Silicon Labs - C8051F230 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	•
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f230

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR Definition 14.4. P0: Port0 Register
SFR Definition 14.5. PRT0CF: Port0 Configuration Register
SFR Definition 14.6. P0MODE: Port0 Digital/Analog Input Mode
SFR Definition 14.7. P1: Port1 Register
SFR Definition 14.8. PRT1CF: Port1 Configuration Register
SFR Definition 14.9. P1MODE: Port1 Digital/Analog Input Mode
SFR Definition 14.10. P2: Port2 Register 107
SFR Definition 14.11. PRT2CF: Port2 Configuration Register
SFR Definition 14.12. P2MODE: Port2 Digital/Analog Input Mode
SFR Definition 14.13. P3: Port3 Register*
SFR Definition 14.14. PRT3CF: Port3 Configuration Register*
SFR Definition 14.15. P3MODE: Port3 Digital/Analog Input Mode*
SFR Definition 15.1. SPI0CFG: SPI Configuration
SFR Definition 15.2. SPIUCN: SPI Control
SFR Definition 15.3. SPIUCKR: SPI Clock Rate Register
SFR Definition 15.4. SPIUDAT: SPI Data Register
SFR Definition 16.1. SBUF: Serial (UART) Data Buffer
SFR Definition 17.1. TCON: Timer Control
SER Definition 17.2 TMOD: Timer Mode 130
SER Definition 17.2. TMOD. Timer Mode
SFR Definition 17.4 TL0: Timer 0 Low Byte 132
SFR Definition 17.5 TI 1: Timer 1 Low Byte 132
SFR Definition 17.6. TH0: Timer 0 High Byte
SFR Definition 17.7. TH1: Timer 1 High Byte
SFR Definition 17.8. T2CON: Timer 2 Control
SFR Definition 17.9. RCAP2L: Timer 2 Capture Register Low Byte
SFR Definition 17.10. RCAP2H: Timer 2 Capture Register High Byte
SFR Definition 17.11. TL2: Timer 2 Low Byte
SFR Definition 17.12. TH2: Timer 2 High Byte 138
JTAG Register Definition 18.1. IR: JTAG Instruction
JTAG Register Definition 18.2. FLASHCON: JTAG Flash Control
JTAG Register Definition 18.3. FLASHADR: JTAG Flash Address
JTAG Register Definition 18.4. FLASHDAT: JTAG Flash Data
JTAG Register Definition 18.5. FLASHSCL: JTAG Flash Scale
JTAG Register Definition 18.6. DEVICEID: JTAG Device ID

Figure 1.11. Comparator Diagram

C8051F2xx

Figure 4.3. TQFP-48 Package Drawing

SFR Definition 6.4. ADC0H: ADC Data Word MSB (C8051F206)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBF
Bits7–0:	ADC Data V For ADLJS For ADLJS 12-bit ADC	Vord Bits Γ = 1: Uppe Γ = 0: Bits7- Data Word.	r 8-bits of t -4 are the s	he 12-bit AE sign extensio	OC Data Wo on of Bit3.	rd. 3its 3–0 are	the upper	r 4-bits of the

SFR Definition 6.5. ADC0L: ADC Data Word LSB (C8051F206)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
								00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xBE		
Bits7–0: ADC Data Word Bits For ADLJST = 1: Bits7–4 are the lower 4-bits of the 12-bit ADC Data Word. Bits3–0 will always read 0. For ADLJST = 0: Bits7–0 are the lower 8-bits of the 12-bit ADC Data Word.										
NC AD (AI	NOTE: Resulting 12-bit ADC Data Word appears in the ADC Data Word Registers as follows: ADC0H[3:0]:ADC0L[7:0], if ADLJST = 0 (ADC0H[7:4] will be sign extension of ADC0H.3 if a differential reading, otherwise = 0000b)									
AD (AI	0C0H[7:0]:AD0 DC0L[3:0] = 0	C0L[7:4], if 000b)	ADLJST = ⁻	1						
EX	AMPLE: ADO	C Data Wor (AMX0CF=	rd Conversio =0x00, AMX	on Map, AIN 0SL=0x00)	10 Input in S	ingle-Ende	d Mode			
4	AIN0 – AGND	(Volts)	ADC0H:AD (ADLJST =	COL AD : 0) (A	C0H:ADC0 DLJST = 1)	L				
	REF x (4095/	/4096)	0x0FFF		0xFFF0					
	REF x ½	2	0x0800		0x8000					
	REF x (2047/	/4096)	0x07FF		0x7FF0					
	0		0x0000		0x0000					
						-				

8. Comparators

The MCU has two on-board voltage comparators as shown in Figure 8.1. The inputs of each Comparator are available at the package pins. The output of each comparator is optionally available at port1 by configuring (see Section 14). When assigned to package pins, each comparator output can be programmed to operate in open drain or push-pull modes (see section 14.2).

The hysteresis of each comparator is software-programmable via its respective Comparator Control Register (CPT0CN, CPT1CN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive-going and negative-going symmetry of this hysteresis around the threshold voltage. The output of the comparator can be polled in software, or can be used as an interrupt source. Each comparator can be individually enabled or disabled (shutdown). When disabled, the comparator output (if assigned to a Port I/O pin via the Port1 MUX) defaults to the logic low state and its interrupt capability is suspended. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset.

The Comparator 0 hysteresis is programmed using bits 3–0 in the Comparator 0 Control Register CPT0CN (shown in SFR Definition 8.1). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN bits. As shown in Figure 8.2, settings of 10, 4 or 2 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section 9.4). The CP0FIF flag is set upon a Comparator 0 falling-edge interrupt, and the CP0RIF flag is set upon the Comparator 0 rising-edge interrupt. Once set, these bits remain set until cleared by the user software. The Output State of Comparator 0 can be obtained at any time by reading the CP0OUT bit. Comparator 0 is enabled by setting the CP0EN bit, and is disabled by clearing this bit. Note there is a 20 mS power on time between setting CP0EN and the output stabilizing. Comparator 0 can also be programmed as a reset source. For details, see Section 11. The operation of Comparator 1 is identical to that of Comparator 0, except the Comparator 1 is controlled by the CPT1CN Register (SFR Definition 8.2). Also, Comparator 1 can not be programmed as a reset source. The complete electrical specifications for the Comparators are given in Table 8.1.

C8051F2xx

9.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51[™] instruction set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51[™] counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

9.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 9.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

9.1.2. MOVX Instruction and Program Memory

The MOVX instruction is typically used to access external data memory. The CIP-51 does not support external data or program memory. In the CIP-51, the MOVX instruction accesses the on-chip program memory space implemented as re-programmable Flash memory and the 1024 bytes of XRAM (optionally available on 'F226/236 and 'F206). This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to Section 10 (Flash Memory) and Section 11 (External RAM) for further details.

Mnemonic	Description	Bytes	Clock Cycles
Arithmetic Operations			
ADD A,Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A,@Ri	Add indirect RAM to A	1	2
ADD A,#data	Add immediate to A	2	2
ADDC A,Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A,@Ri	Add indirect RAM to A with carry	1	2
ADDC A,#data	Add immediate to A with carry	2	2
SUBB A,Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A,@Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A,#data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2

Table 9.1.	CIP-51	Instruction	Set	Summary
------------	--------	-------------	-----	---------

9.2.5. Stack

A programmer's stack can be located anywhere in the 256-byte data memory. The stack area is designated using the Stack Pointer (SP, 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07. Therefore, the first value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.

The MCU also has built-in hardware for a stack record. The stack record is a 32-bit shift register, where each Push or increment SP pushes one record bit onto the register, and each Call pushes two record bits onto the register. (A Pop or decrement SP pops one record bit, and a Return pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow on the 32-bit shift register, and can notify the emulator software even with the MCU running full-speed debug.

Interrupt Source	Interrupt Vector	Priority Order	Interrupt-Pending Flag	Enable
ADC0 End of Conversion	0x007B	15	ADCINT (ADC0CN.5)	EADC0 (EIE2.1)
Software Controlled Interrupt 0	0x0083	16	SCI0 (SWCINT.4)	ESCI0 (EIE2.2)
Software Controlled Interrupt 1	0x008B	17	SCI1 (SWCINT.5)	ESCI1 (EIE2.3)
Software Controlled Interrupt 2	0x0093	18	SCI2 (SWCINT.6)	ESCI2 (EIE2.4)
Software Controlled Interrupt 3	0x009B	19	SCI3 (SWCINT.7)	ESCI3 (EIE2.5)
Unused Interrupt Location	0x00A3	20	None	Reserved (EIE2.6)
External Crystal OSC Ready	0x00AB	21	XTLVLD (OSCXCN.7)	EXVLD (EIE2.7)

Table 9.4. Interrupt Summary (Continued)

9.4.4. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP–EIP2) used to configure its priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate.

9.4.5. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 5 system clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. NOTE: If a Flash write or erase is performed, the MCU is stalled during the operation and interrupts will not be serviced until the operation is complete. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

SFR Definition 9.9. IP: Interrupt Priority

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
-	-	PT2	PS	PT1	PX1	PT0	PX0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
							(bit addressable)	0xB8		
BITS/-6:	UNUSED.	Read = UC	id, vvrite =	don't care.						
Bit5:	PT2 Timer 2 Interrupt Priority Control.This bit sets the priority of the Timer 2 interrupts.0: Timer 2 interrupts set to low priority level.1: Timer 2 interrupts set to high priority level.									
Bit4:	PS: Serial This bit se 0: UART i 1: UART i	Port (UAR ts the priori nterrupts se nterrupts se	 F) Interrupt ty of the Section to low prior to high p 	Priority Co erial Port (L ority level. riority level	ntrol. IART) interi	rupts.				
Bit3:	PT1: Time This bit se 0: Timer 1 1: Timer 1	r 1 Interrup ts the priori interrupts interrupts	t Priority Co ty of the Tiu set to low p set to high	ontrol. mer 1 interr priority leve priority leve	rupts. I. el.					
Bit2:	PX1: Exter This bit se 0: Externa 1: Externa	rnal Interrup ts the priori al Interrupt al Interrupt	ot 1 Priority ty of the Ex 1 set to low 1 set to hig	Control. tternal Inter priority lev h priority le	rrupt 1 inter rel. vel.	rupts.				
Bit1:	PT0: Time This bit se 0: Timer 0 1: Timer 0	PT0: Timer 0 Interrupt Priority Control.This bit sets the priority of the Timer 0 interrupts.0: Timer 0 interrupts set to low priority level.1: Timer 0 interrupt set to high priority level.								
Bit0:	PX0: Exter This bit se 0: Externa 1: Externa	rnal Interrup ts the priori al Interrupt (al Interrupt (ot 0 Priority ty of the Ex) set to low) set to hig	Control. tternal Inter priority lev h priority le	rrupt 0 inter el. vel.	rupts.				

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
EXVLD	-	ESCI3	ESCI2	ESCI1	ESCI0	EADC0	-	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xE7		
Bit7:	 Bit7: EXVLD: Enable External Clock Source Valid (XTLVLD) Interrupt. This bit sets the masking of the XTLVLD interrupt. 0: Disable all XTLVLD interrupts. 1: Enable interrupt requests generated by the XTLVLD flag (OSCXCN.7) 									
Bit6:	Reserved.	Must write (). Reads 0							
Bit5:	ESCI3: Ena This bit sets 0: Disable 1: Enable i	able Softwar s the maskir Software Co nterrupt req	e Controlle ng of Softwa ontrolled Int uests gene	d Interrupt 3 are Controlle errupt 3. rated setting	3. ed Interrupt g the Softwa	3. are Controlle	ed Interrup	ot Bit 3.		
Bit4:	ESCI2: Ena This bit sets 0: Disable 1: Enable i	able Softwar s the maskir Software Co nterrupt req	e Controlleng of Softwa ontrolled Intuests gene	d Interrupt 2 are Controlle errupt 2. rated setting	2. ed Interrupt g the Softwa	2. are Controlle	ed Interrup	ot Bit 2.		
Bit3:	ESCI1: Ena This bit sets 0: Disable 1: Enable i	able Softwar s the maskir Software Co nterrupt req	e Controlleng of Softwa ontrolled Intuests gene	d Interrupt 1 are Controlle errupt 1. rated setting	l. ed Interrupt g the Softwa	1. are Controlle	ed Interrup	ot Bit 1.		
Bit2:	ESCI0: Enable Software Controlled Interrupt 0. This bit sets the masking of Software Controlled Interrupt 0. 0: Disable Software Controlled Interrupt 0. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 0.									
Bit1:	EADC0: En This bit sets 0: Disable 1: Enable i	able ADC0 s the maskir ADC0 Conv interrupt req	End of Con ng of the AE version Inter uests gene	oversion Inte DC0 End of rrupt. rated by the	errupt. Conversion ADC0 Cor	Interrupt.	errupt.			
Bit0:	Reserved.	Read = 0, V	Vrite = don'	t care.						

SFR Definition 9.11. EIE2: Extended Interrupt Enable 2

11. On-Chip XRAM (C8051F206/226/236)

The C8051F206/226/236 features 1024 Bytes of RAM mapped into the external data memory space. All address locations may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using indirect MOVX addressing mode. If the MOVX instruction is used with an 8-bit operand (such as @R1), then the high byte is the External Memory Interface Control Register (EMI0CN, shown in SFR Definition 11.1). Addressing using 8 bits will map to one of four 256-byte pages, and these pages are selected by setting the PGSEL bits in the EMI0CN register.

NOTE: The MOVX instruction is also used for write to the Flash memory. Please see section 10 for details. The MOVX instruction will access XRAM by default.

For any of the addressing modes, the upper 6 bits of the 16-bit external data memory address word are "don't cares". As a result, the 1024-byte RAM is mapped modulo style ("wrap around") over the entire 64k of possible address values. For example, the XRAM byte at address 0x0000 is also at address 0x0400, 0x0800, 0x0C00, 0x1000, etc. This feature is useful when doing a linear memory fill, as the address pointer does not have to be reset when reaching the RAM block boundary.

SFR Definition 11.1. EMI0CN: External Memory Interface Control

R	R	R	R	R	R	R/W	R/W	Reset Value
-	-	-	-	-	-	PGSEL1	PGSEL0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xAF
Bits7–2: Bits1–0:	Not Used -re XRAM Page The XRAM when using upper 6 bits data memo 00:0x000 – 01:0x100 – 10:0x200 – 11:0x300 –	ead only 00 e Select Bits Page Selec an 8-bit M0 s are "don't o ry address s 0x0FF 0x1FF 0x2FF 0x3FF	0000b PGSEL[1:(t bits provid DVX comma cares", so th space.)] le the high h and, effectiv ne 1k addres	byte of the f ely selectin ss blocks ar	l 6-bit extern g a 256-byte e repeated	al memory e page of R modulo ove	address AM. The er the entire

SFR Definition 12.2. RSTSRC: Reset Source

	R	R/W	R/W	R	R	R/W	R	Reset Value
-		CORSEF	SWRSEF	WDTRSF	MCDRSF	PORSF	PINRSF	xxxxxxxx
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xEF
(Note: [Do not use re	ad-modify-w	vrite operatio	ons on this I	register.)			
Bit7:	RESERVE	D.						
Bit6:	Not Used.	Read only ()b.					
Bit5:	CORSEF: C	Comparator	0 Reset En	able and Fla	ag			
	Write							
	0: Compar	ator U is not	a reset sol	Jrce (active low)	,			
	T: Compar Pood	ator u is a re	eset source	(active low))			
	Note: The y	value read fr	om CORSE	F is not defi	ned if Comr	parator 0 ha	s not heen	enabled as
	a reset sou	irce.					5 1101 00011	
	0: Source	of prior rese	t was not fr	om Compar	ator 0			
	1: Source	of prior rese	t was from	Comparator	· 0			
Bit4:	SWRSF: S	oftware Res	et Force an	id Flag				
	Write							
	0: No Effe	Ct on internal r		in in not off	a ata d			
Pood	1: Forces a	an internal r	eset. RST p	oin is not and	ected.			
Reau		set source w	as not from	write to the	SWRSE bi	t		
	1: Prior res	set source w	as from wri	te to the SV	VRSF bit.			
Bit3:	WDTRSF:	Watchdog T	imer Reset	Flag (Read	only)			
	0: Source	of prior rese	t was not fr	om WDT tin	neout.			
	1: Source	of prior rese	t was from	WDT timeo	ut.			
Bit2:	MCDRSF:	Missing Clo	ck Detector	Flag (Read	only)			
	0: Source	of prior rese	t was not fr	om Missing	Clock Detec	ctor timeout		
D:+1 .	1: Source	of prior rese	t was from	Missing Clo	ck Detector	timeout.		
BITT	PURSF: PO	ower-On Re	set Force a	nd Flag				
	0. No effec	∼t						
	1: Forces	a Power-On	Reset. RS	T is driven lo	ow.			
Read								
	0: Source	of prior rese	t was not fr	om POR.				
	1: Source	of prior rese	t was from	POR.				
Bit0:	PINRSF: H	IW Pin Rese	et Flag	 .				
	U: Source	of prior rese	t was not fr	om KST pin	l.			
	i. Source	or prior rese	a was from	roi pin.				

Table 12.1. V_{DD} Monitor Electrical Characteristics

-40 to +85 \times C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units
RST Output Low Voltage	I_{OL} = 8.5 mA, V_{DD} = 2.7 to 3.6 V	—		0.6	V
RST Input High Voltage		0.8 x V _{DD}	_	_	V
RST Input Low Voltage		_	_	0.2 x V _{DD}	V
RST Input Leakage Current	RST = 0.0 V	—	_	50	μA
V _{DD} for RST Output Valid		1.0		—	V
Reset Threshold (Vrst)		2.40	2.55	2.70	V
Reset Time Delay	RST rising edge after crossing reset threshold	80	100	120	ms
Missing Clock Detector Timeout	Time from last system clock to reset generation	100	220	500	μs

SFR Definition 14.9. P1MODE: Port1 Digital/Analog Input Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF2
Bits7–0:	Port1 Digita 0: Corresp comparato 1: Corresp	al/Analog Ou bonding Por brs). bonding Por	utput Mode t1 pin Digita t1 pin Digita	Il Input disa Il Input is er	bled. (For a nabled.	analog use,	i.e., ADC	or

SFR Definition 14.10. P2: Port2 Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
P2.7	P2.0	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	1111111		
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
							(bit addressable)	0xA0		
Bits7–0:	 Bits7–0: P2.[7:0] (Write - Output appears on I/O pins per PRT0MX, PRT1MX, and PRT2MX registers) 0: Logic Low Output. 1: Logic High Output (high impedance if corresponding PRT2CF.n bit = 0) (Read - Regardless of PRT0MX, PRT1MX, and PRT2MX Register settings). 0: P2.n is logic low. 1: P2.n is logic high. 									

SFR Definition 14.11. PRT2CF: Port2 Configuration Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA6	
Bits7–0:	 7–0: PRT2CF.[7:0]: Output Configuration Bits for P2.7–P2.0 (respectively) 0: Corresponding P2.n Output Mode is Open-Drain. 1: Corresponding P2.n Output Mode is Push-Pull. 								

Figure 15.2. SPI Block Diagram

15.1. Signal Descriptions

The four signals used by the SPI (MOSI, MISO, SCK, NSS) are described below.

15.1.1. Master Out, Slave In

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. Data is transferred most-significant bit first.

15.1.2. Master In, Slave Out

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. Data is transferred most-significant bit first. A SPI slave places the MISO pin in a high-impedance state when the slave is not selected.

15.1.3. Serial Clock

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines.

15.1.4. Slave Select

The slave select (NSS) signal is an input used to select the SPI module when in slave mode by a master, or to disable the SPI module when in master mode. When in slave mode, it is pulled low to initiate a data transfer and remains low for the duration of the transfer.

16.2. Multiprocessor Communications

Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the SM2 bit (SCON.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic one (RB8 = 1) signifying an address byte has been received. In the UART's interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its SM2 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their SM2 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its SM2 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 16.7. UART Multi-Processor Mode Interconnect Diagram

Table 16	6.2. Oscillato	r Frequencies	s for Standard	Baud Rates

Oscillator Frequency (MHz)	Divide Factor	Timer 1 Load Value*	Resulting Baud Rate**
24.0	208	0xF3	115200 (115384)
23.592	205	0xF3	115200 (113423)
22.1184	192	0xF4	115200
18.432	160	0xF6	115200
16.5888	144	0xF7	115200
14.7456	128	0xF8	115200
12.9024	112	0xF9	115200
11.0592	96	0xFA	115200
9.216	80	0xFB	115200

SFR Definition 16.2. SCON: Serial Port Control

R/W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SMO) SN	И1 5	SM2	REN	TB8	RB8	TI	RI	00000000
Bit7	Bi	t6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								(bit addressable	e) 0x98
Bits7–	-6 [.] SM0-	-SM1 [.] Se	rial Por	t Operation	Mode				
2.107	Thes	e bits sele	ect the	Serial Port	Operation N	Node.			
			-						
	SM0	SM1			Mode				
	0	0	Mode	0: Synchro	nous Mode	9			
	0	1	Mode	1: 8-Bit UA	RT, Variab	le Baud Ra	te		
	1	0	Mode	2: 9-Bit UA	RT, Fixed	Baud Rate			
	1	1	Mode	3: 9-Bit UA	RT, Variab	le Baud Ra	te		
D:+C.	CM0.				tion Enchl	_			
DID.	Siviz. The f	unction o	f this hi	t is depend	ent on the S	. Serial Port (Operation N	Vode	
	Mode	e 0: No eff	fect				oporation	nouo.	
	Mode	e 1: Checl	ks for va	alid stop bit					
		0: Log	ic level	of stop bit i	s ignored.				
		1: RI v	vill only	be activate	d if stop bit	is logic lev	el 1.		
	Mode	e 2 and 3:	Multipr	ocessor Co	mmunicati	ons Enable			
			IC IEVEI	of ninth bit	is ignored.	ated only w	hon the ni	oth hit is logic	· 1
Bit4:	REN:	Receive	Enable		ipt is gener	aleu offiy w			, 1.
2	This	bit enable	s/disab	les the UAI	RT receiver	:			
	0: U/	ART rece	ption di	sabled.					
	1: U/	ART rece	ption er	nabled.					
Bit3:	TB8:	Ninth Tra	insmiss	ion Bit.					
	The	ogic level	of this	bit will be a	ssigned to	the ninth tra	ansmission	bit in Modes	2 and 3. It is
Bit2.	RB8	Ninth Re	ceive B	inu I. Sel it	or cleared	by soltware	e as require		
Bit2.	The b	pit is assig	aned the	e logic leve	l of the nint	h bit receive	ed in Mode	s 2 and 3. In	Mode 1, if
	SM2	is logic 0,	, RB8 is	assigned t	he logic lev	el of the re	ceived stop	bit. RB8 is	not used in
	Mode	e 0.							
Bit1:	TI: Tr	ansmit In	terrupt	Flag.					41-
	Set b	y hardwa	re wher	n a byte of o	data has be	en transmi	tted by the	UART (after	the 8 ^m bit in
	Mode	e 0, or at t	the begind	inning of the	e stop bit in	other mod	es). When	the UART in	terrupt is
	This I	hit must b	ig inis u le clear	ed manually	why softwa			enupt service	routine.
Bit0:	RI: R	eceive Int	terrupt l	Flag.	, .,				
	Set h	ov hardwa	are whe	n a byte of	data has b	een receive	ed by the U	ART (after the	e 8 th bit in
	Mode	0, or afte	er the st	top bit in ot	her modes	– see SM2	bit for exce	eption). Whe	n the UART
	interr	upt is ena	abled, s	etting this b	it causes tl	he CPU to v	vector to th	e UART inter	rupt service
	routir	ne. This b	oit must	be cleared	manually b	by software.			

C8051F2xx

TR0	GATE0	/INT0	Counter/Timer					
0	Х	Х	Disabled					
1	0	Х	Enabled					
1	1	0	Disabled					
1	1	1	Enabled					
X = Don't	X = Don't Care							

Setting TR0 does not reset the timer register. The timer register should be initialized to the desired value before enabling the timer.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0.

Figure 17.1. T0 Mode 0 Block Diagram

17.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

SFR Definition 17.2. TMOD: Timer Mo

R/W	R/\	N	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
GATE	1 C/	Г1 Т	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000		
Bit7	Bit	6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
									0x89		
Bit7:	GATE	1: Timer	1 Gate (Control.							
	0: Tim	er 1 enat	oled whe	en TR1 = 1	irrespective	e of /INT1 log	gic level.				
	1: Tim	1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one.									
Bit6:	C/T1:	C/T1: Counter/Timer 1 Select.									
	0: Im	ner Funct	ion: lim	er 1 increm	iented by cl	ock defined	by 11M bit	(CKCON.4	4).		
	1: CO P0 5/T	unter ⊢ur ⁻1	nction: I	imer 1 incre	emented by	high-to-low	transitions	on externa	al input pin		
Bits5–4	: T1M1-	-T1M0: T	imer 1 I	Mode Selec	:t.						
	These	bits sele	ct the T	imer 1 oper	ation mode						
	T1M1	T1M0			Mode						
	0	0	Mode (): 13-bit cou	unter/timer						
	0	1	Mode '	1: 16-bit cou	unter/timer						
	1	0	Mode 2	2: 8-bit cour	nter/timer w	ith auto-relo	ad				
	1	1	Mode 3	3: Timer 1 I	nactive/stop	ped					
D:40.	OATE	0. Tim	0.0-1-	Sec. 4							
BI(3)	GATE 0. Tim	or 0 opak	U Gate C	$_{\rm D}$ TPO = 1	irrespective		nic lovel				
	1. Tim	er 0 enat	oled only	/ when TR(= 1 AND /	$V_{\rm INT0} = 0000$	level one				
		or o ona			/ / / / / / / /	intro – logio					
Bit2:	C/T0:	Counter/	Timer S	elect.							
	0: Tin	ner Funct	ion: Tim	er 0 increm	ented by cl	ock defined	by T0M bit	(CKCON.:	3).		
	1: Co	unter Fur	nction: T	imer 0 incre	emented by	high-to-low	transitions	on externa	al input pin		
	P0.4/1	0. TOMO: T									
Bits1-C	Those	-101VIU: 1 bite colo	Imer U I	viode Selec	I. Intion mode						
	mese			iner o oper	alion mode	•					
	T0M1	TOMO			Mode						
	0	0	Mode (D: 13-bit cou	unter/timer						
	0	1	Mode '	1: 16-bit cou	unter/timer						
	1	0	Mode 2	2: 8-bit cour	nter/timer w	ith auto-relo	ad				
	1	1	Mode 3	3: Two 8-bit	counter/tim	ners					

17.2.3. Mode 2: Baud Rate Generator

Timer 2 can be used as a baud rate generator for the serial port (UART) when the UART is operated in modes 1 or 3 (refer to Section 16.1 for more information on UART operational modes). In Baud Rate Generator mode, Timer 2 works similarly to the auto-reload mode. On overflow, the 16-bit value held in the two capture registers (RCAP2H, RCAP2L) is automatically loaded into the counter/timer register. However, the TF2 overflow flag is not set and no interrupt is generated. Instead, the overflow event is used as the input to the UART's shift clock. Timer 2 overflows can be used to generate baud rates for transmit and/or receive independently.

The Baud Rate Generator mode is selected by setting RCLK (T2CON.5) and/or TCLK (T2CON.4) to logic one. When RCLK or TCLK is set to logic 1, Timer 2 operates in the auto-reload mode regardless of the state of the CP/RL2 bit. The baud rate for the UART, when operating in mode 1 or 3, is determined by the Timer 2 overflow rate:

Baud Rate = Timer 2 Overflow Rate / 16.

Note, in all other modes, the time base for the timer is the system clock divided by one or twelve as selected by the T2M bit in CKCON. However, in Baud Rate Generator mode, the time base is the system clock divided by two. No other divisor selection is possible. If a different time base is required, setting the C/T2 bit to logic 1 will allow the time base to be derived from the external input pin T2. In this case, the baud rate for the UART is calculated as:

Baud Rate = FCLK / [32 x (65536 - [RCAP2H:RCAP2L])]

Where FCLK is the frequency of the signal supplied to T2 and [RCAP2H:RCAP2L] is the 16-bit value held in the capture registers.

As explained above, in Baud Rate Generator mode, Timer 2 does not set the TF2 overflow flag and therefore cannot generate an interrupt. However, if EXEN2 is set to logic 1, a high-to-low transition on the T2EX input pin will set the EXF2 flag and a Timer 2 interrupt will occur if enabled. Therefore, the T2EX input may be used as an additional external interrupt source.

