
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 32x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f220-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	11
	1.1. CIP-51TM Microcontroller Core	15
	1.1.1. Fully 8051 Compatible	15
	1.1.2. Improved Throughput	15
	1.1.3. Additional Features	
	1.2. On-Board Memory	17
	1.3. JTAG	18
	1.4. Digital/Analog Configurable I/O	19
	1.5. Serial Ports	20
	1.6. Analog to Digital Converter	20
	1.7. Comparators	
2.	Absolute Maximum Ratings	23
3.	Global DC Electrical Characteristics	24
4.	Pinout and Package Definitions	25
5.	ADC (8-Bit, C8051F220/1/6 Only)	32
	5.1. Analog Multiplexer and PGA	32
	5.2. ADC Modes of Operation	
	5.3. ADC Programmable Window Detector	
6.	ADC (12-Bit, C8051F206 Only)	
	6.1. Analog Multiplexer and PGA	
	6.2. ADC Modes of Operation	41
	6.3. ADC Programmable Window Detector	46
7.	Voltage Reference (C8051F206/220/221/226)	
8.		
9.	CIP-51 Microcontroller	
	9.1. Instruction Set	
	9.1.1. Instruction and CPU Timing	
	9.1.2. MOVX Instruction and Program Memory	
	9.2. Memory Organization	
	9.2.1. Program Memory	
	9.2.2. Data Memory	
	9.2.3. General Purpose Registers	
	9.2.4. Bit Addressable Locations	
	9.2.5. Stack	
	9.3. Special Function Registers	
	9.3.1. Register Descriptions	
	9.4. Interrupt Handler	
	9.4.1. MCU Interrupt Sources and Vectors	
	9.4.2. External Interrupts	
	9.4.3. Software Controlled Interrupts	
	9.4.4. Interrupt Priorities	
	9.4.5. Interrupt Latency	
	9.4.6. Interrupt Register Descriptions	17

C8051F2xx

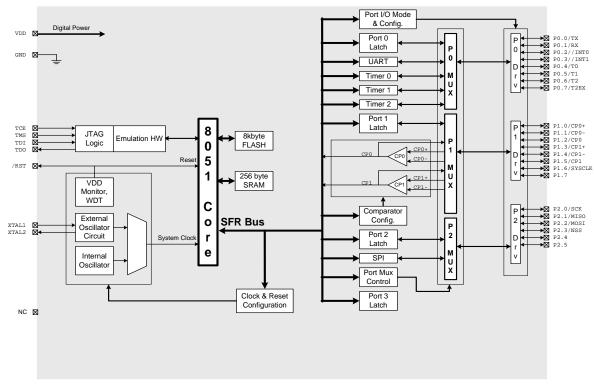


Figure 1.4. C8051F231 Block Diagram (32 LQFP)

1.1. CIP-51TM Microcontroller Core

1.1.1. Fully 8051 Compatible

The C8051F206, C8051F220/1/6 and C8051F230/1/6 utilize Silcon Labs' proprietary CIP-51 microcontroller core. The CIP-51 is fully compatible with the MCS-51TM instruction set. Standard 803x/805x assemblers and compilers can be used to develop software. The core contains the peripherals included with a standard 8052, including three 16-bit counter/timers, a full-duplex UART, 256 bytes of internal RAM, an optional 1024 bytes of XRAM, 128 byte Special Function Register (SFR) address space, and four bytewide I/O Ports.

1.1.2. Improved Throughput

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute with a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than four system clock cycles.

The CIP-51 has a total of 109 instructions. The number of instructions versus the system clock cycles to execute them is as follows:

Instructions	26	50	5	14	7	3	1	2	1
Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings^{*}

Parameter	Conditions	Min	Тур	Max	Units				
Ambient Temperature under Bias		-55		125	°C				
Storage Temperature		-65		150	°C				
Voltage on any Pin (except V _{DD} and Port I/O) with respect to DGND		-0.3	_	V _{DD} + 0.3	V				
Voltage on any Port I/O Pin or RST pins with respect to DGND		-0.3	—	5.8	V				
Voltage on V _{DD} with respect to DGND		-0.3		4.2	V				
Total Power Dissipation		—	1.0	800	W				
Maximum Output Current Sunk by any Port pin		—	_	200	mA				
Maximum Output Current Sunk by any other I/O pin		—		25	mA				
Maximum Output Current Sourced by any Port pin		—		200	mA				
Maximum Output Current Sourced by any other I/O pin		—		25	mA				
*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.									

Name	⁶ F206, F220, 226, 230, 236	ʻF221, 231	Туре	Description
	48-Pin	32-Pin		
P2.7	18		D I/O	Port2 Bit7. (See the Port I/O Sub-System section for complete
			A In	description).
P3.0	44		D I/O	Port3 Bit0. (See the Port I/O Sub-System section for complete
			A In	description).
P3.1	43		D I/O	Port3 Bit1. (See the Port I/O Sub-System section for complete
			A In	description).
P3.2	42		D I/O	Port3 Bit2. (See the Port I/O Sub-System section for complete
			A In	description).
P3.3	41		D I/O	Port3 Bit3. (See the Port I/O Sub-System section for complete
			A In	description).
P3.4	30		D I/O	Port3 Bit4. (See the Port I/O Sub-System section for complete
			A In	description).
P3.5	29		D I/O	Port3 Bit5. (See the Port I/O Sub-System section for complete
			A In	description).
P3.6	20		D I/O	Port3 Bit6. (See the Port I/O Sub-System section for complete
			A In	description).
P3.7	19		D I/O	Port3 Bit7. (See the Port I/O Sub-System section for complete
			A In	description).

Table 4.1. Pin Definitions (Continued)

C8051F2xx

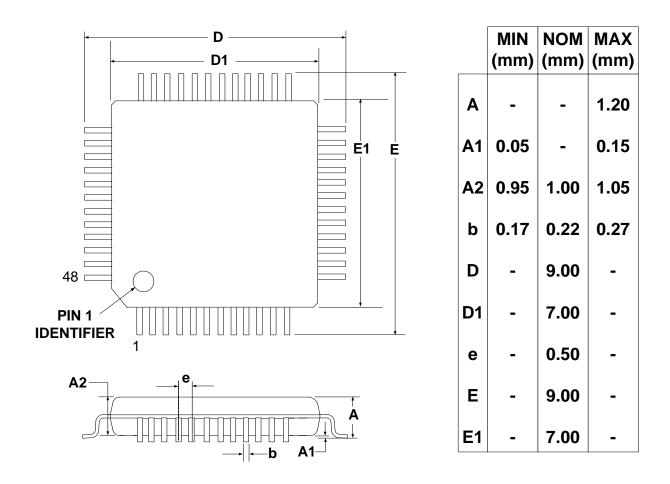
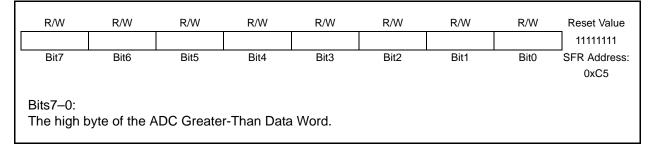


Figure 4.3. TQFP-48 Package Drawing


R/W MSB	R/W	R/W	R/W	R/W	R/W	R/W	R/W LSB	Reset Value 00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xBF				
Bits7–0: ADC Data Word Bits												
EXAMPLE: ADC Data Word Conversion Map												
	A	AIN – GND(Volts)		ADC							
		REF x (255	/256)		0xF	F						
		REF x 2	/2		0x8	30						
		REF x (127	/256)		0x7F							
	0 0x00											
	L											

SFR Definition 5.4. ADC0H: ADC Data Word ('F220/1/6 and 'F206)

5.3. ADC Programmable Window Detector

The ADC programmable window detector is very useful in many applications. It continuously compares the ADC output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in ADCOCN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than registers (ADC0GTH and ADC0LTH).

SFR Definition 5.5. ADC0GTH: ADC Greater-Than Data ('F220/1/6 and 'F206)

SFR Definition 5.6. ADC0LTH: ADC Less-Than Data Byte ('F220/1/6 and 'F206)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7 Bits7–0: The high b	Bit6	Bit5	Bit4 Han Data W	Bit3	Bit2	Bit1	BitO	SFR Address: 0xC7

Table 5.1. 8-Bit ADC Electrical Characteristics

VDD = 3.0 V, VREF = 2.40 V, PGA Gain = 1, -40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		•			•
Resolution			8	—	bits
Integral Nonlinearity			—	±1/2	LSB
Differential Nonlinearity	Guaranteed Monotonic	_	—	±1/2	LSB
Offset Error		±2	—	±1/2	LSB
Gain Error		±2	—	±1/2	LSB
Offset Temperature Coefficient			±0.25	_	ppm/°C
Dynamic Performance (10 kHz sine	wave input, 0 to –1 dB of full	scale, 10	0 ksps)		
Signal-to-Noise Plus Distortion		49.5	—	_	dB
Total Harmonic Distortion	Up to the 5 th harmonic	-60	-65	_	dB
Spurious-Free Dynamic Range			-65	_	dB
Conversion Rate		•			•
Conversion Time in SAR Clocks		16	—	—	clocks
SAR Clock Frequency			—	2.5	MHz
Track/Hold Acquisition Time		1.5	—	_	μs
Throughput Rate		_	—	100	ksps
Analog Inputs	·				
Input Voltage Range		0	—	V_{DD}	V
Input Capacitance			10	_	pF
Power Specifications					
Power Supply Current	Operating Mode, 100 ksps		0.45	1.0	mA
Power Supply Current in Shutdown			0.1	1	μA
Power Supply Rejection			±0.3		mV/V

6. ADC (12-Bit, C8051F206 Only)

Description

The ADC subsystem for the C8051F206 consists of configurable analog multiplexer (AMUX), a programmable gain amplifier (PGA), and a 100ksps, 12-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see Figure 6.1). The AMUX, PGA, Data Conversion Modes, and Window Detector are all configurable under software control via the Special Function Register's shown in Figure 6.1. The ADC subsystem (ADC, track-and-hold and PGA) is enabled only when the ADCEN bit in the ADC Control register (ADC0CN, Figure 6.5) is set to 1. The ADC subsystem is in low power shutdown when this bit is 0.

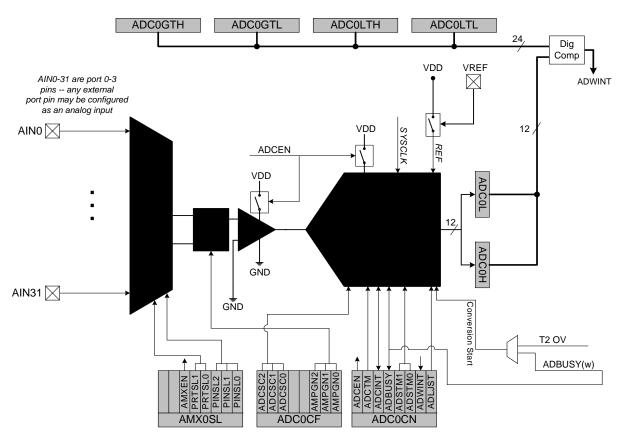


Figure 6.1. 12-Bit ADC Functional Block Diagram

6.1. Analog Multiplexer and PGA

Any external port pin (ports 0-3) may be selected via software. The AMX0SL SFR is used to select the desired analog input pin. (See SFR Definition 5.1). When the AMUX is enabled, the user selects which port is to be used (bits PRTSL0–1), and then the pin in the selected port (bits PINSL0–2) to be the analog input.

The PGA amplifies the AMUX output signal by an amount determined by the states of the AMPGN2–0 bits in the ADC Configuration register, ADC0CF (SFR Definition 5.2). The PGA can be software-programmed for gains of 0.5, 1, 2, 4, 8 or 16. It defaults to a gain of 1 on reset.

Interrupt Source	Interrupt Vector	Priority Order	Interrupt-Pending Flag	Enable
ADC0 End of Conversion	0x007B	15	ADCINT (ADC0CN.5)	EADC0 (EIE2.1)
Software Controlled Interrupt 0	0x0083	16	SCI0 (SWCINT.4)	ESCI0 (EIE2.2)
Software Controlled Interrupt 1	0x008B	17	SCI1 (SWCINT.5)	ESCI1 (EIE2.3)
Software Controlled Interrupt 2	0x0093	18	SCI2 (SWCINT.6)	ESCI2 (EIE2.4)
Software Controlled Interrupt 3	0x009B	19	SCI3 (SWCINT.7)	ESCI3 (EIE2.5)
Unused Interrupt Location	0x00A3	20	None	Reserved (EIE2.6)
External Crystal OSC Ready	0x00AB	21	XTLVLD (OSCXCN.7)	EXVLD (EIE2.7)

Table 9.4. Interrupt Summary (Continued)

9.4.4. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP–EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate.

9.4.5. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. NOTE: If a Flash write or erase is performed, the MCU is stalled during the operation and interrupts will not be serviced until the operation is complete. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

11. On-Chip XRAM (C8051F206/226/236)

The C8051F206/226/236 features 1024 Bytes of RAM mapped into the external data memory space. All address locations may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using indirect MOVX addressing mode. If the MOVX instruction is used with an 8-bit operand (such as @R1), then the high byte is the External Memory Interface Control Register (EMI0CN, shown in SFR Definition 11.1). Addressing using 8 bits will map to one of four 256-byte pages, and these pages are selected by setting the PGSEL bits in the EMI0CN register.

NOTE: The MOVX instruction is also used for write to the Flash memory. Please see section 10 for details. The MOVX instruction will access XRAM by default.

For any of the addressing modes, the upper 6 bits of the 16-bit external data memory address word are "don't cares". As a result, the 1024-byte RAM is mapped modulo style ("wrap around") over the entire 64k of possible address values. For example, the XRAM byte at address 0x0000 is also at address 0x0400, 0x0800, 0x0C00, 0x1000, etc. This feature is useful when doing a linear memory fill, as the address pointer does not have to be reset when reaching the RAM block boundary.

SFR Definition 11.1. EMI0CN: External Memory Interface Control

R	R	R	R	R	R	R/W	R/W	Reset Value				
-	-	-	-	-	-	PGSEL1	PGSEL0	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xAF				
Bits1–0: >	Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:											

SFR Definition 12.2. RSTSRC: Reset Source

	R	R/W	R/W	R	R	R/W	R	Reset Value					
-		CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	xxxxxxxx					
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:					
								0xEF					
(Note: D	Do not use rea	ad-modify-wr	ite operatio	ons on this I	egister.)								
Bit7:	RESERVE	D.											
Bit6:		Read only 0											
Bit5:		Comparator C	Reset Ena	able and Fla	ag								
	Write												
		ator 0 is not											
	•	ator 0 is a re	set source	(active low)									
	Read												
		alue read fro	om CORSE	F IS NOT DET	ned if Comp	parator u na	is not been	enabled as					
	a reset sou		waa not fr		ator 0								
		of prior reset of prior reset											
Bit4:		oftware Rese		•	0								
DIL4.	Write	Sitware itese		uriay									
	0: No Effect	rt											
		an internal re	set. RST c	in is not aff	ected.								
Read													
	0: Prior res	set source wa	as not from	write to the	SWRSF bi	it.							
	1: Prior res	set source wa	as from wri	te to the SV	VRSF bit.								
Bit3:	WDTRSF: \	Watchdog Ti	mer Reset	Flag (Read	only)								
	0: Source of	of prior reset	was not fr	om WDT tin	neout.								
		of prior reset											
Bit2:		Missing Cloc											
		of prior reset					t.						
		of prior reset			ck Detector	timeout.							
Bit1:		wer-On Res	et Force a	nd Flag									
	Write												
	0: No effec												
Dood	1: Forces a	a Power-On	Reset. RS	i is ariven lo	JW.								
Read	0. Source	of prior roact	was not fr										
		of prior reset of prior reset											
Bit0:		W Pin Reset											
		of prior reset		om <u>RST</u> nin									
		of prior reset			•								
	1. 000100 0												

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
MSCLKE	-	-	IFRDY	CLKSL	IOSCEN	IFCN1	IFCN0	00000100						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:						
								0xB2						
Bit7:	 0: Missing Clock Detector Disabled 1: Missing Clock Detector Enabled; triggers a reset if a missing clock is detected 													
Bits6–5:														
Bit4:		IFRDY: Internal Oscillator Frequency Ready Flag												
	0: Internal			•				5.						
Dire				• •	eed specifie	ed by the IF	CN bits.							
Bit3:	CLKSL: Sys													
	0: Uses Int													
Bit2:	1: Uses Ex IOSCEN: In													
DILZ.	0: Internal													
	1: Internal													
Bits1–0:	IFCN1-0: In			ancy Contro	l Rits									
Ditor 0.	00: Interna			•										
	01: Interna													
	10: Interna													
	11: Internal Oscillator typical frequency is 16 MHz.													
			··· ·	-										

SFR Definition 13.1. OSCICN: Internal Oscillator Control

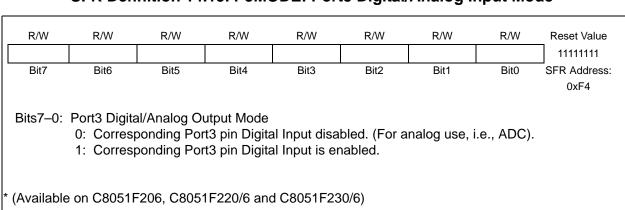
Table 13.1. Internal Oscillator Electrical Characteristics

-40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Internal Oscillator Frequency	OSCICN.[1:0] = 00	1.5	2.0	2.5	MHz
	OSCICN.[1:0] = 01	3.0	4.0	5.0	
	OSCICN.[1:0] = 10	6.0	8.0	10	
	OSCICN.[1:0] = 11	12	16	20	
Internal Oscillator Current Consumption	OSCICN.2 = 1	—	200	_	μA
Internal Oscillator Temperature Stability		—	4	_	ppm/°C
Internal Oscillator Power Supply (V _{DD}) Stability		_	6.4	_	%/V

SFR Definition 13.2	. OSCXCN: External	Oscillator Control
---------------------	--------------------	---------------------------

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
XTLVLD					XFCN2	XFCN1	XFCN0	00110000				
Bit7	Bit6		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
								0xB1				
Bit7:	(Valid only when XOSCMD = 1xx.) 0: Crystal Oscillator is unused or not yet stable											
Bits6–4:	 00x: Off. XTAL1 pin is grounded internally. 010: System Clock from External CMOS Clock on XTAL1 pin. 011: System Clock from External CMOS Clock on XTAL1 pin divided by 2. 10x: RC/C Oscillator Mode with divide by 2 stage. 110: Crystal Oscillator Mode 											
D:+0.		ystal Oscillator N		•	-							
Bit3: Bits2–0:		VED. Read = u -0: External Osc										
Dit32-0.		1: see table belo	•									
	XFCN	Crystal (XOSC		RC (XO	SCMD = 10)x) C (X	OSCMD =	10x)				
	000	f ≤ 12.5		-	25 kHz		K Factor = 0.44					
	001	12.5 kHz < f ≤			< f ≤ 50 kH		K Factor = 1.4					
	010	30.35 kHz < f s		-	$< f \le 100 \text{ kH}$		K Factor = 4.4					
	011	93.8 kHz < f ≤			< f ≤ 200 k		K Factor = 13					
	100	267 kHz < f ≤			< f ≤ 400 k		Factor = 3					
	101	722 kHz < f ≤	2.23 MHz	400 kHz	< f ≤ 800 k	Hz K	Factor = 1	00				
	110	2.23 MHz < f ≤	6.74 MHz	800 kHz	< f ≤ 1.6 M	Hz K	Factor = 4	20				
	111	f > 6.74	MHz	1.6 MHz	< f ≤ 3.2 M	Hz K	Factor = 14	400				
	Choose	(Circuit from Fig XFCN value to t from Figure 13	match the c	rystal frequ	iency.	1x)						
	•	oscillation frequ	•		- 100							
		(10 ³) / (R x C), v		-								
	f = frequ	ency of oscillati	on in MHz									
		acitor value in p										
	R = Pul	-up resistor valu	e in k Ω									
C MODE	<pre>C MODE (Circuit from Figure 13.1, Option 3; XOSCMD = 10x) Choose K Factor (KF) for the oscillation frequency desired: f = KF / (C x AV+), where f = frequency of oscillation in MHz C = capacitor value on XTAL1, XTAL2 pins in pF</pre>											
	$V_{DD} = F$	ower supply vol	tage on MC	U in volts								


SFR Definition 14.2. PRT1MX: Port I/O MUX Register 1

R	R/W	R	R	R	R	R/W	R/W	Reset Value			
-	SYSCKE	-	-	-	-	CP10EN	CP00EN	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xE2			
Bit7:	UNUSED. Read = 0.										
Bit6:	SYSCKE: SYSCLK Output Enable Bit										
	0: SYSCLK	unavailable	e at the port	t pin.							
	1: SYSCLK	output rout	ed to pin P	1.6							
Bits 5-2:	UNUSED. F	Read = 0000	0b, Write =	don't care.							
Bit1:	CP10EN: C	Comparator	1 Output E	nable bit.							
	0: CP1 una	available at	Port pin.								
	1: CP1 rou	ted to Port I	Pin P1.5.								
Bit0:	CP0OEN: C	Comparator	0 Output E	nable Bit							
	0: CP0 una		•								
	1: CP0 rou										

SFR Definition 14.3. PRT2MX: Port I/O MUX Register 2

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
GWPUD	P3WPUD	P2WPUD	P1WPUD	P0WPUD	-	-	SPI00EN	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE3
D:4 7.		lahal Darit L						
Bit 7:	GWPUD: G			•	ie Bit			
	0: Weak Pu	•	•					
1	1: Weak Pu	•	•		res)			
Bit 6:	P3WPUD: F							
	0: Weak Pu	ull-ups Enat	oled for port	: 3				
	1: Weak Pu	ull-ups Disa	bled for por	t 3				
Bit 5:	P2WPUD: F	Port 2 Weak	k Pull-up Dis	sable Bit				
	0: Weak Pu	ull-ups Enat	oled for port	2.				
	1: Weak Pu	JII-ups Disa	bled for por	t 2				
Bit 4:	P1WPUD: F	•						
	0: Weak Pu							
	1: Weak Pu							
Bit 3:	POWPUD: F	•						
Dit 5.	0: Weak Pu							
		•						
	1: Weak Pu	•						
	UNUSED. F							
Bit 0:	SPI0OEN: S							
	0: SPI I/O u							
	1: SCK, MIS	SO, MOSI, I	NSS routed	to pins P2.	0, P2.1, P2	.2, and P2.3	3 respective	ely.

SFR Definition 14.15. P3MODE: Port3 Digital/Analog Input Mode*

Table 14.1. Port I/O DC Electrical Characteristics

Parameter	Conditions	Min	Тур	Max	Units
	I _{OH} = −10 uA, Port I/O push-pull	V _{DD} –			
Output High Voltage	I _{OH} = −3 mA, Port I/O push-pull	0.1 V _{DD} –			V
	I _{OH} = −10 mA, Port I/O push-pull	0.7	V _{DD} – 0.8		
Output Low Voltage	I _{OL} = 10 uA I _{OL} = 8.5 mA			0.1	V
	$I_{OL} = 25 \text{ mA}$		1.0	0.6	v
Input High Voltage		0.7 x V _{DD}			V
Input Low Voltage				0.3 x V _{DD}	V
	DGND < Port Pin < V _{DD} , Pin Tri-state				A
Input Leakage Current	Weak Pull-up Off Weak Pull-up On		30	±1	μA
Capacitive Loading			3		pF

 V_{DD} = 2.7 to 3.6 V, -40 to +85 °C unless otherwise specified.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x88
Bit7:	TF1: Timer			orflowe Th	is flog con l	a cleared b	w coftwor	e but is auto-
		eared when	the CPU v			terrupt servi		
	1: Timer 1							
Bit6:	TR1: Timer							
Bito.	0: Timer 1							
	1: Timer 1							
Bit5:	TF0: Timer	0 Overflow	Flag.					
								e but is auto-
				ectors to th	e Timer 0 in	terrupt serv	ice routine).
	0: No Time							
D:44	1: Timer 0							
Bit4:	TR0: Timer		trol.					
	0: Timer 0 1: Timer 0							
Bit3:	IE1: Extern		1					
Dito.				an edge/lev	el of type de	efined by IT	1 is detect	ed. It can be
								External Inter-
								l's logic level
	when IT1 =	0.		Ū				Ū
Bit2:	IT1: Interru							
	This bit sele	ects whethe	r the config	ured /INT1	signal will d	etect falling	edge or a	ctive-low
	level-sensit							
	0: /INT1 is							
DIA	1: /INT1 is	0 00						
Bit1:	IE0: Extern			on odro/los	امم مراجع	afin a d by IT() ia dataat	ad Itaan ba
	cleared by	software bu ce routine if	t is automa	tically clear	ed when the	e CPU vecto	ors to the E	ed. It can be External Inter- I's logic level
Bit0:	IT0: Interru							
	level-sensit	ive interrup ⁻	ts.	ured /INT0	signal will d	etect falling	edge or a	ctive-low
	0: /INT0 is							
	1: /INT0 is	edge trigge	red.					

17.2. Timer 2

Timer 2 is a 16-bit counter/timer formed by the two 8-bit SFR's: TL2 (low byte) and TH2 (high byte). As with Timers 0 and 1, Timer 2 can use either the system clock or transitions on an external input pin as its clock source. The Counter/Timer Select bit C/T2 bit (T2CON.1) selects the clock source for Timer 2. Clearing C/T2 selects the system clock as the input for the timer (divided by either one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to 1, high-to-low transitions at the T2 input pin increment the counter/timer register. (Refer to Section 14 for information on selecting and configuring external I/O pins.) Timer 2 can also be used to start an ADC Data Conversion (see section 5).

Timer 2 offers capabilities not found in Timer 0 and Timer 1. It operates in one of three modes: 16-bit Counter/Timer with Capture, 16-bit Counter/Timer with Auto-Reload or Baud Rate Generator Mode. Timer 2's operating mode is selected by setting configuration bits in the Timer 2 Control (T2CON) register. Below is a summary of the Timer 2 operating modes and the T2CON bits used to configure the counter/timer. Detailed descriptions of each mode follow.

RCLK	TCLK	CP/RL2	TR2	Mode
0	0	1	1	16-bit Counter/Timer with Capture
0	0	0	1	16-bit Counter/Timer with Auto-Reload
0	1	Х	1	Baud Rate Generator for TX
1	0	Х	1	Baud Rate Generator for RX
1	1	Х	1	Baud Rate Generator for TX and RX
Х	Х	Х	0	Off

17.2.2. Mode 1: 16-bit Counter/Timer with Auto-Reload

The Counter/Timer with Auto-Reload mode sets the TF2 timer overflow flag when the counter/timer register overflows from 0xFFFF to 0x0000. An interrupt is generated if enabled. On overflow, the 16-bit value held in the two capture registers (RCAP2H, RCAP2L) is automatically loaded into the counter/timer register and the timer is restarted.

Counter/Timer with Auto-Reload mode is selected by clearing the CP/RL2 bit. Setting TR2 to logic 1 enables and starts the timer. Timer 2 can use either the system clock or transitions on an external input pin as its clock source, as specified by the C/T2 bit. If EXEN2 is set to logic 1, a high-to-low transition on T2EX will also cause Timer 2 to be reloaded. If EXEN2 is cleared, transitions on T2EX will be ignored.

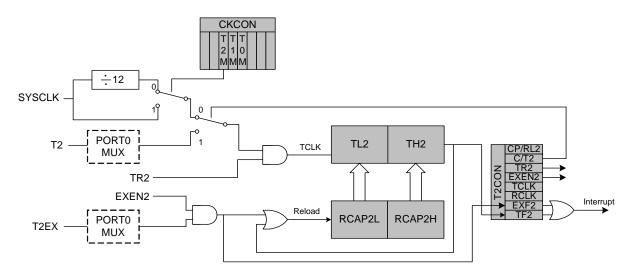


Figure 17.5. T2 Mode 1 Block Diagram

	_							Reset Value				
WRMD3	WRMD2	WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
This regis	This register determines how the Flash interface logic will respond to reads and writes to the FLASH- DAT Register.											
 Bits7–4: WRMD3–0: Write Mode Select Bits. The Write Mode Select Bits control how the interface logic responds to writes to the FLASH-DAT Register per the following values: 0000: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise ignored. 												
	0001: A FLASHDAT write initiates a write of FLASHDAT into the memory address selected											
		/ the FLASH/	•					•				
	C0 00 U1 02	FLASHDAT ontaining the ccur. FLASH ser space will <1E00 – 0x1F values for WI	address in F ADR is not a be erased FFF).	FLASHADR affected. If (i.e. entire F	. FLASHDA FLASHADR	AT must be R = 0x1DFE	0xA5 for the - 0x1DFF, 1	e erase to the entire				
Dite 2 Or). Dood Mod	Coloct Dite									
Bits3–0:	The Read): Read Mode Mode Select ster per the fo	t Bits contro	I how the int	erface logic	responds t	to reads to t	he FLASH-				
	0000: A	FLASHDAT nored.	•		n the FLAS	HDAT regis	ter, but is ot	herwise				
		FLASHDAT I no operation						OR register				
	0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only if no operation is active and any data from a previous read has already been read from FLASHDAT. This mode allows single bytes to be read (or the last byte of a block) without initiating an extra read.											
	(All other	values for RD	MD3–0 are	reserved.)								

JTAG Register Definition 18.2. FLASHCON: JTAG Flash Control

JTAG Register Definition 18.3. FLASHADR: JTAG Flash Address

									Reset Value
									0x0000
Bit15								Bit0	-
This register hold autoincrements a Bits15–0: Flash 0	after each r	ead or	write,	rega			•		•

ſ

18.2. Boundary Scan Bypass and ID Code

The MCU does not support boundary scan (IEEE 1149.1), however, it does support the bypass and ID code functions. Because the MCU utilizes JTAG for Flash memory programming and debug support, and other devices in a system may use JTAG boundary scan, the MCU supports being placed in BYPASS so the user may maintain a single JTAG port for a system. Additionally, the MCU supports an ID code.

18.2.1. BYPASS Instruction

The BYPASS instruction is accessed via the IR. It provides access to the standard 1-bit JTAG Bypass data register.

18.2.2. IDCODE Instruction

The IDCODE instruction is accessed via the IR. It provides access to the 32-bit Device ID register.

Ve	ersion	Part Number	Manufacturer ID		1	Reset Value 0xn0000243				
Bit31	Bit28	Bit27 Bit1	2 Bit11	Bit1	Bit0					
	Version = 0000b (Revision A) = 0001b (Revision B)									
Part Num	Part Number = 0000 0000 0000 0001b (C8051F206/220/1/6, C8051F230/1/6)									
Manufact	Manufacturer ID = 0010 0100 001b (Silicon Laboratories)									

JTAG Register Definition 18.6. DEVICEID: JTAG Device ID

18.3. Debug Support

The MCU has on-chip JTAG and debug circuitry that provide non-intrusive, full speed, in-circuit debug using the production part installed in the end application using the four pin JTAG I/F. Silicon Labs' debug system supports inspection and modification of memory and registers, breakpoints, stack tracing, and single stepping. No additional target RAM, program memory, or communications channels are required. All the digital and analog peripherals are functional and work correctly (remain in sync) while emulating. The WDT is disabled when the MCU is halted during single stepping or at a breakpoint.

The C8051F2xxDK is a development kit with all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8061F206, C8051F220/1/6 and C8051F230/1/6. The kit includes an Integrated Development Environment (IDE) which has a debugger and integrated 8051 assembler. It has an RS-232 to JTAG interface module referred to as the EC. The kit also includes RS-232 and JTAG cables, and wall-mount power supply.

