

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	H8SX
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	SCI, SmartCard
Peripherals	DMA, PWM, WDT
Number of I/O	82
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-LQFP
Supplier Device Package	120-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/ds61650cw50fpv

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	5.8.6	Interrupts Source Flag of Peripheral Modules	
Sect	ion 6 B	us Controller (BSC)	
6.1		s	
6.2		r Descriptions	
	6.2.1	Bus Width Control Register (ABWCR)	
	6.2.2	Access State Control Register (ASTCR)	
	6.2.3	Wait Control Registers A and B (WTCRA, WTCRB)	
	6.2.4	Read Strobe Timing Control Register (RDNCR)	
	6.2.5	CS Assertion Period Control Registers (CSACR)	
	6.2.6	Idle Control Register (IDLCR)	
	6.2.7	Bus Control Register 1 (BCR1)	
	6.2.8	Bus Control Register 2 (BCR2)	
	6.2.9	Endian Control Register (ENDIANCR)	
	6.2.10	SRAM Mode Control Register (SRAMCR)	
	6.2.11	Burst ROM Interface Control Register (BROMCR)	
	6.2.12	Address/Data Multiplexed I/O Control Register (MPXCR)	
6.3	Bus Cor	nfiguration	
6.4	Multi-C	Clock Function and Number of Access Cycles	
6.5	Externa	l Bus	
	6.5.1	Input/Output Pins	
	6.5.2	Area Division	153
	6.5.3	Chip Select Signals	
	6.5.4	External Bus Interface	155
	6.5.5	Area and External Bus Interface	159
	6.5.6	Endian and Data Alignment	163
6.6	Basic B	us Interface	
	6.6.1	Data Bus	
	6.6.2	I/O Pins Used for Basic Bus Interface	167
	6.6.3	Basic Timing	
	6.6.4	Wait Control	
	6.6.5	Read Strobe (RD) Timing	
	6.6.6	Extension of Chip Select (CS) Assertion Period	177
6.7	Byte Co	ontrol SRAM Interface	179
	6.7.1	Byte Control SRAM Space Setting	
	6.7.2	Data Bus	
	6.7.3	I/O Pins Used for Byte Control SRAM Interface	
	6.7.4	Basic Timing	
	6.7.5	Wait Control	
	6.7.6	Read Strobe (RD)	

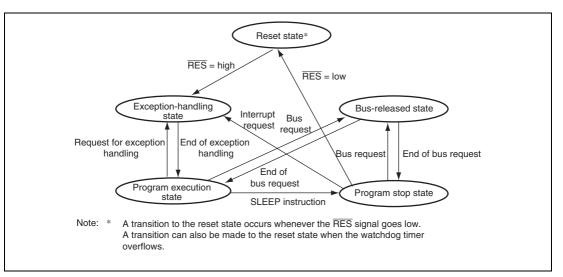


Figure 2.16 State Transitions

4.7 Instruction Exception Handling

There are three instructions that cause exception handling: trap instruction, sleep instruction, and illegal instruction.

4.7.1 Trap Instruction Exception Handling

Trap instruction exception handling starts when a TRAPA instruction is executed. Trap instruction exception handling can be executed at all times in the program execution state. The trap instruction exception handling is as follows:

- 1. The contents of PC, CCR, and EXR are saved in the stack.
- 2. The interrupt mask bit is updated and the T bit is cleared to 0.
- 3. An exception handling vector table address corresponding to the vector number specified in the TRAPA instruction is generated, the start address of the exception service routine is loaded from the vector table to PC, and program execution starts from that address.

A start address is read from the vector table corresponding to a vector number from 0 to 3, as specified in the instruction code.

Table 4.8 shows the state of CCR and EXR after execution of trap instruction exception handling.

Table 4.8 Status of CCR and EXR after Trap Instruction Exception Handling

		CCR		EXR
Interrupt Control Mode	I	UI	т	l2 to l0
0	1			
2	1		0	

[Legend]

1: Set to 1

0: Cleared to 0

—: Retains the previous value.

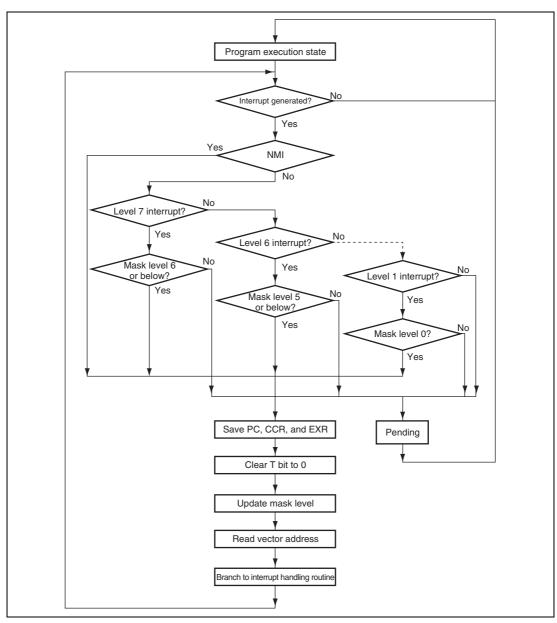


Figure 5.4 Flowchart of Procedure Up to Interrupt Acceptance in Interrupt Control Mode 2

8.3.2 Port Function Control Register 1 (PFCR1)

PFCR1 selects the \overline{CS} output pins.

Bit	7	6	5	4	3	2	1	0
Bit Name	CS7SA	CS7SB	CS6SA	CS6SB	CS5SA	CS5SB	CS4SA	CS4SB
Initial Value	0	0	0	0	0	0	0	0
R/W	R/W	B/W	R/W	B/W	B/W	R/W	B/W	R/W

		Initial		
Bit	Bit Name	Value	R/W	Description
7	CS7SA*	0	R/W	CS7 Output Pin Select
6	CS7SB*	0	R/W	Selects the output pin for $\overline{CS7}$ when $\overline{CS7}$ output is enabled (CS7E = 1)
				00: Specifies pin PB3 as $\overline{CS7}$ -A output
				01: Specifies pin PB1 as CS7-B output
				10: Specifies pin PF7 as $\overline{CS7}$ -C output
				11: Setting prohibited
5	CS6SA*	0	R/W	CS6 Output Pin Select
4	CS6SB*	0	R/W	Selects the output pin for $\overline{CS6}$ when $\overline{CS6}$ output is enabled (CS6E = 1)
				00: Specifies pin PB2 as CS6-A output
				01: Specifies pin PB1 as CS6-B output
				10: Specifies pin PF7 as $\overline{CS6}$ -C output
				11: Specifies pin PF6 as CS6-D output
3	CS5SA*	0	R/W	CS5 Output Pin Select
2	CS5SB*	0	R/W	Selects the output pin for $\overline{CS5}$ when $\overline{CS5}$ output is enabled (CS5E = 1)
				00: Specifies pin PB1 as CS5-A output
				01: Specifies pin PB0 as CS5-B output
				10: Specifies pin PF7 as CS5-C output
				11: Specifies pin PF5 as CS5-D output

Table 9.19 TIOR_4

					Description
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_4 Function	TIOCB4 Pin Function
0	0	0	0	Output	Output disabled
0	0	0	1	compare register	Initial output is 0 output
				register	0 output at compare match
0	0	1	0		Initial output is 0 output
					1 output at compare match
0	0	1	1		Initial output is 0 output
					Toggle output at compare match
0	1	0	0		Output disabled
0	1	0	1		Initial output is 1 output
					0 output at compare match
0	1	1	0	_	Initial output is 1 output
					1 output at compare match
0	1	1	1		Initial output is 1 output
					Toggle output at compare match
1	0	0	0	Input	Capture input source is TIOCB4 pin
				capture – register	Input capture at rising edge
1	0	0	1	– register	Capture input source is TIOCB4 pin
					Input capture at falling edge
1	0	1	х		Capture input source is TIOCB4 pin
					Input capture at both edges
1	1	х	х		Capture input source is TGRC_3 compare match/input capture
					Input capture at generation of TGRC_3 compare match/input capture

[Legend] X: Don't care

Table 9.20 TIOR_5

					Description
Bit 7 IOB3	Bit 6 IOB2	Bit 5 IOB1	Bit 4 IOB0	TGRB_5 Function	TIOCB5 Pin Function
0	0	0	0	Output	Output disabled
0	0	0	1	compare register	Initial output is 0 output
				register	0 output at compare match
0	0	1	0	_	Initial output is 0 output
					1 output at compare match
0	0	1	1	_	Initial output is 0 output
					Toggle output at compare match
0	1	0	0	_	Output disabled
0	1	0	1	_	Initial output is 1 output
					0 output at compare match
0	1	1	0	_	Initial output is 1 output
					1 output at compare match
0	1	1	1	_	Initial output is 1 output
					Toggle output at compare match
1	х	0	0	Input	Capture input source is TIOCB5 pin
				capture	Input capture at rising edge
1	х	0	1	– register	Capture input source is TIOCB5 pin
					Input capture at falling edge
1	х	1	х		Capture input source is TIOCB5 pin
					Input capture at both edges
[Logon/	.17				P

[Legend] X: Don't care Table 9.23 TIOR_1

					Description
Bit 3 IOA3	Bit 2 IOA2	Bit 1 IOA1	Bit 0 IOA0	TGRA_1 Function	TIOCA1 Pin Function
0	0	0	0	Output	Output disabled
0	0	0	1	compare register	Initial output is 0 output
				register	0 output at compare match
0	0	1	0		Initial output is 0 output
					1 output at compare match
0	0	1	1		Initial output is 0 output
					Toggle output at compare match
0	1	0	0		Output disabled
0	1	0	1		Initial output is 1 output
					0 output at compare match
0	1	1	0		Initial output is 1 output
					1 output at compare match
0	1	1	1	_	Initial output is 1 output
					Toggle output at compare match
1	0	0	0	Input	Capture input source is TIOCA1 pin
				capture – register	Input capture at rising edge
1	0	0	1	- register	Capture input source is TIOCA1 pin
					Input capture at falling edge
1	0	1	Х		Capture input source is TIOCA1 pin
					Input capture at both edges
1	1	Х	Х	_	Capture input source is TGRA_0 compare match/input capture
					Input capture at generation of channel 0/TGRA_0 compare match/input capture
	41				

[Legend] X: Don't care

Bit	Bit Name	Initial value	R/W	Description
0	TGFA	0	R/(W)*	Input Capture/Output Compare Flag A
				Status flag that indicates the occurrence of TGRA input capture or compare match.
				[Setting conditions]
				 When TCNT = TGRA while TGRA is functioning as output compare register
				 When TCNT value is transferred to TGRA by input capture signal while TGRA is functioning as input capture register
				[Clearing conditions]
				• When DTC is activated by a TGIA interrupt while the DISEL bit in MRB of DTC is 0
				 When 0 is written to TGFA after reading TGFA = 1 (When the CPU is used to clear this flag by writing 0 while the corresponding interrupt is enabled, be sure to read the flag after writing 0 to it.)
Note:	* Only 0 c	an he writte	n to clea	r the flag

Note: * Only 0 can be written to clear the flag.

(b) Example of input capture operation

Figure 9.9 shows an example of input capture operation.

In this example, both rising and falling edges have been selected as the TIOCA pin input capture input edge, falling edge has been selected as the TIOCB pin input capture input edge, and counter clearing by TGRB input capture has been designated for TCNT.

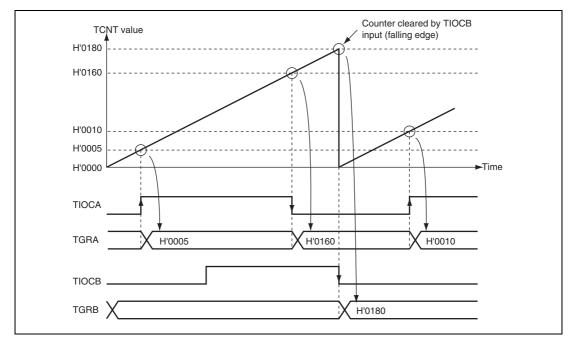


Figure 9.9 Example of Input Capture Operation

9.4.3 Buffer Operation

Buffer operation, provided for channels 0 and 3, enables TGRC and TGRD to be used as buffer registers.

Buffer operation differs depending on whether TGR has been designated as an input capture register or a compare match register.

Table 9.29 shows the register combinations used in buffer operation.

Channel	Timer General Register	Buffer Register
0	TGRA_0	TGRC_0
	TGRB_0	TGRD_0
3	TGRA_3	TGRC_3
	TGRB_3	TGRD_3

 Table 9.29
 Register Combinations in Buffer Operation

• When TGR is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in figure 9.12.

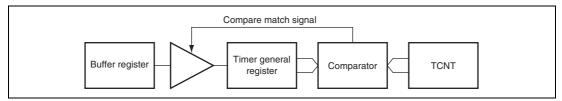
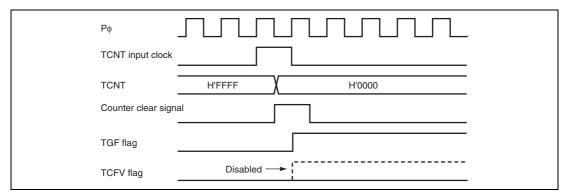



Figure 9.12 Compare Match Buffer Operation

9.9.11 Conflict between Overflow/Underflow and Counter Clearing

If overflow/underflow and counter clearing occur simultaneously, the TCFV/TCFU flag in TSR is not set and TCNT clearing takes precedence.

Figure 9.53 shows the operation timing when a TGR compare match is specified as the clearing source, and H'FFFF is set in TGR.

9.9.12 Conflict between TCNT Write and Overflow/Underflow

If an overflow/underflow occurs due to increment/decrement in the T2 state of a TCNT write cycle, the TCNT write takes precedence and the TCFV/TCFU flag in TSR is not set.

Figure 9.54 shows the operation timing when there is conflict between TCNT write and overflow.

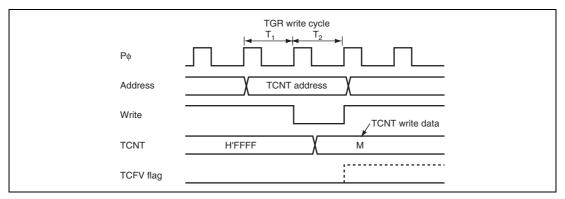


Figure 9.54 Conflict between TCNT Write and Overflow

13.3 Register Descriptions

The SCI has the following registers. Some bits in the serial mode register (SMR), serial status register (SSR), and serial control register (SCR) have different functions in different modes—normal serial communication interface mode and smart card interface mode; therefore, the bits are described separately for each mode in the corresponding register sections.

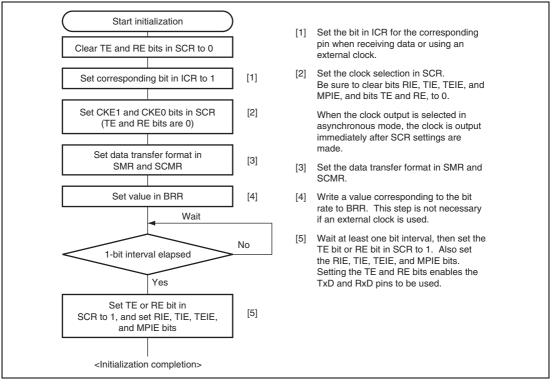
Channel 0:

- Receive shift register_0 (RSR_0)
- Transmit shift register_0 (TSR_0)
- Receive data register_0 (RDR_0)
- Transmit data register_0 (TDR_0)
- Serial mode register_0 (SMR_0)
- Serial control register_0 (SCR_0)
- Serial status register_0 (SSR_0)
- Smart card mode register_0 (SCMR_0)
- Bit rate register_0 (BRR_0)

Channel 1:

- Receive shift register_1 (RSR_1)
- Transmit shift register_1 (TSR_1)
- Receive data register_1 (RDR_1)
- Transmit data register_1 (TDR_1)
- Serial mode register_1 (SMR_1)
- Serial control register_1 (SCR_1)
- Serial status register_1 (SSR_1)
- Smart card mode register_1 (SCMR_1)
- Bit rate register_1 (BRR_1)

Bit	Bit Name	Initial Value	R/W	Description
3	MPIE	0	R/W	Multiprocessor Interrupt Enable (valid only when the MP bit in SMR is 1 in asynchronous mode)
				When this bit is set to 1, receive data in which the multiprocessor bit is 0 is skipped, and setting of the RDRF, FER, and ORER status flags in SSR is disabled. On receiving data in which the multiprocessor bit is 1, this bit is automatically cleared and normal reception is resumed. For details, see section 13.5, Multiprocessor Communication Function.
				When receive data including MPB = 0 in SSR is being received, transfer of the received data from RSR to RDR, detection of reception errors, and the settings of RDRF, FER, and ORER flags in SSR are not performed. When receive data including MPB = 1 is received, the MPB bit in SSR is set to 1, the MPIE bit is automatically cleared to 0, and RXI and ERI interrupt requests (in the case where the TIE and RIE bits in SCR are set to 1) and setting of the FER and ORER flags are enabled.
2	TEIE	0	R/W	Transmit End Interrupt Enable
				When this bit is set to 1, a TEI interrupt request is enabled. A TEI interrupt request can be cancelled by reading 1 from the TDRE flag and then clearing the flag to 0 in order to clear the TEND flag to 0, or by clearing the TEIE bit to 0.


Table 13.6	BRR Settings for Various Bit Rates (Clocked Synchronous Mode)
-------------------	--

Bit Rate (bit/s)	8			10		16	20			
	n	N	n	Ν	n	Ν	n	Ν		
110										
250	3	124			3	249				
500	2	249			3	124		_		
1k	2	124		—	2	249		_		
2.5k	1	199	1	249	2	99	2	124		
5k	1	99	1	124	1	199	1	249		
10k	0	199	0	249	1	99	1	124		
25k	0	79	0	99	0	159	0	199		
50k	0	39	0	49	0	79	0	99		
100k	0	19	0	24	0	39	0	49		
250k	0	7	0	9	0	15	0	19		
500k	0	3	0	4	0	7	0	9		
1M	0	1			0	3	0	4		
2.5M			0	0*			0	1		
5M							0	0*		

Operating Frequency P ϕ (MHz)

13.4.4 SCI Initialization (Asynchronous Mode)

Before transmitting and receiving data, first clear the TE and RE bits in SCR to 0, then initialize the SCI as described in a sample flowchart in figure 13.5. When the operating mode, transfer format, etc., is changed, the TE and RE bits must be cleared to 0 before making the change. When the TE bit is cleared to 0, the TDRE flag is set to 1. Note that clearing the RE bit to 0 does not initialize the RDRF, PER, FER, and ORER flags, or RDR. When the external clock is used in asynchronous mode, the clock must be supplied even during initialization.

Table 17.2 Crystal Resonator Characteristics

Frequency (MHz)	8	12	18	
R_{s} Max. (Ω)	80	60	40	
$C_{_0}$ Max. (pF)		7		

17.2.2 External Clock Input

An external clock signal can be input as shown in the examples in figure 17.4. If the XTAL pin is left open, make sure that parasitic capacitance is no more than 10 pF. When the counter clock is input to the XTAL pin, make sure that the external clock is held high in standby mode.

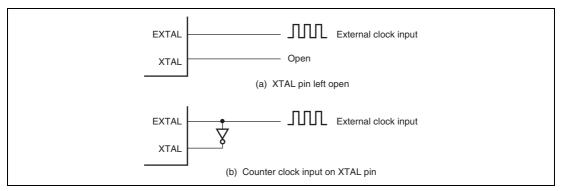
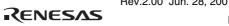


Figure 17.4 External Clock Input (Examples)

For the input conditions of the external clock, refer to table 20.4, Clock Timing, in section 20.3.1, Clock Timing. The input external clock should be from 8 to 18 MHz.


17.3 PLL Circuit

The PLL circuit has the function of multiplying the frequency of the clock from the oscillator by a factor of 4. The frequency multiplication factor is fixed. The phase difference is controlled so that the timing of the rising edge of the internal clock is the same as that of the EXTAL pin signal.

17.4 Frequency Divider

The frequency divider divides the PLL clock to generate a 1/2, 1/4, or 1/8 clock. After bits ICK2 to ICK0, PCK 2 to PCK0, and BCK2 to BCK0 are modified, this LSI operates at the modified frequency.

Bit	Bit Name	Initial Value	R/W	Description				
13		0	R/W	Reserved				
				This bit is always read as 0. The write value should always be 0.				
12	STS4	0	R/W	Standby Timer Select 4 to 0				
11	STS3	1	R/W	These bits select the time the MCU waits for the clock to				
10	STS2	1	R/W	settle when software standby mode is cleared by an external interrupt. With a crystal resonator, refer to tabl				
9	STS1	1	R/W	18.2 and make a selection according to the operating				
8	STS0	1	R/W	frequency so that the standby time is at least equal to the oscillation settling time. With an external clock, a PLL circuit settling time is necessary. Refer to table 18.2 to set the standby time.				
				While oscillation is being settled, the timer is counted on the P ϕ clock frequency. Careful consideration is required in multi-clock mode.				
				00000: Reserved				
				00001: Reserved				
				00010: Reserved				
				00011: Reserved				
				00100: Reserved				
				00101: Standby time = 64 states				
				00110: Standby time = 512 states				
				00111: Standby time = 1024 states				
				01000: Standby time = 2048 states				
				01001: Standby time = 4096 states				
				01010: Standby time = 16384 states				
				01011: Standby time = 32768 states				
				01100: Standby time = 65536 states				
				01101: Standby time = 131072 states				
				01110: Standby time = 262144 states				
				01111: Standby time = 524288 states				
				1XXXX: Reserved				

Register Abbreviation	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	Module
PDPCR	PD7PCR	PD6PCR	PD5PCR	PD4PCR	PD3PCR	PD2PCR	PD1PCR	PD0PCR	I/O port
PEPCR	PE7PCR	PE6PCR	PE6PCR	PE4PCR	PE3PCR	PE2PCR	PE1PCR	PE0PCR	-
PFPCR	PF7PCR	PF6PCR	PF5PCR	PF4PCR	PF3PCR	PF2PCR	PF1PCR	PF0PCR	-
PHPCR	PH7PCR	PH6PCR	PH5PCR	PH4PCR	PH3PCR	PH2PCR	PH1PCR	PH0PCR	-
PIPCR	PI7PCR	PI6PCR	PI5PCR	PI4PCR	PI3PCR	PI2PCR	PI1PCR	PI0PCR	-
P2ODR	P27ODR	P26ODR	P25ODR	P240DR	P23ODR	P22ODR	P210DR	P20ODR	-
PFODR	PF70DR	PF6ODR	PF50DR	PF40DR	PF3ODR	PF2ODR	PF10DR	PF0ODR	-
PFCR0	CS7E	CS6E	CS5E	CS4E	CS3E	CS2E	CS1E	CS0E	-
PFCR1	CS7SA	CS7SB	CS6SA	CS6SB	CS5SA	CS5SB	CS4SA	CS4SB	-
PFCR2	_	CS2S	BSS	BSE	_	RDWRE	ASOE	—	-
PFCR4	A23E	A22E	A21E				_		_
PFCR6	_	LHWROE	_	_	TCLKS	_	—	—	-
PFCR9	TPUMS5	TPUMS4	TPUMS3A	TPUMS3B	TPUMS2	TPUMS1	TPUMS0A	TPUMS0B	_
PFCRB	_	_	_	_	ITS11	ITS10	ITS9	ITS8	_
PFCRC	ITS7	ITS6	ITS5	ITS4	ITS3	ITS2	ITS1	ITS0	-
SSIER	_	_	_	_	SSI11	SSI10	SSI9	SSI8	INTC
	SSI7	SSI6	SSI5	SSI4	SSI3	SSI2	SSI1	SSI0	_
IPRA	_	IPRA14	IPRA13	IPRA12	_	IPRA10	IPRA9	IPRA8	-
	_	IPRA6	IPRA5	IPRA4	_	IPRA2	IPRA1	IPRA0	-
IPRB	_	IPRB14	IPRB13	IPRB12	_	IPRB10	IPRB9	IPRB8	-
	_	IPRB6	IPRB5	IPRB4	_	IPRB2	IPRB1	IPRB0	-
IPRC	_	IPRC14	IPRC13	IPRC12	_	IPRC10	IPRC9	IPRC8	-
	_	IPRC6	IPRC5	IPRC4	_	IPRC2	IPRC1	IPRC0	-
IPRE	_	_	_	_	_	IPRE10	IPRE9	IPRE8	-
	_	_	_	_	_	_	—	—	-
IPRF	_	_	_	_	_	IPRF10	IPRF9	IPRF8	-
	_	IPRF6	IPRF5	IPRF4	_	IPRF2	IPRF1	IPRF0	-
IPRG	_	IPRG14	IPRG13	IPRG12	_	IPRG10	IPRG9	IPRG8	-
	_	IPRG6	IPRG5	IPRG4	_	IPRG2	IPRG1	IPRG0	-
IPRH		IPRH14	IPRH13	IPRH12		IPRH10	IPRH9	IPRH8	-
		IPRH6	IPRH5	IPRH4	_	IPRH2	IPRH1	IPRH0	_
IPRK								_	-
		IPRK6	IPRK5	IPRK4		IPRK2	IPRK1	IPRK0	-
IPRL		IPRL14	IPRL13	IPRL12				_	-
		IPRL6	IPRL5	IPRL4	_	_	_	_	-

Register Abbreviation	Reset	Module Stop State	Sleep Mode	All-Module- Clock-Stop Mode	Software Standby Mode	Hardware Standby Mode	Module
TCNT_0	Initialized	_		_		Initialized	TMR_0
TCNT_1	Initialized	_		_	_	Initialized	TMR_1
TCCR_0	Initialized	_	_	_	_	Initialized	TMR_0
TCCR_1	Initialized	_	_	_	_	Initialized	TMR_1
TSTR	Initialized	_	_	_	_	Initialized	TPU
TSYR	Initialized	_	_	_	_	Initialized	-
TCR_0	Initialized	_	_	_	_	Initialized	TPU_0
TMDR_0	Initialized	_	_	_	_	Initialized	-
TIORH_0	Initialized	_		_	_	Initialized	_
TIORL_0	Initialized	_			_	Initialized	_
TIER_0	Initialized			_		Initialized	_
TSR_0	Initialized	_		_	_	Initialized	_
TCNT_0	Initialized	_		_	_	Initialized	_
TGRA_0	Initialized			_		Initialized	_
TGRB_0	Initialized	_	_	_	_	Initialized	-
TGRC_0	Initialized	_			_	Initialized	_
TGRD_0	Initialized			_		Initialized	_
TCR_1	Initialized			_		Initialized	TPU_1
TMDR_1	Initialized	_			_	Initialized	_
TIOR_1	Initialized			_		Initialized	_
TIER_1	Initialized	_		_	_	Initialized	_
TSR_1	Initialized	_			_	Initialized	_
TCNT_1	Initialized			_		Initialized	_
TGRA_1	Initialized	_		_	_	Initialized	_
TGRB_1	Initialized	—	_	_	_	Initialized	_
TCR_2	Initialized	_	_	_	_	Initialized	TPU_2
TMDR_2	Initialized	—	_	_	_	Initialized	_
TIOR_2	Initialized	_	_	_	_	Initialized	_
TIER_2	Initialized		_	_	_	Initialized	-