, or x20 | | | 64 (10) | x8, x9, x10 | | M20K | 512 | x40, x32 | | | 1K | x20, x16 | | | 2K | x10, x8 | | | 4K | x5, x4 | | | 8K | x2 | | | 16K | x1 | #### **Clock Networks and PLL Clock Sources** The clock network architecture is based on Intel's global, regional, and peripheral clock structure. This clock structure is supported by dedicated clock input pins, fractional clock synthesis PLLs, and integer I/O PLLs. #### **Clock Networks** The Intel Arria 10 core clock networks are capable of up to 800 MHz fabric operation across the full industrial temperature range. For the external memory interface, the clock network supports the hard memory controller with speeds up to 2,400 Mbps in a quarter-rate transfer. To reduce power consumption, the Intel Quartus Prime software identifies all unused sections of the clock network and powers them down. #### Fractional Synthesis and I/O PLLs Intel Arria 10 devices contain up to 32 fractional synthesis PLLs and up to 16 I/O PLLs that are available for both specific and general purpose uses in the core: - Fractional synthesis PLLs—located in the column adjacent to the transceiver blocks - I/O PLLs-located in each bank of the 48 I/Os ### **Fractional Synthesis PLLs** You can use the fractional synthesis PLLs to: - Reduce the number of oscillators that are required on your board - Reduce the number of clock pins that are used in the device by synthesizing multiple clock frequencies from a single reference clock source ⁽¹⁰⁾ Supported through software emulation and consumes additional MLAB blocks. - Series (R_S) and parallel (R_T) on-chip termination (OCT) for all I/O banks with OCT calibration to limit the termination impedance variation - On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity - Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture ### **External Memory Interface** Intel Arria 10 devices offer massive external memory bandwidth, with up to seven 32-bit DDR4 memory interfaces running at up to 2,400 Mbps. This bandwidth provides additional ease of design, lower power, and resource efficiencies of hardened high-performance memory controllers. The memory interface within Intel Arria 10 FPGAs and SoCs delivers the highest performance and ease of use. You can configure up to a maximum width of 144 bits when using the hard or soft memory controllers. If required, you can bypass the hard memory controller and use a soft controller implemented in the user logic. Each I/O contains a hardened DDR read/write path (PHY) capable of performing key memory interface functionality such as read/write leveling, FIFO buffering to lower latency and improve margin, timing calibration, and on-chip termination. The timing calibration is aided by the inclusion of hard microcontrollers based on Intel's Nios® II technology, specifically tailored to control the calibration of multiple memory interfaces. This calibration allows the Intel Arria 10 device to compensate for any changes in process, voltage, or temperature either within the Intel Arria 10 device itself, or within the external memory device. The advanced calibration algorithms ensure maximum bandwidth and robust timing margin across all operating conditions. In addition to parallel memory interfaces, Intel Arria 10 devices support serial memory technologies such as the Hybrid Memory Cube (HMC). The HMC is supported by the Intel Arria 10 high-speed serial transceivers which connect up to four HMC links, with each link running at data rates up to 15 Gbps. #### **Related Information** #### External Memory Interface Spec Estimator Provides a parametric tool that allows you to find and compare the performance of the supported external memory interfaces in IntelFPGAs. #### **Memory Standards Supported by Intel Arria 10 Devices** The I/Os are designed to provide high performance support for existing and emerging external memory standards. #### A10-OVERVIEW | 2018.04.09 The scalable hard IP supports multiple independent 10GbE ports while using a single PLL for all the 10GBASE-R PCS instantiations, which saves on core logic resources and clock networks: - Simplifies multiport 10GbE systems compared to XAUI interfaces that require an external XAUI-to-10G PHY. - Incorporates Electronic Dispersion Compensation (EDC), which enables direct connection to standard 10 Gbps XFP and SFP+ pluggable optical modules. - Supports backplane Ethernet applications and includes a hard 10GBASE-KR Forward Error Correction (FEC) circuit that you can use for 10 Gbps and 40 Gbps applications. The 10 Gbps Ethernet PCS hard IP and 10GBASE-KR FEC are present in every transceiver channel. #### **Related Information** PCS Features on page 30 #### **Low Power Serial Transceivers** Intel Arria 10 FPGAs and SoCs include lowest power transceivers that deliver high bandwidth, throughput and low latency. Intel Arria 10 devices deliver the industry's lowest power consumption per transceiver channel: - 12.5 Gbps transceivers at as low as 242 mW - 10 Gbps transceivers at as low as 168 mW - 6 Gbps transceivers at as low as 117 mW Intel Arria 10 transceivers support various data rates according to application: - Chip-to-chip and chip-to-module applications—from 1 Gbps up to 25.8 Gbps - Long reach and backplane applications—from 1 Gbps up to 12.5 with advanced adaptive equalization - Critical power sensitive applications—from 1 Gbps up to 11.3 Gbps using lower power modes The combination of 20 nm process technology and architectural advances provide the following benefits: - Significant reduction in die area and power consumption - Increase of up to two times in transceiver I/O density compared to previous generation devices while maintaining optimal signal integrity - Up to 72 total transceiver channels—you can configure up to 6 of these channels to run as fast as 25.8 Gbps - All channels feature continuous data rate support up to the maximum rated speed | PCS | Description | |---------------|--| | Standard PCS | Operates at a data rate up to 12 Gbps Supports protocols such as PCI-Express, CPRI 4.2+, GigE, IEEE 1588 in Hard PCS Implements other protocols using Basic/Custom (Standard PCS) transceiver configuration rules. | | Enhanced PCS | Performs functions common to most serial data industry standards, such as word alignment, encoding/decoding, and framing, before data is sent or received off-chip through the PMA Handles data transfer to and from the FPGA fabric Handles data transfer internally to and from the PMA Provides frequency compensation Performs channel bonding for multi-channel low skew applications | | PCIe Gen3 PCS | Supports the seamless switching of Data and Clock between the Gen1, Gen2, and Gen3 data rates Provides support for PIPE 3.0 features Supports the PIPE interface with the Hard IP enabled, as well as with the Hard IP bypassed | #### **Related Information** - PCIe Gen1, Gen2, and Gen3 Hard IP on page 26 - Interlaken Support on page 26 - 10 Gbps Ethernet Support on page 26 ### **PCS Protocol Support** This table lists some of the protocols supported by the Intel Arria 10 transceiver PCS. For more information about the blocks in the transmitter and receiver data paths, refer to the related information. | Protocol Data Rate (Gbps) | | Transceiver IP | PCS Support | | |--|---------------|-----------------------------|-----------------------------------|--| | PCIe Gen3 x1, x2, x4, x8 | 8.0 | Native PHY (PIPE) | Standard PCS and PCIe
Gen3 PCS | | | PCIe Gen2 x1, x2, x4, x8 | 5.0 | Native PHY (PIPE) | Standard PCS | | | PCIe Gen1 x1, x2, x4, x8 | 2.5 | Native PHY (PIPE) | Standard PCS | | | 1000BASE-X Gigabit Ethernet | 1.25 | Native PHY | Standard PCS | | | 1000BASE-X Gigabit Ethernet with IEEE 1588v2 | 1.25 | Native PHY | Standard PCS | | | 10GBASE-R | 10.3125 | Native PHY | Enhanced PCS | | | 10GBASE-R with IEEE 1588v2 | 10.3125 | Native PHY | Enhanced PCS | | | 10GBASE-R with KR FEC | 10.3125 | Native PHY | Enhanced PCS | | | 10GBASE-KR and 1000BASE-X | 10.3125 | 1G/10GbE and 10GBASE-KR PHY | Standard PCS and
Enhanced PCS | | | Interlaken (CEI-6G/11G) | 3.125 to 17.4 | Native PHY | Enhanced PCS | | | SFI-S/SFI-5.2 | 11.2 | Native PHY | Enhanced PCS | | | 10G SDI | 10.692 | Native PHY | Enhanced PCS | | | | • | | continued | | #### Table 24. **Improvements in 20 nm HPS** This table lists the key improvements of the 20 nm HPS compared to the 28 nm HPS. | Advantages/
Improvements | Description | | | | |---|--|--|--|--| | Increased performance and overdrive capability | While the nominal processor frequency is 1.2 GHz, the 20 nm HPS offers an "overdrive" feature which enables a higher processor operating frequency. This requires a higher supply voltage value that is unique to the HPS and may require a separate regulator. | | | | | Increased processor memory bandwidth and DDR4 support | Up to 64-bit DDR4 memory at 2,400 Mbps support is available for the processor. The hard memory controller for the HPS comprises a multi-port front end that manages connections to a single port memory controller. The multi-port front end allows logic core and the HPS to share ports and thereby the available bandwidth of the memory controller. | | | | | Flexible I/O sharing | An advanced I/O pin muxing scheme allows improved sharing of I/O between the HPS and the core logic. The following types of I/O are available for SoC: 17 dedicated I/Os—physically located inside the HPS block and are not accessible to logic within the core. The 17 dedicated I/Os are used for HPS clock, resets, and | | | | | | interfacing with boot devices, QSPI, and SD/MMC. 48 direct shared I/O—located closest to the HPS block and are ideal for high speed HPS peripherals such as EMAC, USB, and others. There is one bank of 48 I/Os that supports direct sharing where the 48 I/Os can be shared 12 I/Os at a time. Standard (shared) I/O—all standard I/Os can be shared by the HPS peripherals and any logic within the core. For designs where more than 48 I/Os are required to fully use all the peripherals in the HPS, these I/Os can be connected through the core logic. | | | | | EMAC core | Three EMAC cores are available in the HPS. The EMAC cores enable an application to support two redundant Ethernet connections; for example, backplane, or two EMAC cores for managing IEEE 1588 time stamp information while allowing a third EMAC core for debug and configuration. All three EMACs can potentially share the same time stamps, simplifying the 1588 time stamping implementation. A new serial time stamp interface allows core logic to access and read the time stamp values. The integrated EMAC controllers can be connected to external Ethernet PHY through the provided MDIO or I ² C interface. | | | | | On-chip memory | The on-chip memory is updated to 256 KB support and can support larger data sets and real time algorithms. | | | | | ECC enhancements | Improvements in L2 Cache ECC management allow identification of errors down to the address level. ECC enhancements also enable improved error injection and status reporting via the introduction of new memory mapped access to syndrome and data signals. | | | | | HPS to FPGA Interconnect
Backbone | Although the HPS and the Logic Core can operate independently, they are tightly coupled via a high-bandwidth system interconnect built from high-performance ARM AMBA AXI bus bridges. IP bus masters in the FPGA fabric have access to HPS bus slaves via the FPGA-to-HPS interconnect. Similarly, HPS bus masters have access to bus slaves in the core fabric via the HPS-to-FPGA bridge. Both bridges are AMBA AXI-3 compliant and support simultaneous read and write transactions. Up to three masters within the core fabric can share the HPS SDRAM controller with the processor. Additionally, the processor can be used to configure the core fabric under program control via a dedicated 32-bit configuration port. | | | | | FPGA configuration and HPS booting | The FPGA fabric and HPS in the SoCs are powered independently. You can reduce the clock frequencies or gate the clocks to reduce dynamic power. You can configure the FPGA fabric and boot the HPS independently, in any order, providing you with more design flexibility. | | | | | Security | New security features have been introduced for anti-tamper management, secure boot, encryption (AES), and authentication (SHA). | | | | #### Features of the HPS The HPS has the following features: - 1.2-GHz, dual-core ARM Cortex-A9 MPCore processor with up to 1.5-GHz via overdrive - ARMv7-A architecture that runs 32-bit ARM instructions, 16-bit and 32-bit Thumb instructions, and 8-bit Java byte codes in Jazelle style - Superscalar, variable length, out-of-order pipeline with dynamic branch prediction - Instruction Efficiency 2.5 MIPS/MHz, which provides total performance of 7500 MIPS at 1.5 GHz - · Each processor core includes: - 32 KB of L1 instruction cache, 32 KB of L1 data cache - Single- and double-precision floating-point unit and NEON media engine - CoreSight debug and trace technology - Snoop Control Unit (SCU) and Acceleration Coherency Port (ACP) - 512 KB of shared L2 cache - 256 KB of scratch RAM - Hard memory controller with support for DDR3, DDR4 and optional error correction code (ECC) support - Multiport Front End (MPFE) Scheduler interface to the hard memory controller - 8-channel direct memory access (DMA) controller - QSPI flash controller with SIO, DIO, QIO SPI Flash support - NAND flash controller (ONFI 1.0 or later) with DMA and ECC support, updated to support 8 and 16-bit Flash devices and new command DMA to offload CPU for fast power down recovery - Updated SD/SDIO/MMC controller to eMMC 4.5 with DMA with CE-ATA digital command support - 3 10/100/1000 Ethernet media access control (MAC) with DMA - 2 USB On-the-Go (OTG) controllers with DMA - 5 I²C controllers (3 can be used by EMAC for MIO to external PHY) - 2 UART 16550 Compatible controllers - 4 serial peripheral interfaces (SPI) (2 Master, 2 Slaves) - 62 programmable general-purpose I/Os, which includes 48 direct share I/Os that allows the HPS peripherals to connect directly to the FPGA I/Os - 7 general-purpose timers - 4 watchdog timers - Anti-tamper, Secure Boot, Encryption (AES) and Authentication (SHA) #### **System Peripherals and Debug Access Port** Each Ethernet MAC, USB OTG, NAND flash controller, and SD/MMC controller module has an integrated DMA controller. For modules without an integrated DMA controller, an additional DMA controller module provides up to eight channels of high-bandwidth data transfers. Peripherals that communicate off-chip are multiplexed with other peripherals at the HPS pin level. This allows you to choose which peripherals interface with other devices on your PCB. The debug access port provides interfaces to industry standard JTAG debug probes and supports ARM CoreSight debug and core traces to facilitate software development. #### **HPS-FPGA AXI Bridges** The HPS-FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI $^{\text{\tiny M}}$) specifications, consist of the following bridges: - FPGA-to-HPS AMBA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the FPGA fabric to issue transactions to slaves in the HPS. - HPS-to-FPGA Avalon/AMBA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the HPS to issue transactions to slaves in the FPGA fabric. - Lightweight HPS-to-FPGA AXI bridge—a lower latency 32 bit width bus that allows the HPS to issue transactions to soft peripherals in the FPGA fabric. This bridge is primarily used for control and status register (CSR) accesses to peripherals in the FPGA fabric. The HPS-FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves in the HPS logic, and vice versa. For example, the HPS-to-FPGA AXI bridge allows you to share memories instantiated in the FPGA fabric with one or both microprocessors in the HPS, while the FPGA-to-HPS AXI bridge allows logic in the FPGA fabric to access the memory and peripherals in the HPS. Each HPS-FPGA bridge also provides asynchronous clock crossing for data transferred between the FPGA fabric and the HPS. #### **HPS SDRAM Controller Subsystem** The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon® Memory-Mapped (Avalon-MM) interface standards, and provides up to six individual ports for access by masters implemented in the FPGA fabric. The HPS SDRAM controller supports up to 3 masters (command ports), 3x 64-bit read data ports and 3x 64-bit write data ports. To maximize memory performance, the SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. | Scheme | Data
Width | Max Clock
Rate
(MHz) | Max Data
Rate
(Mbps) | Decompression | Design
Security ⁽¹
4) | Partial
Reconfiguration
(15) | Remote
System
Update | |---|----------------------------|----------------------------|----------------------------|---------------|--|------------------------------------|----------------------------| | Fast passive | 8 bits | 100 | 3200 | Yes | Yes | Yes ⁽¹⁷⁾ | PFL IP | | parallel (FPP) through CPLD or external microcontroller | 16 bits | | | Yes | Yes | | core | | | 32 bits | | | Yes | Yes | | | | Configuration via | 16 bits | 100 | 3200 | Yes | Yes | Yes ⁽¹⁷⁾ | _ | | HPS | 32 bits | | | Yes | Yes | | | | Configuration via
Protocol [CvP
(PCIe*)] | x1, x2,
x4, x8
lanes | _ | 8000 | Yes | Yes | Yes ⁽¹⁶⁾ | _ | You can configure Intel Arria 10 devices through PCIe using Configuration via Protocol (CvP). The Intel Arria 10 CvP implementation conforms to the PCIe 100 ms power-up-to-active time requirement. #### **SEU Error Detection and Correction** Intel Arria 10 devices offer robust and easy-to-use single-event upset (SEU) error detection and correction circuitry. The detection and correction circuitry includes protection for Configuration RAM (CRAM) programming bits and user memories. The CRAM is protected by a continuously running CRC error detection circuit with integrated ECC that automatically corrects one or two errors and detects higher order multi-bit errors. When more than two errors occur, correction is available through reloading of the core programming file, providing a complete design refresh while the FPGA continues to operate. The physical layout of the Intel Arria 10 CRAM array is optimized to make the majority of multi-bit upsets appear as independent single-bit or double-bit errors which are automatically corrected by the integrated CRAM ECC circuitry. In addition to the CRAM protection, the M20K memory blocks also include integrated ECC circuitry and are layout-optimized for error detection and correction. The MLAB does not have ECC. ### **Power Management** Intel Arria 10 devices leverage the advanced 20 nm process technology, a low 0.9 V core power supply, an enhanced core architecture, and several optional power reduction techniques to reduce total power consumption by as much as 40% compared to Arria V devices and as much as 60% compared to Stratix V devices. ⁽¹³⁾ Enabling either compression or design security features affects the maximum data rate. Refer to the Intel Arria 10 Device Datasheet for more information. ⁽¹⁴⁾ Encryption and compression cannot be used simultaneously. ⁽¹⁵⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Intel for support. ⁽¹⁷⁾ Supported at a maximum clock rate of 100 MHz. #### A10-OVERVIEW | 2018.04.09 | Date | Version | Changes | | |----------------|------------|--|--| | | | Removed package code 40, low static power, SmartVID, industrial, and military operating temperature support from Sample Ordering Core and Available Options for Intel Arria 10 GT Devices figure. Updated short reach transceiver rate for Intel Arria 10 GT devices to 25.8 Gbps. Removed On-Die Instrumentation — EyeQ and Jitter Margin Tool support from PMA Features of the Transceivers in Intel Arria 10 Devices table. | | | September 2017 | 2017.09.20 | Updated the maximum speed of the DDR4 external memory interface from 1,333 MHz/2,666 Mbps to 1,200 MHz/2,400 Mbps. | | | July 2017 | 2017.07.13 | Corrected the automotive temperature range in the figure showing the available options for the Intel Arria 10 GX devices from "-40°C to 100°C" to "-40°C to 125°C". | | | July 2017 | 2017.07.06 | Added automotive temperature option to Intel Arria 10 GX device family. | | | May 2017 | 2017.05.08 | Corrected protocol names with "1588" to "IEEE 1588v2". Updated the vertical migration table to remove vertical migration between Intel Arria 10 GX and Intel Arria 10 SX device variants. Removed all "Preliminary" marks. | | | March 2017 | 2017.03.15 | Removed the topic about migration from Intel Arria 10 to Intel Stratix
10 devices. Rebranded as Intel. | | | October 2016 | 2016.10.31 | Removed package F36 from Intel Arria 10 GX devices. Updated Intel Arria 10 GT sample ordering code and maximum GX transceiver count. Intel Arria 10 GT devices are available only in the SF45 package option with a maximum of 72 transceivers. | | | May 2016 | 2016.05.02 | Updated the FPGA Configuration and HPS Booting topic. Remove V_{CC} PowerManager from the Summary of Features, Power Management and Arria 10 Device Variants and packages topics. This feature is no longer supported in Arria 10 devices. Removed LPDDR3 from the Memory Standards Supported by the HPS Hard Memory Controller table in the Memory Standards Supported by Intel Arria 10 Devices topic. This standard is only supported by the FPGA. Removed transceiver speed grade 5 from the Device Variants and Packages topic for Arria 10 GX and SX devices. | | | February 2016 | 2016.02.11 | Changed the maximum Arria 10 GT datarate to 25.8 Gbps and the minimum datarate to 1 Gbps globally. Revised the state for Core clock networks in the Summary of Features topic. Changed the transceiver parameters in the "Summary of Features for Arria 10 Devices" table. Changed the transceiver parameters in the "Maximum Resource Counts for Arria 10 GT Devices" table. Changed the package availability for GT devices in the "Package Plan for Arria 10 GT Devices" table. Changed the package configurations for GT devices in the "Migration Capability Across Arria 10 Product Lines" figure. Changed transceiver parameters in the "Low Power Serial Transceivers" section. Changed the transceiver descriptions in the "Device Variants for the Arria 10 Device Family" table. Changed the "Sample Ordering Code and Available Options for Arria 10 GT Devices" figure. Changed the datarates for GT devices in the "PMA Features" section. Changed the datarates for GT devices in the "PCS Features" section. | |