E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 32x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f206-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.2. C8051F221 Block Diagram (32 LQFP)

4. Pinout and Package Definitions

Table 4.1. Pin Definitions

Name	⁶ F206, F220, 226, 230, 236 48-Pin	^{•F221,} 231 32-Pin	Туре	Description	
V _{DD}	11,31	8		Digital Voltage Supply.	
GND	5,6,8, 13,32	9		Ground. (Note: Pins 5,6, and 8 on the 48-pin package are not connected (NC), but it is recommended that they be connected to ground.)	
MONEN	12		D In	Monitor Enable (on 48 pin package ONLY). Enables reset volt- age monitor function when pulled high (logic "1").	
ТСК	25	17	D In	JTAG Test Clock with internal pull-up.	
TMS	26	18	D In	JTAG Test-Mode Select with internal pull-up.	
TDI	28	20	D In	JTAG Test Data Input with internal pull-up. TDI is latched on a rising edge of TCK.	
TDO	27	19	D Out	t JTAG Test Data Output. Data is shifted out on TDO on the fallinedge of TCK. TDO output is a tri-state driver.	
XTAL1	9	6	A In	In Crystal Input. This pin is the return for the internal oscillator cuit for a crystal or ceramic resonator. For a precision inter clock, connect a crystal or ceramic resonator from XTAL1 XTAL2. If overdriven by an external CMOS clock, this becon the system clock.	
XTAL2	10	7	A Out	Crystal Output. This pin is the excitation driver for a crystal or ceramic resonator.	
RST	14	10	D I/O	Chip Reset. Open-drain output of internal Voltage Supply moni- tor. Is driven low when V _{DD} is < 2.7V and MONEN=1, or when a '1'is written to PORSF. An external source can force a system reset by driving this pin low.	
VREF	7	5	A I/O	Voltage Reference. When configured as an input, this pin is the voltage reference for the ADC. Otherwise, V _{DD} will be the reference. NOTE: this pin is Not Connected (NC) on 'F230/1/6.	
CP0+	4	4	A In	Comparator 0 Non-Inverting Input.	
CP0-	3	3	A In	Comparator 0 Inverting Input.	
CP0	2	2	D Out	Comparator 0 Output	
CP1+	1	1	A In	Comparator 1 Non-Inverting Input.	
CP1-	48	32	A In	Comparator 1 Inverting Input.	
CP1	47	31	D Out	Comparator 1 Output	
P0.0/TX	40	28	D I/O A In	Port0 Bit0. (See the Port I/O Sub-System section for complete description).	
P0.1/RX	39	27	D I/O A In	Port0 Bit1. (See the Port I/O Sub-System section for complete description).	
P0.2/INT0	38	26	D I/O A In	Port0 Bit2. (See the Port I/O Sub-System section for complete description).	

SFR Definition 6.3. ADC0CN: ADC Control ('F220/1/6 and 'F206)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADCEN	ADCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xE8
_								
Bit7:	ADCEN: A	DC Enable	Bit					
	0: ADC Di	isabled. AL	DC is in low	power shu	itdown.			
D:40	1: ADC Er	nabled. AD	C is active	and ready	for data con	nversions.		
BITO:	ADCTM: A	be ADC is	VIODE BIT	oking in on	ntinuouo ur		vorcion io in n	r00000
	0. When the 1. Tracking	a Defined b		_0 bite	munuous ur	liess a con	version is in p	locess
		y Denneu t ∖STM1_∩·		-0 0113				
	00	· Tracking	starts with	the write of	f 1 to ADBU	SY and las	ts for 3 SAR o	clocks
	01	: RESERV	'ED					
	10	: RESERV	'ED					
	11	: Tracking	started by t	he overflow	v of Timer 2	and last fo	or 3 SAR clock	s
Bit5:	ADCINT: A	DC Conve	rsion Comp	lete Interru	ipt Flag (cle	ared by so	ftware).	
	0: ADC ha	as not comp	pleted a dat	a conversio	on since the	e last time t	his flag was cl	leared
514	1: ADC ha	as complete	ed a data co	onversion				
Bit4:	ADBUSY:	ADC Busy	Bit					
		onvoroion o	omploto or	no volid do	ta haa haar	oonvorted	ainco a racat	The folling
			ompiele oi oratos an i	no valio ua	lia nas beer	Converted	since a reset.	i ne lalling
		usv convert	ing data					
	Write		ang data					
	0: No effe	ct						
	1: Starts A	ADC Conve	rsion if ADS	STM1–0 = 0	00b			
Bits3–2:	ADSTM1-	0: ADC Sta	rt of Conve	rsion Mode	e Bits			
	00: ADC c	conversion	started upo	n a write of	f 1 to ADBU	ISY		
	01: RESE	RVED						
	10: RESE	RVED	1.10 ¹ .1.1.1.1.1					
D:+4 .			initiated or		Flog			
DILI.		ADC WINDO	w Compare	ta match h	riag as not occu	urrod		
		Indow Con	iparison Da	ta match o	as not occu courred	ineu		
Bit0:	ADLJST: A	DC Left Ju	stifv Data E	Bit	oounou			
	0: Data in	ADC0H:AD	DC0L regist	ers are righ	nt justified.			
	1: Data in	ADC0H:AD	DC0L regist	ers are left	justified.			

SFR Definition 6.9. ADC0LTL: ADC Less-Than Data Low Byte (C8051F206)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
D#7	Dito	Dite	Dit4	Ditto	Dito	Ditd	D:+0		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	OxC4	
Bits7–0: These bits are the low byte of the ADC Less-Than Data Word.									
Definition: ADC Less-Than Data Word = ADC0LTH:ADC0LTL									

Input Voltage (Analog Input - GNI	ADC Data		Input Voltage (Analog Input - GND)	ADC Data Word		
REF x (4095/40	96) 0x0FFF]	REF x (4095/4096)	0x0FFF])	
		ADWINT not affected			ADWINT=1	
	0x0201			0x0201		
REF x (512/409	96) 0x0200	ADC0LTH:ADC0LTL	REF x (512/4096)	0x0200	ADC0GTH:ADC0GTL	
	0x01FF		***************************************	0x01FF	ADWINT	
	0x0101			0x0101	not affected	
REF x (256/409	96) 0x0100	ADC0GTH:ADC0GTL	REF x (256/4096)	0x0100	ADC0LTH:ADC0LTL	
	0x00FF		***************************************	0x00FF		
		ADWINT not affected			ADWINT=1	
0	0x0000		0	0x0000		
Given:			Given:			
$\begin{array}{llllllllllllllllllllllllllllllllllll$			$\begin{array}{llllllllllllllllllllllllllllllllllll$			
An ADC End of Window Comp resulting ADC 0x0100.	of Conversion are Interrupt (Data Word is	will cause an ADC (ADWINT=1) if the s < 0x0200 and >	An ADC End of Co Window Compare I resulting ADC Data 0x0200.	nversion w Interrupt (A a Word is	ill cause an ADC DWINT=1) if the < 0x0100 or >	

Figure 6.3. 12-Bit ADC Window Interrupt Examples, Right Justified Data

8. Comparators

The MCU has two on-board voltage comparators as shown in Figure 8.1. The inputs of each Comparator are available at the package pins. The output of each comparator is optionally available at port1 by configuring (see Section 14). When assigned to package pins, each comparator output can be programmed to operate in open drain or push-pull modes (see section 14.2).

The hysteresis of each comparator is software-programmable via its respective Comparator Control Register (CPT0CN, CPT1CN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive-going and negative-going symmetry of this hysteresis around the threshold voltage. The output of the comparator can be polled in software, or can be used as an interrupt source. Each comparator can be individually enabled or disabled (shutdown). When disabled, the comparator output (if assigned to a Port I/O pin via the Port1 MUX) defaults to the logic low state and its interrupt capability is suspended. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset.

The Comparator 0 hysteresis is programmed using bits 3–0 in the Comparator 0 Control Register CPT0CN (shown in SFR Definition 8.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 8.2, settings of 10, 4 or 2 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section 9.4). The CP0FIF flag is set upon a Comparator 0 falling-edge interrupt, and the CP0RIF flag is set upon the Comparator 0 rising-edge interrupt. Once set, these bits remain set until cleared by the user software. The Output State of Comparator 0 can be obtained at any time by reading the CP0OUT bit. Comparator 0 is enabled by setting the CP0EN bit, and is disabled by clearing this bit. Note there is a 20 mS power on time between setting CP0EN and the output stabilizing. Comparator 0 can also be programmed as a reset source. For details, see Section 11. The operation of Comparator 1 is identical to that of Comparator 0, except the Comparator 1 is controlled by the CPT1CN Register (SFR Definition 8.2). Also, Comparator 1 can not be programmed as a reset source. The complete electrical specifications for the Comparators are given in Table 8.1.

Table 8.1. Comparator Electrical Characteristics V_{DD} = 3.0 V, -40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Response Time1*	(CP+) – (CP–) = 100 mV		4	_	μs
Response Time2*	(CP+) – (CP–) = 10 mV		12	_	μs
Common Mode Rejection Ratio		_	1.5	4	mV/V
Positive Hysteresis1	CPnHYP1-0 = 00		0	1	mV
Positive Hysteresis2	CPnHYP1-0 = 01	2	4.5	7	mV
Positive Hysteresis3	CPnHYP1-0 = 10	4	9	15	mV
Positive Hysteresis4	CPnHYP1-0 = 11	10	17	25	mV
Negative Hysteresis1	CPnHYN1-0 = 00	_	0	1	mV
Negative Hysteresis2	CPnHYN1-0 = 01	2	4.5	7	mV
Negative Hysteresis3	CPnHYN1-0 = 10	4	9	15	mV
Negative Hysteresis4	CPnHYN1-0 = 11	10	17	25	mV
Inverting or Non-inverting Input Voltage Range		-0.25		(V _{DD}) + 0.25	V
Input Capacitance			7	—	pF
Input Bias Current		-5	0.001	+5	nA
Input Offset Voltage		-10	_	+10	mV
POWER SUPPLY			•	•	
Power-up Time	CPnEN from 0 to 1	_	20		μs
Power Supply Rejection		—	0.1	1	mV/V
Supply Current	Operating Mode (each comparator) at DC	_	1.5	4	μA
*Note: CPnHYP1-0 = CPnHYN	1-0 = 00.	ł			

SFR Definition 9.5. ACC: Accumulator

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ACC.7	ACC.0	ACC.0	ACC.4	ACC.3	ACC.Z	ACC.I	ACC.U	
Bit/	BIIO	BIto	BIt4	BIt3	BItZ	BITI	Bitu	SFR Address:
							(bit addressable) 0xE0
Bits 7–0:	ACC: Accu This registe	mulator er is the ac	cumulator f	or arithmeti	c operation	IS.		

SFR Definition 9.6. B: B Register

Interrupt Source	Interrupt Vector	Priority Order	Interrupt-Pending Flag	Enable
ADC0 End of Conversion	0x007B	15	ADCINT (ADC0CN.5)	EADC0 (EIE2.1)
Software Controlled Interrupt 0	0x0083	16	SCI0 (SWCINT.4)	ESCI0 (EIE2.2)
Software Controlled Interrupt 1	0x008B	17	SCI1 (SWCINT.5)	ESCI1 (EIE2.3)
Software Controlled Interrupt 2	0x0093	18	SCI2 (SWCINT.6)	ESCI2 (EIE2.4)
Software Controlled Interrupt 3	0x009B	19	SCI3 (SWCINT.7)	ESCI3 (EIE2.5)
Unused Interrupt Location	0x00A3	20	None	Reserved (EIE2.6)
External Crystal OSC Ready	0x00AB	21	XTLVLD (OSCXCN.7)	EXVLD (EIE2.7)

Table 9.4. Interrupt Summary (Continued)

9.4.4. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP–EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate.

9.4.5. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. NOTE: If a Flash write or erase is performed, the MCU is stalled during the operation and interrupts will not be serviced until the operation is complete. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

9.4.6. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 9.8. IE: Interrupt Enable

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
EA	-	ET2	ES	ET1	EX1	ET0	EX0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
							(bit addressable	e) 0xA8			
Bit7:	 Bit7: EA: Enable All Interrupts. This bit globally enables/disables all interrupts. It overrides the individual interrupt mask settings. 0: Disable all interrupt sources. 1: Enable each interrupt according to its individual mask setting. 										
Bit6:	UNUSED.	Read = 0,	Write = dor	n't care.							
Bit5:	ET2: Enable Timer 2 Interrupt. This bit sets the masking of the Timer 2 interrupt. 0: Disable all Timer 2 interrupts. 1: Enable interrupt requests generated by the TF2 flag (T2CON.7)										
Bit4:	ES: Enable Serial Port (UART) Interrupt. This bit sets the masking of the Serial Port (UART) interrupt. 0: Disable all UART interrupts. 1: Enable interrupt requests generated by the R1 flag (SCON.0) or T1 flag (SCON.1).										
Bit3:	ET1: Enab This bit set 0: Disable 1: Enable	le Timer 1 I ts the mask all Timer 1 interrupt re	nterrupt. ing of the T interrupts. quests gen	ïmer 1 inte erated by t	rrupt. he TF1 flag	(TCON.7).					
Bit2:	EX1: Enable External Interrupt 1. This bit sets the masking of external interrupt 1. 0: Disable external interrupt 1. 1: Enable interrupt requests generated by the /INT1 pin.										
Bit1:	ET0: Enab This bit set	le Timer 0 I ts the mask	nterrupt. ing of the T	ïmer 0 inte	rrupt.						
0: Disab	le all Timer (1: Enable	0 interrupts interrupt re	quests gen	erated by t	he TF0 flag	(TCON.5).					
Bit0:	EX0: Enab This bit set 0: Disable 1: Enable	le External ts the mask external in interrupt re	Interrupt 0. ing of exter terrupt 0. quests gen	nal interrup erated by t	ot 0. he /INT0 pir	۱.					

Flash Read Lock Byte

Bits7–0: Each bit locks a corresponding block of memory. (Bit 7 is MSB.)

0: Read operations are locked (disabled) for corresponding block across the JTAG interface.

1: Read operations are unlocked (enabled) for corresponding block across the JTAG interface.

Flash Write/Erase Lock Byte

Bits7–0: Each bit locks a corresponding block of memory.

0: Write/Erase operations are locked (disabled) for corresponding block across the JTAG interface.

1: Write/Erase operations are unlocked (enabled) for corresponding block across the JTAG interface.

Flash Access Limit Register (FLACL)

The content of this register is used as the high byte of the 16-bit software read limit address. The 16-bit read limit address value is calculated as 0xNN00 where NN is replaced by content of this register on reset. Software running at or above this address is prohibited from using the MOVX and MOVC instructions to read, write, or erase, locations below this address. Any attempts to read locations below this limit will return the value 0x00.

Figure 10.1. Flash Program Memory Security Bytes

The lock bits can always be read and cleared to logic 0 regardless of the security setting applied to the block containing the security bytes. This allows additional blocks to be protected after the block containing the security bytes has been locked. However, the only means of removing a lock once set is to erase the entire program memory space by performing a JTAG erase operation. NOTE: Erasing the Flash memory block containing the security bytes will automatically initiate erasure of the entire program memory space (except for the reserved area). This erasure can only be performed via the JTAG. If a non-security byte in the 0x1C00–0x1DFF page is written to in order to perform an erasure of that page, then that page including the security bytes will be erased.

14.2. General Purpose Port I/O

Each I/O port is accessed through a corresponding special function register (SFR) that is both byte addressable and bit addressable. When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the port's input pins are returned regardless of the PRTnMX settings (i.e., even when the pin is assigned to another signal by the MUX, the Port Register can always still read its corresponding Port I/O pin), provided its pin is configured for digital input mode. The exception to this is the execution of the *read-modify-write* instructions. The *read-modify-write* instructions when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a port SFR. For these instructions, the value of the register (not the pin) is read, modified, and written back to the SFR.

R/W P0.6	R/W P0.5	R/W P0.4	R/W P0.3	R/W P0.2	R/W P0.1	R/W P0.0	Reset Value 11111111
Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit addressable)	0x80
P0.[7:0] (Write - Ou 0: Logic L 1: Logic H (Read - Re 0: P0.n pir 1: P0.n pir	utput appea ow Output. ligh Output egardless o n is logic lo n is logic hig	rs on I/O pi (high impe f PRT0MX, w. gh.	ns per PRT dance if co PRT1MX,	^r 0MX, PRT rrespondint and PRT2N	1MX, and I g PRT0CF. MX Registe	PRT2MX Regis n bit = 0) r settings).	sters)
	R/W P0.6 Bit6 P0.[7:0] (Write - Ou 0: Logic L 1: Logic H (Read - Re 0: P0.n pin 1: P0.n pin	R/WR/WP0.6P0.5Bit6Bit5P0.[7:0](Write - Output appea 0: Logic Low Output. 1: Logic High Output (Read - Regardless o 0: P0.n pin is logic low 1: P0.n pin is logic high	R/WR/WR/WP0.6P0.5P0.4Bit6Bit5Bit4P0.[7:0](Write - Output appears on I/O pi 0: Logic Low Output. 1: Logic High Output (high imper (Read - Regardless of PRTOMX, 0: P0.n pin is logic low. 1: P0.n pin is logic high.	R/WR/WR/WR/WP0.6P0.5P0.4P0.3Bit6Bit5Bit4Bit3P0.[7:0](Write - Output appears on I/O pins per PRT 0: Logic Low Output. 1: Logic High Output (high impedance if co (Read - Regardless of PRT0MX, PRT1MX, 0: P0.n pin is logic low. 1: P0.n pin is logic high.	R/WR/WR/WR/WP0.6P0.5P0.4P0.3P0.2Bit6Bit5Bit4Bit3Bit2P0.[7:0](Write - Output appears on I/O pins per PRT0MX, PRT 0: Logic Low Output.1: Logic High Output (high impedance if corresponding (Read - Regardless of PRT0MX, PRT1MX, and PRT2M 0: P0.n pin is logic low. 1: P0.n pin is logic high.	R/WR/WR/WR/WR/WP0.6P0.5P0.4P0.3P0.2P0.1Bit6Bit5Bit4Bit3Bit2Bit1P0.[7:0](Write - Output appears on I/O pins per PRT0MX, PRT1MX, and I 0: Logic Low Output.1: Logic High Output (high impedance if corresponding PRT0CF. (Read - Regardless of PRT0MX, PRT1MX, and PRT2MX Registe 0: P0.n pin is logic low. 1: P0.n pin is logic high.	R/W R/W R/W R/W R/W R/W R/W P0.6 P0.5 P0.4 P0.3 P0.2 P0.1 P0.0 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 (bit addressable) P0.[7:0] (Write - Output appears on I/O pins per PRT0MX, PRT1MX, and PRT2MX Registor Comparison Comparison 1: Logic Low Output. 1: Logic High Output (high impedance if corresponding PRT0CF.n bit = 0) (Read - Regardless of PRT0MX, PRT1MX, and PRT2MX Register settings). 0: 0: P0.n pin is logic low. 1: P0.n pin is logic high. PRT0MX, PRT1MX, and PRT2MX Register settings).

SFR Definition 14.4. P0: Port0 Register

SFR Definition 14.5. PRT0CF: Port0 Configuration Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA4
Bits7–0:	PRT0CF.[7: 0: Correspo 1: Correspo	0]: Output (onding P0.r onding P0.r	Configuratio Output mo Output mo	n Bits for P de is Open- de is Push-	0.7–P0.0 (re Drain. Pull.	espectively)		

Multiple masters may reside on the same bus. A Mode Fault flag (MODF, SPI0CN.5) is set to logic 1 when the SPI is configured as a master (MSTEN = 1) and its slave select signal NSS is pulled low. When the Mode Fault flag is set, the MSTEN and SPIEN bits of the SPI control register are cleared by hardware, thereby placing the SPI module in an "off-line" state. In a multiple-master environment, the system controller should check the state of the SLVSEL flag (SPI0CN.2) to ensure the bus is free before setting the MSTEN bit and initiating a data transfer.

15.2. Serial Clock Timing

As shown in Figure 15.4, four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.7) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.6) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. Note: the SPI should be disabled (by clearing the SPIEN bit, SPI0CN.0) while changing the clock phase and polarity.

The SPI Clock Rate Register (SPI0CKR) as shown in SFR Definition 15.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode.

15.3. SPI Special Function Registers

The SPI is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI Bus are described in the following section.

16.1. UART Operational Modes

The UART provides four operating modes (one synchronous and three asynchronous) selected by setting configuration bits in the SCON register. These four modes offer different baud rates and communication protocols. The four modes are summarized in Table 16.1 below. Detailed descriptions follow.

Mode	Synchronization	Baud Clock	Data Bits	Start/Stop Bits
0	Synchronous	SYSCLK/12	8	None
1	Asynchronous	Timer 1 or Timer 2 Overflow	8	1 Start, 1 Stop
2	Asynchronous	SYSCLK/32 or SYSCLK/64	9	1 Start, 1 Stop
3	Asynchronous	Timer 1 or Timer 2 Overflow	9	1 Start, 1 Stop

Table 16.1. UART Modes

16.1.1. Mode 0: Synchronous Mode

Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the RX pin. The TX pin provides the shift clock for both transmit and receive. The MCU must be the master since it generates the shift clock for transmission in both directions (see the interconnect diagram in Figure 16.2).

Eight data bits are transmitted/received, LSB first (see the timing diagram in Figure 16.3). Data transmission begins when an instruction writes a data byte to the SBUF register. The TI Transmit Interrupt Flag (SCON.1) is set at the end of the eighth bit time. Data reception begins when the REN Receive Enable bit (SCON.4) is set to logic 1 and the RI Receive Interrupt Flag (SCON.0) is cleared. One cycle after the eighth bit is shifted in, the RI flag is set and reception stops until software clears the RI bit. An interrupt will occur if enabled when either TI or RI are set.

The Mode 0 baud rate is system clock frequency divided by twelve.

If T1M (CKCON.4) is logic 1, then the above equation becomes:

T1_OVERFLOWRATE = (SYSCLK) / (256 - TH1).

If T1M (CKCON.4) is logic 0, then the above equation becomes:

 $T1_OVERFLOWRATE = (SYSCLK/12) / (256 - TH1).$

The Timer 2 overflow rate, when in Baud Rate Generator Mode and using an internal clock source, is determined solely by the Timer 2 16-bit reload value (RCAP2H:RCAP2L). The Timer 2 clock source is fixed at SYSCLK/2. The Timer 2 overflow rate can be calculated as follows:

T2_OVERFLOWRATE = (SYSCLK/2) / (65536 - [RCAP2H:RCAP2L]).

Timer 2 can be selected as the baud rate generator for RX and/or TX by setting RCLK (T2CON.5) and/or TCLK (T2CON.4), respectively. When either RCLK or TCLK is set to logic 1, Timer 2 interrupts are automatically disabled and the timer is forced into Baud Rate Generator Mode with SYSCLK/2 as its clock source. If a different timebase is required, setting the C/T2 bit (T2CON.1) to logic 1 will allow Timer 2 to be clocked from the external input pin T2. See the Timers section for complete timer configuration details.

Figure 16.5. UART Modes 1, 2, and 3 Interconnect Diagram

SFR Definition 17.2. TMOD: Timer Mo

R/W	R/\	N	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
GATE	1 C/	Г1 Т	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000				
Bit7	Bit	6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
									0x89				
Bit7:	GATE	1: Timer	1 Gate (Control.									
	0: Tim	0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level.											
	1: Tim	1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one.											
Bit6:	C/T1:	Counter/	Timer 1	Select.									
	0: Im	ner Funct	ion: lim	er 1 increm	iented by cl	ock defined	by 11M bit	(CKCON.4	4).				
	1: CO P0 5/T	unter ⊢ur ⁻1	nction: I	imer 1 incre	emented by	high-to-low	transitions	on externa	al input pin				
Bits5–4	: T1M1-	-T1M0: T	imer 1 I	Mode Selec	:t.								
	These	bits sele	ct the T	imer 1 oper	ation mode								
	T1M1	T1M0			Mode								
	0	0	Mode (): 13-bit cou	unter/timer								
	0	1	Mode '	1: 16-bit cou	unter/timer								
	1	0	Mode 2	2: 8-bit cour	nter/timer w	ad							
	1	1	Mode 3	3: Timer 1 I	nactive/stop	ped							
D:40.	OATE	0. Tim	0.0-1-	Sec. 4									
BI(3)	GATE 0. Tim	or 0 opak	U Gate C	$_{\rm D}$ TPO = 1	irrespective		nic lovel						
	1. Tim	er 0 enat	oled only	/ when TR(= 1 AND /	$V_{\rm INT0} = 0000$	level one						
		or o ona			/ / / / / / / /	intro – logio							
Bit2:	C/T0:	Counter/	Timer S	elect.									
	0: Tin	ner Funct	ion: Tim	er 0 increm	ented by cl	ock defined	by T0M bit	(CKCON.:	3).				
	1: Co	unter Fur	nction: T	imer 0 incre	emented by	high-to-low	transitions	on externa	al input pin				
	P0.4/1	0. TOMO: T											
Bits1-C	Those	-101VIU: 1 bite colo	Imer U I	viode Selec	I. Intion mode								
	mese			iner o oper	alion mode	•							
	T0M1	T0M1 T0M0 Mode											
	0	0	Mode (D: 13-bit cou	unter/timer								
	0	1	Mode '	1: 16-bit cou	unter/timer								
	1	0	Mode 2	2: 8-bit cour	nter/timer w	ith auto-relo	ad						
	1	1	Mode 3	3: Two 8-bit	counter/tim	ners							

SFR Defi	nition 17.3.	CKCON:	Clock	Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
-	-	T2M	T1M	TOM	-	-	-	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x8E			
Bits7–6:	UNUSED. Read = 00b, Write = don't care.										
Bit5:	T2M: Timer 2 Clock Select. This bit controls the division of the system clock supplied to Timer 2. This bit is ignored when the timer is in baud rate generator mode or counter mode (i.e. $C/T2 = 1$). 0: Timer 2 uses the system clock divided by 12. 1: Timer 2 uses the system clock.										
Bit4:	 T1M: Timer 1 Clock Select. This bit controls the division of the system clock supplied to Timer 1. 0: Timer 1 uses the system clock divided by 12. 1: Timer 1 uses the system clock. 										
Bit3:	 T0M: Timer 0 Clock Select. This bit controls the division of the system clock supplied to Counter/Timer 0. 0: Counter/Timer uses the system clock divided by 12. 1: Counter/Timer uses the system clock. 										
Bits2–0:	UNUSED.	Read = 000	0b, Write = o	don't care.							

17.2. Timer 2

Timer 2 is a 16-bit counter/timer formed by the two 8-bit SFR's: TL2 (low byte) and TH2 (high byte). As with Timers 0 and 1, Timer 2 can use either the system clock or transitions on an external input pin as its clock source. The Counter/Timer Select bit C/T2 bit (T2CON.1) selects the clock source for Timer 2. Clearing C/T2 selects the system clock as the input for the timer (divided by either one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to 1, high-to-low transitions at the T2 input pin increment the counter/timer register. (Refer to Section 14 for information on selecting and configuring external I/O pins.) Timer 2 can also be used to start an ADC Data Conversion (see section 5).

Timer 2 offers capabilities not found in Timer 0 and Timer 1. It operates in one of three modes: 16-bit Counter/Timer with Capture, 16-bit Counter/Timer with Auto-Reload or Baud Rate Generator Mode. Timer 2's operating mode is selected by setting configuration bits in the Timer 2 Control (T2CON) register. Below is a summary of the Timer 2 operating modes and the T2CON bits used to configure the counter/timer. Detailed descriptions of each mode follow.

RCLK	TCLK	CP/RL2	TR2	Mode
0	0	1	1	16-bit Counter/Timer with Capture
0	0	0	1	16-bit Counter/Timer with Auto-Reload
0	1	Х	1	Baud Rate Generator for TX
1	0	Х	1	Baud Rate Generator for RX
1	1	Х	1	Baud Rate Generator for TX and RX
Х	Х	Х	0	Off

17.2.1. Mode 0: 16-bit Counter/Timer with Capture

In this mode, Timer 2 operates as a 16-bit counter/timer with capture facility. A high-to-low transition on the T2EX input pin causes the 16-bit value in Timer 2 (TH2, TL2) to be loaded into the capture registers (RCAP2H, RCAP2L).

Timer 2 can use either SYSCLK, SYSCLK divided by 12, or high-to-low transitions on the external T2 input pin as its clock source when operating in Counter/Timer with Capture mode. Clearing the C/T2 bit (T2CON.1) selects the system clock as the input for the timer (divided by one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to logic 1, a high-to-low transition at the T2 input pin increments the counter/timer register. As the 16-bit counter/timer register increments and overflows from 0xFFFF to 0x0000, the TF2 timer overflow flag (T2CON.7) is set and an interrupt will occur if the interrupt is enabled.

Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RL2 (T2CON.0) and the Timer 2 Run Control bit TR2 (T2CON.2) to logic 1. The Timer 2 External Enable EXEN2 (T2CON.3) must also be set to logic 1 to enable a capture. If EXEN2 is cleared, transitions on T2EX will be ignored.

Figure 17.4. T2 Mode 0 Block Diagram

SFR Definition 17.8. T2CON: Timer 2 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
							(bit addressable	e) 0xC8				
Bit7:	TF2: Time	r 2 Overflov	v Flag.									
	Set by har	dware whei	n Timer 2 o	verflows fro	om 0xFFFF	to 0x0000.	When the T	imer 2 inter-				
	rupt is enabled, setting this bit causes the CPU to vector to the Timer 2 interrupt service rou-											
	tine. This	bit is not au	itomatically	cleared by	hardware a	and must b	e cleared by	software.				
D:40.		of be set wh	en RCLK a	ind/or ICL	care logic	l.						
BITO:	EXF2: IIM	er 2 Extern	al Flag.	onturo or ro	lood in only	and by a bi	ab to low trop	wition on the				
	T2EX input	t nin and E	YEN2 is loc	ic 1 Whor	the Timer	2 interrunt	is enabled s	etting this hit				
	causes the	CPU to ve	ctor to the	Timer 2 Inte	errupt servi	ce routine	This bit is no	ot automati-				
	cally cleare	ed by hardv	vare and m	ust be clea	red by softv	vare.						
Bit5:	RCLK: Re	ceive Clock	Flag.		,							
	Selects wh	nich timer is	used for th	ne UART's r	eceive cloc	k in modes	s 1 or 3.					
	0: Timer 1	overflows u	used for rec	eive clock.								
D '/ 4	1: Timer 2	overflows u	used for rec	eive clock.								
Bit4:	ICLK: Ira	nsmit Clock	(Flag.		ronomit olo	ak in mada	o 1 or 2					
	0. Timer 1		used for tra	nemit clock	ransmit cio	ck in mode	S I 0I 3.					
	1: Timer 2	overflows	ised for tra	nsmit clock	•							
Bit3:	EXEN2: Ti	mer 2 Exter	rnal Enable									
	Enables hi	gh-to-low tr	ansitions o	n T2EX to t	rigger capt	ures or relo	ads when Ti	mer 2 is not				
	operating i	n Baud Rat	e Generato	or mode.	00 1							
	0: High-to-	low transition	ons on T2E	X ignored.								
	1: High-to-	low transition	ons on T2E	X cause a	capture or r	eload.						
Bit2:	TR2: Time	r 2 Run Co	ntrol.									
	I his bit en	ables/disab	les Timer 2									
	1. Timer 2	enabled										
Bit1:	C/T2: Cou	nter/Timer S	Select.									
2	0: Timer F	unction: Tir	mer 2 incre	mented by	clock define	ed by T2M	(CKCON.5).					
	1: Counte	r Function:	Timer 2 inc	remented t	by high-to-lo	ow transitio	ns on externa	al input pin				
	P0.6/T2.											
Bit0:	CP/RL2: C	apture/Relo	oad Select.									
	This bit se	lects wheth	er Timer 2	functions in	capture or	auto-reloa	d mode. EXE	EN2 must be				
	logic 1 for	high-to-low	transitions	on 12EX to	be recogn	ized and u	sed to trigger	captures or				
	mode	I RULK OF	I ULK IS SEI	, this dit is i	ignored and	a nimer 2 W	in iunction in	auto-reload				
	0. Auto-rel	oad on Tim	er 2 overflo	w or high-t	o-low transi	ition at T2F	X (FXFN2 –	1)				
	1: Capture	on high-to-	low transiti	on at T2EX	(EXEN2 =	1).		• ,•				
		3. 10			,	,						

JTAG Register Definition 18.4. FLASHDAT: JTAG Flash Data

DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	FAIL	BUSY	Reset Value
Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
This register is used to read or write data to the Flash memory across the JTAG interface.										
Bits9-2:	DATA	7–0: Flash	Data Byt	e.						
Bit1:	FAIL:	Flash Fail I	Bit.							
	0:	Previous	Flash m	emory op	peration v	was succ	essful.			
1: Previous Flash memory operation failed. Usually indicates the associated memory location was locked										
Bit0:	BUSY	: Flash Bus	sy Bit.							
	0:	Flash int	erface lo	gic is not	busy.					
	1:	Flash int not initia	erface lo te anothe	gic is pro r operati	cessing a on	a request	. Reads or	r writes v	vhile BU	SY = 1 will

JTAG Register Definition 18.5. FLASHSCL: JTAG Flash Scale

								Reset Value		
FOSE	FRAE	-	-	FLSCL3	FLSCL2	FLSCL1	FLSCL0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
This regist timing for	This register controls the Flash read timing circuit and the prescaler required to generate the correct timing for Flash operations.									
Bit7:	 Bit7: FOSE: Flash One-Shot Enable Bit. 0: Flash read strobe is a full clock-cycle wide. 1: Flash read strobe is 50nsec. 									
Bit6:	 5: FRAE: Flash Read Always Bit. 0: The Flash output enable and sense amplifier enable are on only when needed to read the Flash memory. 1: The Flash output enable and sense amplifier enable are always on. This can be used to limit the variations in digital supply current due to switching the sense amplifiers, thereby reducing digitally induced noise. 									
Bits5-4:	UNUSED.	Read = 00b	o, Write = do	on't care.						
Bits3–0:	FLSCL3–0: Flash Prescaler Control Bits. The FLSCL3–0 bits control the prescaler used to generate timing signals for Flash opera- tions. Its value should be written before any Flash write or erase operations are initiated. The value written should be the smallest integer for which:									
	FLSCL[3:0] > log2(fSYSCLK / 50kHz)									
	Where fSYSCLK is the system clock frequency. All Flash read/write/erase operations are disallowed when FLSCL[3:0] = 1111b.									

