Welcome to **E-XFL.COM** # Understanding <u>Embedded - FPGAs (Field Programmable Gate Array)</u> Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware. #### **Applications of Embedded - FPGAs** The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications. | Details | | |--------------------------------|---| | Product Status | Active | | Number of LABs/CLBs | 427200 | | Number of Logic Elements/Cells | 1150000 | | Total RAM Bits | 68857856 | | Number of I/O | 342 | | Number of Gates | - | | Voltage - Supply | 0.87V ~ 0.93V | | Mounting Type | Surface Mount | | Operating Temperature | -40°C ~ 100°C (TJ) | | Package / Case | 1517-BBGA, FCBGA | | Supplier Device Package | 1517-FCBGA (40x40) | | Purchase URL | https://www.e-xfl.com/product-detail/intel/10ax115r4f40i3lg | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Key Advantages of Intel Arria 10 Devices** Table 2. Key Advantages of the Intel Arria 10 Device Family | Advantage | Supporting Feature | | | | | | | |---|---|--|--|--|--|--|--| | Enhanced core architecture | Built on TSMC's 20 nm process technology 60% higher performance than the previous generation of mid-range FPGAs 15% higher performance than the fastest previous-generation FPGA | | | | | | | | High-bandwidth integrated transceivers | Short-reach rates up to 25.8 Gigabits per second (Gbps) Backplane capability up to 12.5 Gbps Integrated 10GBASE-KR and 40GBASE-KR4 Forward Error Correction (FEC) | | | | | | | | Improved logic integration and hard IP blocks | 8-input adaptive logic module (ALM) Up to 65.6 megabits (Mb) of embedded memory Variable-precision digital signal processing (DSP) blocks Fractional synthesis phase-locked loops (PLLs) Hard PCI Express Gen3 IP blocks Hard memory controllers and PHY up to 2,400 Megabits per second (Mbps) | | | | | | | | Second generation hard
processor system (HPS) with
integrated ARM* Cortex*-A9*
MPCore* processor | Tight integration of a dual-core ARM Cortex-A9 MPCore processor, hard IP, and an FPGA in a single Intel Arria 10 system-on-a-chip (SoC) Supports over 128 Gbps peak bandwidth with integrated data coherency between the processor and the FPGA fabric | | | | | | | | Advanced power savings | Comprehensive set of advanced power saving features Power-optimized MultiTrack routing and core architecture Up to 40% lower power compared to previous generation of mid-range FPGAs Up to 60% lower power compared to previous generation of high-end FPGAs | | | | | | | ## **Summary of Intel Arria 10 Features** **Table 3.** Summary of Features for Intel Arria 10 Devices | Feature | Description | |---------------------------------|---| | Technology | TSMC's 20-nm SoC process technology Allows operation at a lower V _{CC} level of 0.82 V instead of the 0.9 V standard V _{CC} core voltage | | Packaging | 1.0 mm ball-pitch Fineline BGA packaging 0.8 mm ball-pitch Ultra Fineline BGA packaging Multiple devices with identical package footprints for seamless migration between different FPGA densities Devices with compatible package footprints allow migration to next generation high-end Stratix® 10 devices RoHS, leaded⁽¹⁾, and lead-free (Pb-free) options | | High-performance
FPGA fabric | Enhanced 8-input ALM with four registers Improved multi-track routing architecture to reduce congestion and improve compilation time Hierarchical core clocking architecture Fine-grained partial reconfiguration | | Internal memory blocks | M20K—20-Kb memory blocks with hard error correction code (ECC) Memory logic array block (MLAB)—640-bit memory | | | continued | ⁽¹⁾ Contact Intel for availability. #### A10-OVERVIEW | 2018.04.09 | Feature | | Description | | | | | | |--------------------------------------|--|--|--|--|--|--|--| | Embedded Hard IP
blocks | Variable-precision DSP | Native support for signal processing precision levels from 18 x 19 to 54 x 54 Native support for 27 x 27 multiplier mode 64-bit accumulator and cascade for systolic finite impulse responses (FIRs) Internal coefficient memory banks Preadder/subtractor for improved efficiency Additional pipeline register to increase performance and reduce power Supports floating point arithmetic: Perform multiplication, addition, subtraction, multiply-add, multiply-subtract, and complex multiplication. Supports multiplication with accumulation capability, cascade summation, and cascade subtraction capability. Dynamic accumulator reset control. Support direct vector dot and complex multiplication chaining multiply floating point DSP blocks. | | | | | | | | Memory controller | DDR4, DDR3, and DDR3L | | | | | | | | PCI Express* | PCI Express (PCIe*) Gen3 (x1, x2, x4, or x8), Gen2 (x1, x2, x4, or x8) and Gen1 (x1, x2, x4, or x8) hard IP with complete protocol stack, endpoint, and root port | | | | | | | | Transceiver I/O | 10GBASE-KR/40GBASE-KR4 Forward Error Correction (FEC) PCS hard IPs that support: | | | | | | | Core clock networks | 667 MHz external 800 MHz LVDS in Global, regional, and | c clocking, depending on the application:
I memory interface clocking with 2,400 Mbps DDR4 interface
terface clocking with 1,600 Mbps LVDS interface
I peripheral clock networks
are not used can be gated to reduce dynamic power | | | | | | | Phase-locked loops
(PLLs) | Support integer n Fractional mode s Integer PLLs: Adjacent to generated. | rnthesis, clock delay compensation, and zero delay buffering (ZDB) mode and fractional mode support with third-order delta-sigma modulation | | | | | | | FPGA General-purpose
I/Os (GPIOs) | On-chip termination | ry pair can be configured as receiver or transmitter
(OCT)
-ended LVTTL/LVCMOS interfacing | | | | | | | External Memory
Interface | Hard memory controller— DDR4, DDR3, and DDR3L support DDR4—speeds up to 1,200 MHz/2,400 Mbps DDR3—speeds up to 1,067 MHz/2,133 Mbps Soft memory controller—provides support for RLDRAM 3 ⁽²⁾ , QDR IV ⁽²⁾ , and QDR II+ continued | | | | | | | #### **Maximum Resources** Table 5. Maximum Resource Counts for Intel Arria 10 GX Devices (GX 160, GX 220, GX 270, GX 320, and GX 480) | Resc | ource | | | Product Line | | | |------------------------------|-------------------------|--------|---------|---------------------|---------|---------| | | | GX 160 | GX 220 | GX 270 | GX 320 | GX 480 | | Logic Elements | (LE) (K) | 160 | 220 | 270 | 320 | 480 | | ALM | | 61,510 | 80,330 | 101,620 | 119,900 | 183,590 | | Register | egister | | 321,320 | 406,480 | 479,600 | 734,360 | | Memory (Kb) | M20K | 8,800 | 11,740 | 15,000 | 17,820 | 28,620 | | | MLAB | 1,050 | 1,690 | 2,452 2,727 | | 4,164 | | Variable-precision DSP Block | | 156 | 192 | 830 | 985 | 1,368 | | 18 x 19 Multipli | er | 312 | 384 | 1,660 | 1,970 | 2,736 | | PLL | Fractional
Synthesis | 6 | 6 | 8 | 8 | 12 | | | I/O | 6 | 6 | 8 | 8 | 12 | | 17.4 Gbps Trans | sceiver | 12 | 12 | 24 | 24 | 36 | | GPIO (3) | | 288 | 288 | 384 | 384 | 492 | | LVDS Pair (4) | | 120 | 120 | 168 | 168 | 222 | | PCIe Hard IP Bl | ock | 1 | 1 | 2 | 2 2 | | | Hard Memory C | ontroller | 6 | 6 | 8 | 8 | 12 | $^{^{(3)}}$ The number of GPIOs does not include transceiver I/Os. In the Intel Quartus Prime software, the number of user I/Os includes transceiver I/Os. ⁽⁴⁾ Each LVDS I/O pair can be used as differential input or output. Table 6. Maximum Resource Counts for Intel Arria 10 GX Devices (GX 570, GX 660, GX 900, and GX 1150) | Re | source | | Produc | t Line | | |------------------------------|-------------------------|---------|-----------|-----------|-----------| | | | GX 570 | GX 660 | GX 900 | GX 1150 | | Logic Elements | s (LE) (K) | 570 | 660 | 900 | 1,150 | | ALM | | 217,080 | 251,680 | 339,620 | 427,200 | | Register | | 868,320 | 1,006,720 | 1,358,480 | 1,708,800 | | Memory (Kb) | M20K | 36,000 | 42,620 | 48,460 | 54,260 | | | MLAB | 5,096 | 5,788 | 9,386 | 12,984 | | Variable-precision DSP Block | | 1,523 | 1,687 | 1,518 | 1,518 | | 18 x 19 Multip | lier | 3,046 | 3,374 | 3,036 | 3,036 | | PLL | Fractional
Synthesis | 16 | 16 | 32 | 32 | | | I/O | 16 | 16 | 16 | 16 | | 17.4 Gbps Trai | nsceiver | 48 | 48 | 96 | 96 | | GPIO (3) | | 696 | 696 | 768 | 768 | | LVDS Pair (4) | | 324 | 324 | 384 | 384 | | PCIe Hard IP B | Block | 2 | 2 | 4 | 4 | | Hard Memory | Controller | 16 | 16 | 16 | 16 | ### **Package Plan** ### Table 7. Package Plan for Intel Arria 10 GX Devices (U19, F27, and F29) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | U19
(19 mm × 19 mm,
484-pin UBGA) | | | | F27
mm × 27 n
72-pin FBG/ | | F29
(29 mm × 29 mm,
780-pin FBGA) | | | | |--------------|---|----------|------|---------|---------------------------------|------|---|----------|------|--| | | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | | | GX 160 | 48 | 192 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | | | GX 220 | 48 | 192 | 6 | 48 | 192 | 12 | 48 | 240 | 12 | | | GX 270 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | | | GX 320 | _ | _ | _ | 48 | 192 | 12 | 48 | 312 | 12 | | | GX 480 | _ | _ | _ | _ | _ | _ | 48 | 312 | 12 | | #### Table 8. Package Plan for Intel Arria 10 GX Devices (F34, F35, NF40, and KF40) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | F34
(35 mm × 35 mm,
1152-pin FBGA) | | | F35
(35 mm × 35 mm,
1152-pin FBGA) | | | KF40
(40 mm × 40 mm,
1517-pin FBGA) | | | NF40
(40 mm × 40 mm,
1517-pin FBGA) | | | |--------------|--|-------------|------|--|-------------|------|---|-------------|------|---|-------------|------| | | 3 V
I/O | LVDS
I/O | XCVR | | GX 270 | 48 | 336 | 24 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | GX 320 | 48 | 336 | 24 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | GX 480 | 48 | 444 | 24 | 48 | 348 | 36 | _ | _ | _ | _ | _ | _ | | GX 570 | 48 | 444 | 24 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | GX 660 | 48 | 444 | 24 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | GX 900 | _ | 504 | 24 | _ | _ | _ | _ | _ | _ | _ | 600 | 48 | | GX 1150 | _ | 504 | 24 | _ | _ | _ | _ | _ | _ | _ | 600 | 48 | #### Table 9. Package Plan for Intel Arria 10 GX Devices (RF40, NF45, SF45, and UF45) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | RF40
(40 mm × 40 mm,
1517-pin FBGA) | | | NF45
(45 mm × 45 mm)
1932-pin FBGA) | | | SF45
(45 mm × 45 mm)
1932-pin FBGA) | | | UF45
(45 mm × 45 mm)
1932-pin FBGA) | | | |--------------|---|-------------|------|---|-------------|------|---|-------------|------|---|-------------|------| | | 3 V
I/O | LVDS
I/O | XCVR | | GX 900 | _ | 342 | 66 | _ | 768 | 48 | _ | 624 | 72 | _ | 480 | 96 | | GX 1150 | _ | 342 | 66 | _ | 768 | 48 | _ | 624 | 72 | _ | 480 | 96 | #### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. #### **Intel Arria 10 GT** This section provides the available options, maximum resource counts, and package plan for the Intel Arria 10 GT devices. The information in this section is correct at the time of publication. For the latest information and to get more details, refer to the Intel FPGA Product Selector. #### **Related Information** Intel FPGA Product Selector Provides the latest information on Intel products. #### **Available Options** Figure 2. Sample Ordering Code and Available Options for Intel Arria 10 GT Devices | Product Line | oduct Line U19
(19 mm × 19 mm,
484-pin UBGA) | | | F27
(27 mm × 27 mm,
672-pin FBGA) | | | F29
(29 mm × 29 mm,
780-pin FBGA) | | | F34
(35 mm × 35 mm,
1152-pin FBGA) | | | |--------------|--|-------------|------|---|-------------|------|---|-------------|------|--|-------------|------| | | 3 V
I/O | LVDS
I/O | XCVR | | SX 480 | _ | _ | _ | _ | _ | _ | 48 | 312 | 12 | 48 | 444 | 24 | | SX 570 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 48 | 444 | 24 | | SX 660 | _ | _ | _ | _ | _ | _ | _ | _ | _ | 48 | 444 | 24 | #### Table 14. Package Plan for Intel Arria 10 SX Devices (F35, KF40, and NF40) Refer to I/O and High Speed I/O in Intel Arria 10 Devices chapter for the number of 3 V I/O, LVDS I/O, and LVDS channels in each device package. | Product Line | F35
(35 mm × 35 mm,
1152-pin FBGA) | | | | KF40
mm × 40 n
17-pin FBG | | NF40
(40 mm × 40 mm,
1517-pin FBGA) | | | |---------------------|--|----------|------|---------|---------------------------------|------|---|----------|------| | | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | 3 V I/O | LVDS I/O | XCVR | | SX 270 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | SX 320 | 48 | 336 | 24 | _ | _ | _ | _ | _ | _ | | SX 480 | 48 | 348 | 36 | _ | _ | _ | _ | _ | _ | | SX 570 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | | SX 660 | 48 | 348 | 36 | 96 | 600 | 36 | 48 | 540 | 48 | #### **Related Information** I/O and High-Speed Differential I/O Interfaces in Intel Arria 10 Devices chapter, Intel Arria 10 Device Handbook Provides the number of 3 V and LVDS I/Os, and LVDS channels for each Intel Arria 10 device package. Figure 5. ALM for Intel Arria 10 Devices The Intel Quartus Prime software optimizes your design according to the ALM logic structure and automatically maps legacy designs into the Intel Arria 10 ALM architecture. #### **Variable-Precision DSP Block** The Intel Arria 10 variable precision DSP blocks support fixed-point arithmetic and floating-point arithmetic. Features for fixed-point arithmetic: - High-performance, power-optimized, and fully registered multiplication operations - 18-bit and 27-bit word lengths - Two 18 x 19 multipliers or one 27 x 27 multiplier per DSP block - Built-in addition, subtraction, and 64-bit double accumulation register to combine multiplication results - Cascading 19-bit or 27-bit when pre-adder is disabled and cascading 18-bit when pre-adder is used to form the tap-delay line for filtering applications - Cascading 64-bit output bus to propagate output results from one block to the next block without external logic support - Hard pre-adder supported in 19-bit and 27-bit modes for symmetric filters - Internal coefficient register bank in both 18-bit and 27-bit modes for filter implementation - 18-bit and 27-bit systolic finite impulse response (FIR) filters with distributed output adder - Biased rounding support | Variant | Product Line | Variable-
precision | Independent In
Multiplication | | 18 x 19
Multiplier | 18 x 18
Multiplier
Adder | |---------|--------------|------------------------|----------------------------------|-----------------------|-----------------------|--------------------------------| | | | DSP Block | 18 x 19
Multiplier | 27 x 27
Multiplier | Adder Sum
Mode | Summed with
36 bit Input | | | SX 320 | 984 | 1,968 | 984 | 984 | 984 | | | SX 480 | 1,368 | 2,736 | 1,368 | 1,368 | 1,368 | | | SX 570 | 1,523 | 3,046 | 1,523 | 1,523 | 1,523 | | | SX 660 | 1,687 | 3,374 | 1,687 | 1,687 | 1,687 | Table 17. Resources for Floating-Point Arithmetic in Intel Arria 10 Devices The table lists the variable-precision DSP resources by bit precision for each Intel Arria 10 device. | Variant | Product Line | Variable-
precision
DSP Block | Single
Precision
Floating-Point
Multiplication
Mode | Single-Precision
Floating-Point
Adder Mode | Single-
Precision
Floating-Point
Multiply
Accumulate
Mode | Peak Giga Floating- Point Operations per Second (GFLOPs) | |----------------------|--------------|-------------------------------------|---|--|--|--| | Intel Arria 10 | GX 160 | 156 | 156 | 156 | 156 | 140 | | GX | GX 220 | 192 | 192 | 192 | 192 | 173 | | | GX 270 | 830 | 830 | Floating-Point Adder Mode Precision Floating-Point Multiply Accumulate Mode Precision Floating-Point Multiply Accumulate Mode (Compared Note Floating-P | 747 | | | | GX 320 | 984 | 984 | 984 | 984 | 886 | | | GX 480 | 1,369 | 1,368 | 1,368 | 1,368 | 1,231 | | | GX 570 | 1,523 | 1,523 | 1,523 | 1,523 | 1,371 | | | GX 660 | 1,687 | 1,687 | 1,687 | 1,687 | 1,518 | | | GX 900 | 1,518 | 1,518 | 1,518 | 1,518 | 1,366 | | | GX 1150 | 1,518 | 1,518 | 1,518 | 1,518 | 1,366 | | Intel Arria 10
GT | GT 900 | 1,518 | 1,518 | 1,518 | 1,518 | 1,366 | | GI | GT 1150 | 1,518 | 1,518 | 156 156 140 192 192 173 830 830 747 984 984 886 1,368 1,368 1,23 1,523 1,523 1,37 1,687 1,687 1,518 1,518 1,518 1,360 1,518 1,518 1,360 1,518 1,518 1,360 1,518 1,518 1,360 1,518 1,518 1,360 1,518 1,518 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 1,518 1,360 1,360 | 1,366 | | | Intel Arria 10 | SX 160 | 156 | 156 | 156 | Accumulate Mode 156 192 830 984 1,368 1,523 1,687 1,518 1,518 1,518 1,518 1,518 1,518 1,518 1,518 1,518 1,518 1,518 1,523 | 140 | | SX | SX 220 | 192 | 192 | 192 | 192 | 173 | | | SX 270 | 830 | 830 | 830 | 830 | 747 | | | SX 320 | 984 | 984 | 984 | 984 | 886 | | | SX 480 | 1,369 | 1,368 | 1,368 | 1,368 | 1,231 | | | SX 570 | 1,523 | 1,523 | 1,523 | 1,523 | 1,371 | | | SX 660 | 1,687 | 1,687 | 1,687 | 1,687 | 1,518 | ## **Embedded Memory Blocks** The embedded memory blocks in the devices are flexible and designed to provide an optimal amount of small- and large-sized memory arrays to fit your design requirements. #### A10-OVERVIEW | 2018.04.09 The fractional synthesis PLLs support the following features: - Reference clock frequency synthesis for transceiver CMU and Advanced Transmit (ATX) PLLs - Clock network delay compensation - Zero-delay buffering - Direct transmit clocking for transceivers - Independently configurable into two modes: - Conventional integer mode equivalent to the general purpose PLL - Enhanced fractional mode with third order delta-sigma modulation - PLL cascading #### I/O PLLs The integer mode I/O PLLs are located in each bank of 48 I/Os. You can use the I/O PLLs to simplify the design of external memory and high-speed LVDS interfaces. In each I/O bank, the I/O PLLs are adjacent to the hard memory controllers and LVDS SERDES. Because these PLLs are tightly coupled with the I/Os that need to use them, it makes it easier to close timing. You can use the I/O PLLs for general purpose applications in the core such as clock network delay compensation and zero-delay buffering. Intel Arria 10 devices support PLL-to-PLL cascading. ### FPGA General Purpose I/O Intel Arria 10 devices offer highly configurable GPIOs. Each I/O bank contains 48 general purpose I/Os and a high-efficiency hard memory controller. The following list describes the features of the GPIOs: - Consist of 3 V I/Os for high-voltage application and LVDS I/Os for differential signaling - $-\$ Up to two 3 V I/O banks, available in some devices, that support up to 3 V I/O standards - LVDS I/O banks that support up to 1.8 V I/O standards - Support a wide range of single-ended and differential I/O interfaces - LVDS speeds up to 1.6 Gbps - Each LVDS pair of pins has differential input and output buffers, allowing you to configure the LVDS direction for each pair. - Programmable bus hold and weak pull-up - Programmable differential output voltage (V_{OD}) and programmable pre-emphasis - Series (R_S) and parallel (R_T) on-chip termination (OCT) for all I/O banks with OCT calibration to limit the termination impedance variation - On-chip dynamic termination that has the ability to swap between series and parallel termination, depending on whether there is read or write on a common bus for signal integrity - Easy timing closure support using the hard read FIFO in the input register path, and delay-locked loop (DLL) delay chain with fine and coarse architecture ### **External Memory Interface** Intel Arria 10 devices offer massive external memory bandwidth, with up to seven 32-bit DDR4 memory interfaces running at up to 2,400 Mbps. This bandwidth provides additional ease of design, lower power, and resource efficiencies of hardened high-performance memory controllers. The memory interface within Intel Arria 10 FPGAs and SoCs delivers the highest performance and ease of use. You can configure up to a maximum width of 144 bits when using the hard or soft memory controllers. If required, you can bypass the hard memory controller and use a soft controller implemented in the user logic. Each I/O contains a hardened DDR read/write path (PHY) capable of performing key memory interface functionality such as read/write leveling, FIFO buffering to lower latency and improve margin, timing calibration, and on-chip termination. The timing calibration is aided by the inclusion of hard microcontrollers based on Intel's Nios® II technology, specifically tailored to control the calibration of multiple memory interfaces. This calibration allows the Intel Arria 10 device to compensate for any changes in process, voltage, or temperature either within the Intel Arria 10 device itself, or within the external memory device. The advanced calibration algorithms ensure maximum bandwidth and robust timing margin across all operating conditions. In addition to parallel memory interfaces, Intel Arria 10 devices support serial memory technologies such as the Hybrid Memory Cube (HMC). The HMC is supported by the Intel Arria 10 high-speed serial transceivers which connect up to four HMC links, with each link running at data rates up to 15 Gbps. #### **Related Information** #### External Memory Interface Spec Estimator Provides a parametric tool that allows you to find and compare the performance of the supported external memory interfaces in IntelFPGAs. #### **Memory Standards Supported by Intel Arria 10 Devices** The I/Os are designed to provide high performance support for existing and emerging external memory standards. #### Table 20. Memory Standards Supported by the Hard Memory Controller This table lists the overall capability of the hard memory controller. For specific details, refer to the External Memory Interface Spec Estimator and Intel Arria 10 Device Datasheet. | Memory Standard | Rate Support | Ping Pong PHY Support | Maximum Frequency (MHz) | |-----------------|--------------|-----------------------|-------------------------| | DDR4 SDRAM | Quarter rate | Yes | 1,067 | | | | _ | 1,200 | | DDR3 SDRAM | Half rate | Yes | 533 | | | | _ | 667 | | | Quarter rate | Yes | 1,067 | | | | _ | 1,067 | | DDR3L SDRAM | Half rate | Yes | 533 | | | | _ | 667 | | | Quarter rate | Yes | 933 | | | | _ | 933 | | LPDDR3 SDRAM | Half rate | _ | 533 | | | Quarter rate | _ | 800 | #### **Table 21.** Memory Standards Supported by the Soft Memory Controller | Memory Standard | Rate Support | Maximum Frequency
(MHz) | |-----------------------------|--------------|----------------------------| | RLDRAM 3 (11) | Quarter rate | 1,200 | | QDR IV SRAM ⁽¹¹⁾ | Quarter rate | 1,067 | | QDR II SRAM | Full rate | 333 | | | Half rate | 633 | | QDR II+ SRAM | Full rate | 333 | | | Half rate | 633 | | QDR II+ Xtreme SRAM | Full rate | 333 | | | Half rate | 633 | #### Table 22. Memory Standards Supported by the HPS Hard Memory Controller The hard processor system (HPS) is available in Intel Arria 10 SoC devices only. | Memory Standard | Rate Support | Maximum Frequency
(MHz) | |-----------------|--------------|----------------------------| | DDR4 SDRAM | Half rate | 1,200 | | DDR3 SDRAM | Half rate | 1,067 | | DDR3L SDRAM | Half rate | 933 | ⁽¹¹⁾ Intel Arria 10 devices support this external memory interface using hard PHY with soft memory controller. #### A10-OVERVIEW | 2018.04.09 The scalable hard IP supports multiple independent 10GbE ports while using a single PLL for all the 10GBASE-R PCS instantiations, which saves on core logic resources and clock networks: - Simplifies multiport 10GbE systems compared to XAUI interfaces that require an external XAUI-to-10G PHY. - Incorporates Electronic Dispersion Compensation (EDC), which enables direct connection to standard 10 Gbps XFP and SFP+ pluggable optical modules. - Supports backplane Ethernet applications and includes a hard 10GBASE-KR Forward Error Correction (FEC) circuit that you can use for 10 Gbps and 40 Gbps applications. The 10 Gbps Ethernet PCS hard IP and 10GBASE-KR FEC are present in every transceiver channel. #### **Related Information** PCS Features on page 30 #### **Low Power Serial Transceivers** Intel Arria 10 FPGAs and SoCs include lowest power transceivers that deliver high bandwidth, throughput and low latency. Intel Arria 10 devices deliver the industry's lowest power consumption per transceiver channel: - 12.5 Gbps transceivers at as low as 242 mW - 10 Gbps transceivers at as low as 168 mW - 6 Gbps transceivers at as low as 117 mW Intel Arria 10 transceivers support various data rates according to application: - Chip-to-chip and chip-to-module applications—from 1 Gbps up to 25.8 Gbps - Long reach and backplane applications—from 1 Gbps up to 12.5 with advanced adaptive equalization - Critical power sensitive applications—from 1 Gbps up to 11.3 Gbps using lower power modes The combination of 20 nm process technology and architectural advances provide the following benefits: - Significant reduction in die area and power consumption - Increase of up to two times in transceiver I/O density compared to previous generation devices while maintaining optimal signal integrity - Up to 72 total transceiver channels—you can configure up to 6 of these channels to run as fast as 25.8 Gbps - All channels feature continuous data rate support up to the maximum rated speed #### **Transceiver Channels** All transceiver channels feature a dedicated Physical Medium Attachment (PMA) and a hardened Physical Coding Sublayer (PCS). - The PMA provides primary interfacing capabilities to physical channels. - The PCS typically handles encoding/decoding, word alignment, and other preprocessing functions before transferring data to the FPGA core fabric. A transceiver channel consists of a PMA and a PCS block. Most transceiver banks have 6 channels. There are some transceiver banks that contain only 3 channels. A wide variety of bonded and non-bonded data rate configurations is possible using a highly configurable clock distribution network. Up to 80 independent transceiver data rates can be configured. The following figures are graphical representations of top views of the silicon die, which correspond to reverse views for flip chip packages. Different Intel Arria 10 devices may have different floorplans than the ones shown in the figures. Figure 7. Device Chip Overview for Intel Arria 10 GX and GT Devices Figure 8. Device Chip Overview for Intel Arria 10 SX Devices #### **PMA Features** Intel Arria 10 transceivers provide exceptional signal integrity at data rates up to 25.8 Gbps. Clocking options include ultra-low jitter ATX PLLs (LC tank based), clock multiplier unit (CMU) PLLs, and fractional PLLs. Each transceiver channel contains a channel PLL that can be used as the CMU PLL or clock data recovery (CDR) PLL. In CDR mode, the channel PLL recovers the receiver clock and data in the transceiver channel. Up to 80 independent data rates can be configured on a single Intel Arria 10 device. Table 23. PMA Features of the Transceivers in Intel Arria 10 Devices | Feature | Capability | |--|--| | Chip-to-Chip Data Rates | 1 Gbps to 17.4 Gbps (Intel Arria 10 GX devices)
1 Gbps to 25.8 Gbps (Intel Arria 10 GT devices) | | Backplane Support | Drive backplanes at data rates up to 12.5 Gbps | | Optical Module Support | SFP+/SFP, XFP, CXP, QSFP/QSFP28, CFP/CFP2/CFP4 | | Cable Driving Support | SFP+ Direct Attach, PCI Express over cable, eSATA | | Transmit Pre-Emphasis | 4-tap transmit pre-emphasis and de-emphasis to compensate for system channel loss | | Continuous Time Linear
Equalizer (CTLE) | Dual mode, high-gain, and high-data rate, linear receive equalization to compensate for system channel loss | | Decision Feedback Equalizer (DFE) | 7-fixed and 4-floating tap DFE to equalize backplane channel loss in the presence of crosstalk and noisy environments | | Variable Gain Amplifier | Optimizes the signal amplitude prior to the CDR sampling and operates in fixed and adaptive modes | | Altera Digital Adaptive
Parametric Tuning (ADAPT) | Fully digital adaptation engine to automatically adjust all link equalization parameters—including CTLE, DFE, and variable gain amplifier blocks—that provide optimal link margin without intervention from user logic | | Precision Signal Integrity
Calibration Engine (PreSICE) | Hardened calibration controller to quickly calibrate all transceiver control parameters on power-up, which provides the optimal signal integrity and jitter performance | | Advanced Transmit (ATX)
PLL | Low jitter ATX (LC tank based) PLLs with continuous tuning range to cover a wide range of standard and proprietary protocols | | Fractional PLLs | On-chip fractional frequency synthesizers to replace on-board crystal oscillators and reduce system cost | | Digitally Assisted Analog
CDR | Superior jitter tolerance with fast lock time | | Dynamic Partial
Reconfiguration | Allows independent control of the Avalon memory-mapped interface of each transceiver channel for the highest transceiver flexibility | | Multiple PCS-PMA and PCS-
PLD interface widths | 8-, 10-, 16-, 20-, 32-, 40-, or 64-bit interface widths for flexibility of deserialization width, encoding, and reduced latency | ### **PCS Features** This table summarizes the Intel Arria 10 transceiver PCS features. You can use the transceiver PCS to support a wide range of protocols ranging from 1 Gbps to 25.8 Gbps. Figure 9. HPS Block Diagram This figure shows a block diagram of the HPS with the dual ARM Cortex-A9 MPCore processor. ## **Key Advantages of 20-nm HPS** The 20-nm HPS strikes a balance between enabling maximum software compatibility with 28-nm SoCs while still improving upon the 28-nm HPS architecture. These improvements address the requirements of the next generation target markets such as wireless and wireline communications, compute and storage equipment, broadcast and military in terms of performance, memory bandwidth, connectivity via backplane and security. #### **System Peripherals and Debug Access Port** Each Ethernet MAC, USB OTG, NAND flash controller, and SD/MMC controller module has an integrated DMA controller. For modules without an integrated DMA controller, an additional DMA controller module provides up to eight channels of high-bandwidth data transfers. Peripherals that communicate off-chip are multiplexed with other peripherals at the HPS pin level. This allows you to choose which peripherals interface with other devices on your PCB. The debug access port provides interfaces to industry standard JTAG debug probes and supports ARM CoreSight debug and core traces to facilitate software development. #### **HPS-FPGA AXI Bridges** The HPS-FPGA bridges, which support the Advanced Microcontroller Bus Architecture (AMBA) Advanced eXtensible Interface (AXI $^{\text{\tiny M}}$) specifications, consist of the following bridges: - FPGA-to-HPS AMBA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the FPGA fabric to issue transactions to slaves in the HPS. - HPS-to-FPGA Avalon/AMBA AXI bridge—a high-performance bus supporting 32, 64, and 128 bit data widths that allows the HPS to issue transactions to slaves in the FPGA fabric. - Lightweight HPS-to-FPGA AXI bridge—a lower latency 32 bit width bus that allows the HPS to issue transactions to soft peripherals in the FPGA fabric. This bridge is primarily used for control and status register (CSR) accesses to peripherals in the FPGA fabric. The HPS-FPGA AXI bridges allow masters in the FPGA fabric to communicate with slaves in the HPS logic, and vice versa. For example, the HPS-to-FPGA AXI bridge allows you to share memories instantiated in the FPGA fabric with one or both microprocessors in the HPS, while the FPGA-to-HPS AXI bridge allows logic in the FPGA fabric to access the memory and peripherals in the HPS. Each HPS-FPGA bridge also provides asynchronous clock crossing for data transferred between the FPGA fabric and the HPS. #### **HPS SDRAM Controller Subsystem** The HPS SDRAM controller subsystem contains a multiport SDRAM controller and DDR PHY that are shared between the FPGA fabric (through the FPGA-to-HPS SDRAM interface), the level 2 (L2) cache, and the level 3 (L3) system interconnect. The FPGA-to-HPS SDRAM interface supports AMBA AXI and Avalon® Memory-Mapped (Avalon-MM) interface standards, and provides up to six individual ports for access by masters implemented in the FPGA fabric. The HPS SDRAM controller supports up to 3 masters (command ports), 3x 64-bit read data ports and 3x 64-bit write data ports. To maximize memory performance, the SDRAM controller subsystem supports command and data reordering, deficit round-robin arbitration with aging, and high-priority bypass features. #### **FPGA Configuration and HPS Booting** The FPGA fabric and HPS in the SoC FPGA must be powered at the same time. You can reduce the clock frequencies or gate the clocks to reduce dynamic power. Once powered, the FPGA fabric and HPS can be configured independently thus providing you with more design flexibility: - You can boot the HPS independently. After the HPS is running, the HPS can fully or partially reconfigure the FPGA fabric at any time under software control. The HPS can also configure other FPGAs on the board through the FPGA configuration controller. - Configure the FPGA fabric first, and then boot the HPS from memory accessible to the FPGA fabric. #### **Hardware and Software Development** For hardware development, you can configure the HPS and connect your soft logic in the FPGA fabric to the HPS interfaces using the Platform Designer system integration tool in the Intel Quartus Prime software. For software development, the ARM-based SoC FPGA devices inherit the rich software development ecosystem available for the ARM Cortex-A9 MPCore processor. The software development process for Intel SoC FPGAs follows the same steps as those for other SoC devices from other manufacturers. Support for Linux*, VxWorks*, and other operating systems are available for the SoC FPGAs. For more information on the operating systems support availability, contact the Intel FPGA sales team. You can begin device-specific firmware and software development on the Intel SoC FPGA Virtual Target. The Virtual Target is a fast PC-based functional simulation of a target development system—a model of a complete development board. The Virtual Target enables the development of device-specific production software that can run unmodified on actual hardware. ### **Dynamic and Partial Reconfiguration** The Intel Arria 10 devices support dynamic and partial reconfiguration. You can use dynamic and partial reconfiguration simultaneously to enable seamless reconfiguration of both the device core and transceivers. #### **Dynamic Reconfiguration** You can reconfigure the PMA and PCS blocks while the device continues to operate. This feature allows you to change the data rates, protocol, and analog settings of a channel in a transceiver bank without affecting on-going data transfer in other transceiver banks. This feature is ideal for applications that require dynamic multiprotocol or multirate support. ### **Partial Reconfiguration** Using partial reconfiguration, you can reconfigure some parts of the device while keeping the device in operation. Instead of placing all device functions in the FPGA fabric, you can store some functions that do not run simultaneously in external memory and load them only when required. This capability increases the effective logic density of the device, and lowers cost and power consumption. In the Intel solution, you do not have to worry about intricate device architecture to perform a partial reconfiguration. The partial reconfiguration capability is built into the Intel Quartus Prime design software, making such time-intensive task simple. Intel Arria 10 devices support partial reconfiguration in the following configuration options: - Using an internal host: - All supported configuration modes where the FPGA has access to external memory devices such as serial and parallel flash memory. - Configuration via Protocol [CvP (PCIe)] - Using an external host—passive serial (PS), fast passive parallel (FPP) x8, FPP x16, and FPP x32 I/O interface. ### **Enhanced Configuration and Configuration via Protocol** Table 25. Configuration Schemes and Features of Intel Arria 10 Devices Intel Arria 10 devices support 1.8 V programming voltage and several configuration schemes. | Scheme | Data
Width | Max Clock
Rate
(MHz) | Max Data
Rate
(Mbps)
(13) | Decompression | Design
Security ⁽¹
4) | Partial
Reconfiguration
(15) | Remote
System
Update | |--|------------------|----------------------------|------------------------------------|---------------|--|------------------------------------|---| | JTAG | 1 bit | 33 | 33 | _ | _ | Yes ⁽¹⁶⁾ | _ | | Active Serial (AS)
through the
EPCQ-L
configuration
device | 1 bit,
4 bits | 100 | 400 | Yes | Yes | Yes ⁽¹⁶⁾ | Yes | | Passive serial (PS)
through CPLD or
external
microcontroller | 1 bit | 100 | 100 | Yes | Yes | Yes ⁽¹⁶⁾ | Parallel
Flash
Loader
(PFL) IP
core | | | continued | | | | | | ntinued | ⁽¹³⁾ Enabling either compression or design security features affects the maximum data rate. Refer to the Intel Arria 10 Device Datasheet for more information. ⁽¹⁴⁾ Encryption and compression cannot be used simultaneously. ⁽¹⁵⁾ Partial reconfiguration is an advanced feature of the device family. If you are interested in using partial reconfiguration, contact Intel for support. ⁽¹⁶⁾ Partial configuration can be performed only when it is configured as internal host.