
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 32x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f220-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

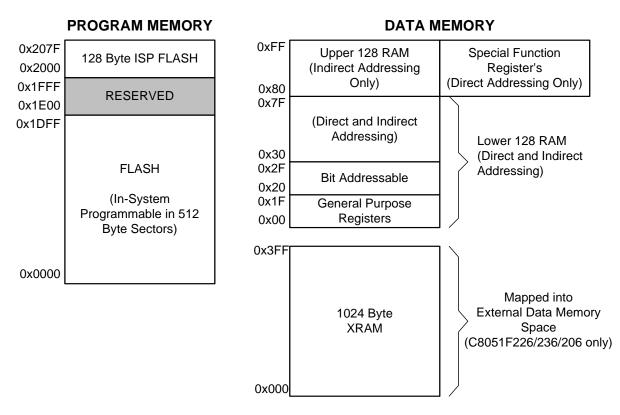


Figure 1.7. On-Board Memory Map

1.3. JTAG

The C8051F2xx have on-chip JTAG and debug logic that provide non-intrusive, full speed, in-circuit debug using the production part installed in the end application using the four-pin JTAG I/F. The C8051F2xxDK is a development kit with all the hardware and software necessary to develop application code and perform in-circuit debug with the C8051F2xx. The kit includes software with a developer's studio and debugger, an integrated 8051 assembler, and an RS-232 to JTAG interface module referred to as the EC. It also has a target application board with a C8051F2xx installed and large prototyping area, plus the RS-232 and JTAG cables, and wall-mount power supply. The Development Kit requires a Windows OS (Windows 95 or later) computer with one available RS-232 serial port. As shown in Figure 1.8, the PC is connected via RS-232 to the EC. A six-inch ribbon cable connects the EC to the user's application board. It requires roughly 20 mA at 2.7–3.6 V. For applications where there is not sufficient power available from the target board, the provided power supply can be connected directly to the EC.

This is a vastly superior configuration for developing and debugging embedded applications compared to standard MCU Emulators, which use on-board "ICE Chips" and target cables and require the MCU in the application board to be socketed. Silicon Labs' debug environment both increases ease of use, and preserves the performance of the precision analog peripherals.

Global DC Electrical Characteristics 3.

Table 3.1. Global DC Electrical Characteristics

-40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
Analog Supply Voltage ¹		2.7	3.0	3.6	V
V _{DD} supply current with ADC and comparators active, and CPU active	Clock = 25 MHz Clock = 1 MHz Clock = 32 kHz	_	13 1.5 300	_	mA mA μA
V_{DD} supply current with ADC and comparators active, and CPU inactive (Idle Mode)	Clock = 25 MHz Clock = 1 MHz Clock = 32 kHz	_	9 1.8 275	_	mA mA μA
V _{DD} supply current with ADC and comparators inactive, and CPU active	Clock = 25 MHz Clock = 1 MHz Clock = 32 kHz	_	12.5 1.0 25	_	mA mA μA
Digital Supply Current with CPU inactive (Idle Mode)	Clock = 25 MHz Clock = 1 MHz Clock = 32 kHz	_	8.5 1.4 25	_	mA mA μA
Digital Supply Current (Stop Mode), V _{DD} monitor enabled	Oscillator not running	_	10	_	μA
Digital Supply Current (Stop Mode), V _{DD} monitor disabled	Oscillator not running	-	0.1	_	μA
Digital Supply RAM Data Retention Voltage		-	1.5	_	V
Specified Operating Temperature Range		-40	_	+85	°C
SYSCLK (system clock frequency) ²		0	_	25	MHz
Tsysl (SYSCLK low time)		18	—	_	ns
Tsysh (SYSCLK high time)		18	—	_	ns

Notes:

Analog Supply AV+ must be greater than 1 V for V_{DD} monitor to operate.
 SYSCLK must be at least 32 kHz to enable debugging.

5.2. ADC Modes of Operation

The ADC has a maximum conversion speed of 100ksps. The ADC conversion clock is derived from the system clock. The ADC conversion clock is derived from a divided version of SYSCLK. Divide ratios of 1,2,4,8, or 16 are supported by setting the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate different system clock speeds.

A conversion can be initiated in one of two ways, depending on the programmed states of the ADC Start of Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:


- 1. Writing a 1 to the ADBUSY bit of ADC0CN;
- 2. A Timer 2 overflow (i.e., timed continuous conversions).

Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed "ondemand". During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of ADBUSY triggers an interrupt (when enabled) and sets the ADCINT interrupt flag in the ADC0CN register. Note: When conversions are performed "on-demand", the ADCINT flag, not ADBUSY, should be polled to determine when the conversion has completed. Converted data is available in the ADC data word register, ADC0H.

The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of two different low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):

- 1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;
- 2. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.

Tracking can be disabled (shutdown) when the entire chip is in low power standby or sleep modes.

A. ADC Timing for External Trigger Source

Timer2, Timer3 Overflow; Write 1 to ADBUSY (ADSTM[1:0]=00, 01, 11) SAR Clocks			6 17 18 19			
ADCTM=1	Low Power or Convert Track	Convert	Low Power Mode			
SAR Clocks	Convert Hotek Convert Low Folder Midde 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Track or Convert Track					

Figure 5.2. 12-Bit ADC Track and Conversion Example Timing

C8051F2xx

Input Voltage (Analog Input - GND)	ADC Data Word		Input Voltage (Analog Input - GND)	ADC Data Word		
REF x (255/256)	0xFF]	REF x (255/256)	0xFF		
		ADWINT not affected			ADWINT=1	
	0x21			0x21		
REF x (32/256)	0x20	ADC0LTH	REF x (32/256)	0x20	ADC0GTH	
	0x1F			0x1F	ADWINT	
	0x11	ADWINT=1		0x11	not affected	
REF x (16/256)	0x10	ADC0GTH	REF x (16/256)	0x10	ADCOLTH	
	0x0F			0x0F	\square	
		ADWINT not affected			ADWINT=1	
0	0x00		0	0x00])	
ADC0LTH = 0x20 An ADC End of), ADC0G Conversion	will cause an ADC	Given: AMX0SL = 0x00, AM ADC0LTH = 0x10,	ADC0GTH	= 0x20.	
		(ADWINT=1) if the < 0x20 and > 0x10.	An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x10 or > 0x20.			

Figure 5.3. 8-Bit ADC Window Interrupt Examples

Table 5.1. 8-Bit ADC Electrical Characteristics

VDD = 3.0 V, VREF = 2.40 V, PGA Gain = 1, -40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		•			•
Resolution			8	—	bits
Integral Nonlinearity			—	±1/2	LSB
Differential Nonlinearity	Guaranteed Monotonic	_	—	±1/2	LSB
Offset Error		±2	—	±1/2	LSB
Gain Error		±2	—	±1/2	LSB
Offset Temperature Coefficient			±0.25	_	ppm/°C
Dynamic Performance (10 kHz sine	wave input, 0 to –1 dB of full	scale, 10	0 ksps)		
Signal-to-Noise Plus Distortion		49.5	—	_	dB
Total Harmonic Distortion	Up to the 5 th harmonic	-60	-65	_	dB
Spurious-Free Dynamic Range			-65	_	dB
Conversion Rate		•			•
Conversion Time in SAR Clocks		16	—	—	clocks
SAR Clock Frequency			—	2.5	MHz
Track/Hold Acquisition Time		1.5	—	_	μs
Throughput Rate		_	—	100	ksps
Analog Inputs	·				
Input Voltage Range		0	—	V_{DD}	V
Input Capacitance			10	_	pF
Power Specifications					
Power Supply Current	Operating Mode, 100 ksps		0.45	1.0	mA
Power Supply Current in Shutdown			0.1	1	μA
Power Supply Rejection			±0.3		mV/V

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADCSC2	ADCSC1	ADCSC0	-	-	AMPGN2	AMPGN1	AMPGN0	01100000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBC
Bits7–5: ADCSC2–0: ADC SAR Conversion Clock Period Bits 000: SAR Conversion Clock = 1 System Clock 001: SAR Conversion Clock = 2 System Clocks 010: SAR Conversion Clock = 4 System Clocks 011: SAR Conversion Clock = 8 System Clocks 1xx: SAR Conversion Clock = 16 Systems Clocks NOTE: SAR conversion clock should be less than or equal to 2MHz.								
	UNUSED.		,					
DIG2 0.	AMPGN2–0: ADC Internal Amplifier Gain 000: Gain = 1							
	001: Gain = 2							
	010: Gain :	-						
	011: Gain = 10x: Gain =							
	1x: Gain =	-						

SFR Definition 6.2. ADC0CF: ADC Configuration ('F220/1/6 and 'F206)

8. Comparators

The MCU has two on-board voltage comparators as shown in Figure 8.1. The inputs of each Comparator are available at the package pins. The output of each comparator is optionally available at port1 by configuring (see Section 14). When assigned to package pins, each comparator output can be programmed to operate in open drain or push-pull modes (see section 14.2).

The hysteresis of each comparator is software-programmable via its respective Comparator Control Register (CPT0CN, CPT1CN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive-going and negative-going symmetry of this hysteresis around the threshold voltage. The output of the comparator can be polled in software, or can be used as an interrupt source. Each comparator can be individually enabled or disabled (shutdown). When disabled, the comparator output (if assigned to a Port I/O pin via the Port1 MUX) defaults to the logic low state and its interrupt capability is suspended. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset.

The Comparator 0 hysteresis is programmed using bits 3–0 in the Comparator 0 Control Register CPT0CN (shown in SFR Definition 8.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 8.2, settings of 10, 4 or 2 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section 9.4). The CP0FIF flag is set upon a Comparator 0 falling-edge interrupt, and the CP0RIF flag is set upon the Comparator 0 rising-edge interrupt. Once set, these bits remain set until cleared by the user software. The Output State of Comparator 0 can be obtained at any time by reading the CP0OUT bit. Comparator 0 is enabled by setting the CP0EN bit, and is disabled by clearing this bit. Note there is a 20 mS power on time between setting CP0EN and the output stabilizing. Comparator 0 can also be programmed as a reset source. For details, see Section 11. The operation of Comparator 1 is identical to that of Comparator 0, except the Comparator 1 is controlled by the CPT1CN Register (SFR Definition 8.2). Also, Comparator 1 can not be programmed as a reset source. The complete electrical specifications for the Comparators are given in Table 8.1.

Table 8.1. Comparator Electrical Characteristics V_{DD} = 3.0 V, -40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Response Time1*	(CP+) - (CP-) = 100 mV	_	4	_	μs
Response Time2*	(CP+) - (CP-) = 10 mV	_	12	—	μs
Common Mode Rejection Ratio		_	1.5	4	mV/V
Positive Hysteresis1	CPnHYP1-0 = 00		0	1	mV
Positive Hysteresis2	CPnHYP1-0 = 01	2	4.5	7	mV
Positive Hysteresis3	CPnHYP1-0 = 10	4	9	15	mV
Positive Hysteresis4	CPnHYP1-0 = 11	10	17	25	mV
Negative Hysteresis1	CPnHYN1-0 = 00	—	0	1	mV
Negative Hysteresis2	CPnHYN1-0 = 01	2	4.5	7	mV
Negative Hysteresis3	CPnHYN1-0 = 10	4	9	15	mV
Negative Hysteresis4	CPnHYN1-0 = 11	10	17	25	mV
Inverting or Non-inverting Input Voltage Range		-0.25		(V _{DD}) + 0.25	V
Input Capacitance		_	7	—	pF
Input Bias Current		-5	0.001	+5	nA
Input Offset Voltage		-10	—	+10	mV
POWER SUPPLY			1		
Power-up Time	CPnEN from 0 to 1	_	20	—	μs
Power Supply Rejection		—	0.1	1	mV/V
Supply Current	Operating Mode (each comparator) at DC	_	1.5	4	μΑ
*Note: CPnHYP1-0 = CPnHYN	V1-0 = 00.	I	<u>ı</u>		

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through register R0–R1

rel - 8-bit, signed (two's compliment) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00– 0x7F) or an SFR (0x80–0xFF).

#data - 8-bit constant

#data 16 - 16-bit constant

bit - Direct-addressed bit in Data RAM or SFR.

addr 11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr 16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

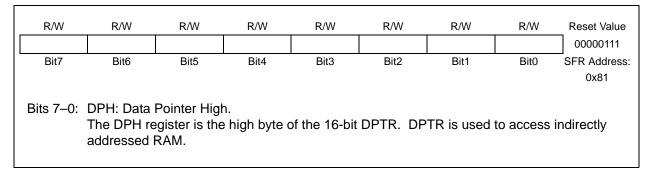
9.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

The MCU also has built-in hardware for a stack record. The stack record is a 32-bit shift register, where each Push or increment SP pushes one record bit onto the register, and each Call pushes two record bits onto the register. (A Pop or decrement SP pops one record bit, and a Return pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow on the 32-bit shift register, and can notify the emulator software even with the MCU running full-speed debug.

9.3.1. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should be set to logic 0. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.


SFR Definition 9.1. SP: Stack Pointer

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x81
	SP: Stack F The stack p before ever	ointer holds						incremented

SFR Definition 9.2. DPL: Data Pointer Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x81
Bits 7–0:	0x81 Bits 7–0: DPL: Data Pointer Low. The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indirectly addressed RAM.							

SFR Definition 9.3. DPH: Data Pointer High Byte

R/W	R/\	N	R/W	R/W	R/W	R/W	R/W	R	Reset Value
CY	A	C	F0	RS1	RS0	OV	F1	PARITY	00000000
Bit7	Bit	6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Address: 0xD0
Bit7:	This b				etic operatio all other aritl			ldition) or a	borrow
Bit6:	AC: Auxiliary Carry Flag. This bit is set when the last arithmetic operation results in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic operations.								
Bit5:		er Flag 0 a bit-add		le, general-	purpose flag	for use ur	nder softwar	e control.	
Bits4–3				nk Select. register ba	ank is used o	luring regis	ster accesse	es.	
	RS1	RS0	Regis	ster Bank	Address				
	0	0		0	0x00–0x0	7			
	0	1		1	0x08–0x0	F			
	1	0		2	0x10–0x1	7			
	1	1		3	0x18–0x1	F			
Bit2:	 Note: Any instruction which changes the RS1–RS0 bits must not be immediately followed by the "MOV Rn, A" instruction. Bit2: OV: Overflow Flag. This bit is set to 1 under the following circumstances: •An ADD, ADDC, or SUBB instruction causes a sign-change overflow. 								
	 A MUL instruction results in an overflow (result is greater than 255). A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases. 								
Bit1:		F1: User Flag 1. This is a bit-addressable, general purpose flag for use under software control.							
Bit0:	This b	PARITY: Parity Flag. This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.							

C8051F2xx

9.4. Interrupt Handler

The CIP-51 includes an extended interrupt system supporting up to 22 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in an SFR (IE–EIE2). However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

9.4.1. MCU Interrupt Sources and Vectors

The MCU allocates 9 interrupt sources to on-chip peripherals. Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. The MCU interrupt sources, associated vector addresses, priority order and control bits are summarized in Table 9.4. Refer to the datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

9.4.2. External Interrupts

The two external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or active-low edge-sensitive inputs depending on the setting of IT0 (TCON.0) and IT1 (TCON.2). IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts, respectively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag follows the state of the external interrupt's input pin. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

9.4.3. Software Controlled Interrupts

The C8051F2xx family of devices features four Software Controlled Interrupts controlled by flags located in the Software Controlled Interrupt Flag Register (SWCINT). See SFR Definition 9.7. When a logic '1' is written to a Software-Controlled Interrupt Flag, the CIP-51 will jump to an associated interrupt service vector (see Table 9.4, "Interrupt Summary," on page 75). These interrupt flags must be cleared by software.

12.4. External Reset

The external RST pin provides a means for external circuitry to force the CIP-51 into a reset state. Asserting an active-low signal on the RST pin will cause the CIP-51 to enter the reset state. Although there is a weak pull-up, it may be desirable to provide an external pull-up and/or decoupling of the RST pin to avoid erroneous noise-induced resets. The CIP-51 will remain in reset until at least 12 clock cycles after the active-low RST signal is removed. The PINRSF flag (RSTSRC.0) is set on exit from an external reset. The RST pin is 5 V tolerant.

12.5. Missing Clock Detector Reset

The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If the system clock goes away for more than 100msec, the one-shot will time out and generate a reset. After a Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MSD as the reset source; otherwise, this bit reads 0. The state of the RST pin is unaffected by this reset. Setting the MSCLKE bit in the OSCICN register (see SFR Definition 13.1) enables the Missing Clock Detector.

12.6. Comparator 0 Reset

Comparator 0 can be configured as a reset input by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator 0 should be enabled using CPT0CN.7 (see SFR Definition 8.1) prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. When configured as a reset, if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0–), the MCU is put into the reset state. After a Comparator 0 Reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator 0 as the reset source; otherwise, this bit reads 0. The state of the RST pin is unaffected by this reset.

12.7. Watchdog Timer Reset

The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. The WDT will force the MCU into the reset state when the watchdog timer overflows. To prevent the reset, the WDT must be restarted by application software before the overflow occurs. If the system experiences a software/hardware malfunction preventing the software from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system from running out of control.

The WDT is automatically enabled and started with the default maximum time interval on exit from all resets. If desired, the WDT can be disabled by system software or locked 'on' to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

12.7.1. Watchdog Usage

The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the period between specific writes to its control register. If this period exceeds the programmed limit, a WDT reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN) shown in SFR Definition 12.1.

Enable/Reset WDT

The watchdog timer is both enabled and reset by writing 0xA5 to the WDTCN register. The user's application software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog timer overflow. The WDT is enabled and reset as a result of any system reset.

SFR Definition 13.2	. OSCXCN: External	Oscillator Control
---------------------	--------------------	---------------------------

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value					
XTLVLD					XFCN2	XFCN1	XFCN0	00110000					
Bit7	Bit6		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0xB1					
Bit7:	XTLVLD: Crystal Oscillator Valid Flag (Valid only when XOSCMD = 1xx.) 0: Crystal Oscillator is unused or not yet stable 1: Crystal Oscillator is running and stable												
Bits6–4:	 Bits6–4: XOSCMD2–0: External Oscillator Mode Bits 00x: Off. XTAL1 pin is grounded internally. 010: System Clock from External CMOS Clock on XTAL1 pin. 011: System Clock from External CMOS Clock on XTAL1 pin divided by 2. 10x: RC/C Oscillator Mode with divide by 2 stage. 110: Crystal Oscillator Mode 												
Bit3:	RESER	ystal Oscillator N VED. Read = u	ndefined, W	rite = don't	care								
Bits2–0:		-0: External Osc1: see table belo	•	iency Cont	rol Bits								
	XFCN	Crystal (XOSC	MD = 11x)	RC (XO	SCMD = 10	x) C (X	OSCMD =	10x)					
	000	f ≤ 12.5	kHz	f≤	25 kHz	K	K Factor = 0.44						
	001	12.5 kHz < f ≤	30.3 kHz	25 kHz	< f ≤ 50 kH	z K	K Factor = 1.4						
	010	30.35 kHz < f	≤ 93.8 kHz	50 kHz	< f ≤ 100 kł	lz K	Factor = 4	.4					
	011	93.8 kHz < f ≤	26 7kHz	100 kHz	< f ≤ 200 k	Hz K	Factor = 1	13					
	100	267 kHz < f ≤	722 kHz	200 kHz	< f ≤ 400 k	Hz K	Factor = 3	38					
	101	722 kHz < f ≤	2.23 MHz	400 kHz	< f ≤ 800 k	Hz K	Factor = 1	00					
	110	2.23 MHz < f ≤	6.74 MHz	800 kHz	< f ≤ 1.6 M	Hz K	Factor = 4	20					
	111	f > 6.74	MHz	1.6 MHz	< f ≤ 3.2 M	Hz K I	Factor = 14	400					
	Choose	(Circuit from Fig XFCN value to t from Figure 13	match the c	rystal frequ	iency.	1x)							
	•	oscillation frequ	•		- 107)								
		(10 ³) / (R x C), \											
	f = frequ	ency of oscillati	on in MHz										
		acitor value in p											
	K = Pul	-up resistor valu	e in kΩ										
C MODE	C MODE (Circuit from Figure 13.1, Option 3; XOSCMD = 10x) Choose K Factor (KF) for the oscillation frequency desired: f = KF / (C x AV+), where f = frequency of oscillation in MHz C = capacitor value on XTAL1, XTAL2 pins in pF V _{DD} = Power supply voltage on MCU in volts												
	v _{DD} = r		age on MC										

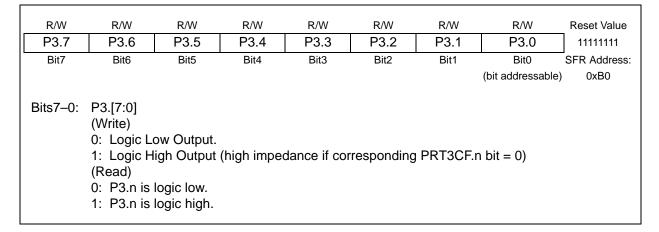
14.2. General Purpose Port I/O

Each I/O port is accessed through a corresponding special function register (SFR) that is both byte addressable and bit addressable. When writing to a port, the value written to the SFR is latched to maintain the output data value at each pin. When reading, the logic levels of the port's input pins are returned regardless of the PRTnMX settings (i.e., even when the pin is assigned to another signal by the MUX, the Port Register can always still read its corresponding Port I/O pin), provided its pin is configured for digital input mode. The exception to this is the execution of the *read-modify-write* instructions. The *read-modify-write* instructions when operating on a port SFR are the following: ANL, ORL, XRL, JBC, CPL, INC, DEC, DJNZ and MOV, CLR or SETB, when the destination is an individual bit in a port SFR. For these instructions, the value of the register (not the pin) is read, modified, and written back to the SFR.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0	11111111			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
		(bit addressable) 0x									
Bits7–0:	(Write - Ou 0: Logic Lo 1: Logic H	ow Output. igh Output gardless o n is logic lo	(high impe f PRT0MX, w.	ins per PRT dance if co PRT1MX,	rresponding	g PRT0CF.		sters)			

SFR Definition 14.4. P0: Port0 Register

SFR Definition 14.5. PRT0CF: Port0 Configuration Register


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
								0xA4
Bits7–0:	PRT0CF.[7:	0]: Output (Configuratio	n Bits for P).7–P0.0 (re	espectively)		
	0: Correspo		•		· ·	, , ,		
	•			de is Push-	.			

SFR Definition 14.12. P2MODE: Port2 Digital/Analog Input Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
								11111111		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xF3		
0xF3 Bits7–0: Port2 Digital/Analog Output Mode 0: Corresponding Port2 pin Digital Input disabled. (For analog use, i.e., ADC). 1: Corresponding Port2 pin Digital Input is enabled.										

SFR Definition 14.13. P3: Port3 Register*

SFR Definition 14.14. PRT3CF: Port3 Configuration Register*

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA7
Bits7–0:	PRT3CF.[7: 0: Correspo 1: Correspo	onding P3.r	n Output Mo	ode is Open	Drain.	espectively)		

SFR Definition 16.2. SCON: Serial Port Control

R/W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
SMC) SN	И1	SM2 RE		TB8	RB8	TI	RI	00000000		
Bit7	Bi	t6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable	SFR Address:) 0x98		
Bits7–				t Operatior Serial Port	n Mode. Operation I	Mode.					
	SM0	SM1			Mode						
	0 0 Mode 0: Synchronous Mode										
	0	1	Mode	1: 8-Bit U/	ART, Variab	le Baud Ra	te				
	1	0	Mode	2: 9-Bit UA	ART, Fixed	Baud Rate					
	1	1	Mode	3: 9-Bit UA	ART, Variab	le Baud Ra	te				
Bit5:	The f Mode Mode	unction of 0: No ef 1: Cheo 0: Log 1: RI 2 and 3 0: Log	of this bit ffect cks for va gic level will only : Multipr gic level	is depend alid stop bit of stop bit be activate ocessor Co of ninth bit	t. is ignored. ed if stop bi ommunicati is ignored.	Serial Port (t is logic lev ons Enable	el 1.	/lode. hth bit is logic	1.		
Bit4:	This I 0: U/	Receive bit enable ART rece ART rece	es/disab eption dis	les the UA sabled.	RT receive	r.					
Bit3:	TB8: The length of the length of the second seco	Ninth Tra ogic leve sed in Me	ansmissi I of this I odes 0 a	on Bit. bit will be a and 1. Set	-	the ninth tra by software		bit in Modes : d.	2 and 3. It is		
Bit2:	The b SM2 Mode	is logic 0 e 0.	gned the), RB8 is	e logic leve assigned				s 2 and 3. In bit. RB8 is r			
Bit1:	1: TI: Transmit Interrupt Flag. Set by hardware when a byte of data has been transmitted by the UART (after the 8 th bit Mode 0, or at the beginning of the stop bit in other modes). When the UART interrupt is enabled, setting this bit causes the CPU to vector to the UART interrupt service routine. This bit must be cleared manually by software										
Bit0:	Set b Mode interr	e 0, or aft upt is en	are whe ter the st abled, se	n a byte of op bit in ot etting this b	her modes bit causes t	– see SM2	bit for exce vector to the	ART (after the eption). Wher e UART intern	n the UART		

								Reset Value			
WRMD3	WRMD2	2 WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	0000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
This regis	ter determ DAT Regi	iines how the ster.	Flash interf	ace logic wi	II respond to	o reads and	I writes to th	e FLASH-			
Bits7–4:	 -4: WRMD3–0: Write Mode Select Bits. The Write Mode Select Bits control how the interface logic responds to writes to the FLASI DAT Register per the following values: 0000: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise ignored. 										
		FLASHDAT									
		y the FLASH	•					•			
	 0010: A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page containing the address in FLASHADR. FLASHDAT must be 0xA5 for the erase to occur. FLASHADR is not affected. If FLASHADR = 0x1DFE – 0x1DFF, the entire user space will be erased (i.e. entire Flash memory except for Reserved area 0x1E00 – 0x1FFF). (All other values for WRMD3–0 are reserved.) 										
Dite 2 Or		0. Dood Mod	Coloct Dite								
Bits3–0:	The Read	0: Read Mode I Mode Select ster per the fo	t Bits contro	I how the in	erface logic	responds t	to reads to t	he FLASH-			
	0000: A		•	ides the data in the FLASHDAT register, but is otherwise							
		FLASHDAT no operation						OR register			
	0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only operation is active and any data from a previous read has already been read f FLASHDAT. This mode allows single bytes to be read (or the last byte of a blow ithout initiating an extra read.										
	(All other	values for RE	MD3–0 are	reserved.)							

JTAG Register Definition 18.2. FLASHCON: JTAG Flash Control

JTAG Register Definition 18.3. FLASHADR: JTAG Flash Address

												Reset Value
												0x0000
Bit15											Bit0	-
	•									•		egister failed.
Bits1	5–0: I	Flash	Opera	ation 1	16-bit	Addre	SS.					

ſ

DOCUMENT CHANGE LIST

Revision 1.5 to Revision 1.6

• Table 3.1 on page 24 corrected to show 32 kHz instead of 32 MHz.

