

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	22
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f231-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C8051F2xx

Figure 1.9. Port I/O Functional Block Diagram

1.5. Serial Ports

The C8051F206, C8051F220/1/6 and C8051F230/1/6 include a Full-Duplex UART and SPI Bus. Each of the serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very little intervention by the CPU. The serial buses do not have to "share" resources such as timers, interrupts, or Port I/O, so both of the serial buses may be used simultaneously. (You may use Timer1, Timer 2, or SYSCLK to generate baud rates for UART).

1.6. Analog to Digital Converter

The C8051F220/1/6 has an on-chip 8-bit SAR ADC and the C8051F206 has a 12-bit SAR ADC with a programmable gain amplifier. With a maximum throughput of 100ksps, the ADC offers true 8-bit with an INL of \pm 1/4 LSB, and or 12-bit accuracy with \pm 2 LSB. The voltage reference can be the power supply (V_{DD}), or an external reference voltage (VREF). Also, the system controller can place the ADC into a power-saving shutdown mode when not in use. A programmable gain amplifier follows the analog multiplexer. The gain can be set in software from 0.5 to 16 in powers of 2.

Conversions can be initiated in two ways; a software command or an overflow on Timer 2. This flexibility allows the start of conversion to be triggered by software events, or convert continuously. A completed conversion causes an interrupt, or a status bit can be polled in software to determine the end of conversion. The resulting 8-bit data word is latched into an SFR upon completion of a conversion.

Figure 1.11. Comparator Diagram

5.2. ADC Modes of Operation

The ADC has a maximum conversion speed of 100ksps. The ADC conversion clock is derived from the system clock. The ADC conversion clock is derived from a divided version of SYSCLK. Divide ratios of 1,2,4,8, or 16 are supported by setting the ADCSC bits in the ADC0CF Register. This is useful to adjust conversion speed to accommodate different system clock speeds.

A conversion can be initiated in one of two ways, depending on the programmed states of the ADC Start of Conversion Mode bits (ADSTM1, ADSTM0) in ADC0CN. Conversions may be initiated by:

- 1. Writing a 1 to the ADBUSY bit of ADC0CN;
- 2. A Timer 2 overflow (i.e., timed continuous conversions).

Writing a 1 to ADBUSY provides software control of the ADC whereby conversions are performed "ondemand". During conversion, the ADBUSY bit is set to 1 and restored to 0 when conversion is complete. The falling edge of ADBUSY triggers an interrupt (when enabled) and sets the ADCINT interrupt flag in the ADC0CN register. Note: When conversions are performed "on-demand", the ADCINT flag, not ADBUSY, should be polled to determine when the conversion has completed. Converted data is available in the ADC data word register, ADC0H.

The ADCTM bit in register ADC0CN controls the ADC track-and-hold mode. In its default state, the ADC input is continuously tracked, except when a conversion is in progress. Setting ADCTM to 1 allows one of two different low power track-and-hold modes to be specified by states of the ADSTM1-0 bits (also in ADC0CN):

- 1. Tracking begins with a write of 1 to ADBUSY and lasts for 3 SAR clocks;
- 2. Tracking starts with an overflow of Timer 2 and lasts for 3 SAR clocks.

Tracking can be disabled (shutdown) when the entire chip is in low power standby or sleep modes.

A. ADC Timing for External Trigger Source

Timer2, Timer3 Overflow; Write 1 to ADBUSY (ADSTM[1:0]=00, 01, 11) SAR Clocks			6 17 18 19
ADCTM=1	Low Power or Convert Track	Convert	Low Power Mode
SAR Clocks	1 2 3 4	5 6 7 8 9 10 11 12 13 14 15 1	6 Track

Figure 5.2. 12-Bit ADC Track and Conversion Example Timing

SFR Definition 5.3. ADC0CN: ADC Control (C8051F220/1/6 and C8051F206)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value				
ADCEN	ADCTM	ADCINT	ADBUSY	ADSTM1	ADSTM0	ADWINT	ADLJST	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:				
							(bit addressable)) 0xE8				
Bit7:	ADCEN. ADC ETIABle BIL											
	 and Disabled. And is in low power shutdown. And Enabled. And is active and ready for data conversions. 											
Dit6.	ADC Enabled. ADC IS active and ready for data conversions.											
Dito.	0. When t	he ADC is	enabled tr	ackina is co	ntinuous u	nless a con	version is in r	rocess				
	1. Trackin	a Defined I	ov ADSTM	1-0 bits				100033				
	AE	DSTM1-0:	<i>y i b</i> c <i>i m</i>									
	00): Tracking	starts with	the write of	f 1 to ADBL	JSY and las	sts for 3 SAR	clocks				
	01	: RESER	/ED									
	10	: RESER\	/ED									
	11	: Tracking	started by	the overflow	w of Timer 2	2 and last fo	or 3 SAR cloc	ks				
Bit5:	ADCINT: A	ADC Conve	rsion Comp	plete Interru	upt Flag (cle	eared by so	ftware).	1 I				
		as not com	pleted a dat	ta conversi	on since the	e last time t	his flag was c	leared				
Bit∕⊡			eu a uala co Rif	Silversion								
DIL4.	Read	ADC Dusy	Dit									
	0: ADC Co	onversion o	complete or	no valid da	ita has beei	n converted	since a reset	. The falling				
	edge of AE	DBUSY ger	nerates an i	nterrupt wh	nen enableo	d.						
	1: ADC B	usy conver	ting data	·								
	Write	-	-									
	0: No effe	ct										
	1: Starts A	ADC Conve	ersion if AD	STM1-0 = 0	00b							
Bits3-2:	ADSTM1-	0: ADC Sta	art of Conve	ersion Mode								
			started upo	on a write o		J5 I						
	10. RESE											
	11: ADC c	conversions	s initiated o	n overflows	of Timer 2							
Bit1:	ADWINT: /	ADC Windo	ow Compar	e Interrupt	Flag							
	0: ADC W	indow Con	nparison Da	ata match h	as not occu	urred						
	1: ADC W	indow Con	nparison Da	ata match o	occurred							
Bit0:	ADLJST: A	ADC Left Ju	istify Data E	Bit (Used or	n C8051F2	06 only)						
	0: Data in	ADC0H:AI	DC0L regist	ters are rig	ht justified.							
	1: Data in	ADC0H:AI	JUUL regist	ters are left	justified.							

Table 5.1. 8-Bit ADC Electrical Characteristics

VDD = 3.0 V, VREF = 2.40 V, PGA Gain = 1, -40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		•			
Resolution			8	_	bits
Integral Nonlinearity			—	±1/2	LSB
Differential Nonlinearity	Guaranteed Monotonic		—	±1/2	LSB
Offset Error		±2	—	±1/2	LSB
Gain Error		±2	—	±1/2	LSB
Offset Temperature Coefficient			±0.25	_	ppm/°C
Dynamic Performance (10 kHz sine-	wave input, 0 to -1 dB of full	scale, 10	0 ksps)		
Signal-to-Noise Plus Distortion		49.5	—	—	dB
Total Harmonic Distortion	Up to the 5 th harmonic	-60	-65	_	dB
Spurious-Free Dynamic Range			-65	_	dB
Conversion Rate	·				
Conversion Time in SAR Clocks		16	—	_	clocks
SAR Clock Frequency			—	2.5	MHz
Track/Hold Acquisition Time		1.5	—		μs
Throughput Rate		—	—	100	ksps
Analog Inputs					
Input Voltage Range		0	—	V_{DD}	V
Input Capacitance			10	_	pF
Power Specifications					
Power Supply Current	Operating Mode, 100 ksps		0.45	1.0	mA
Power Supply Current in Shutdown			0.1	1	μA
Power Supply Rejection			±0.3		mV/V

6. ADC (12-Bit, C8051F206 Only)

Description

The ADC subsystem for the C8051F206 consists of configurable analog multiplexer (AMUX), a programmable gain amplifier (PGA), and a 100ksps, 12-bit successive-approximation-register ADC with integrated track-and-hold and programmable window detector (see Figure 6.1). The AMUX, PGA, Data Conversion Modes, and Window Detector are all configurable under software control via the Special Function Register's shown in Figure 6.1. The ADC subsystem (ADC, track-and-hold and PGA) is enabled only when the ADCEN bit in the ADC Control register (ADC0CN, Figure 6.5) is set to 1. The ADC subsystem is in low power shutdown when this bit is 0.

Figure 6.1. 12-Bit ADC Functional Block Diagram

6.1. Analog Multiplexer and PGA

Any external port pin (ports 0-3) may be selected via software. The AMX0SL SFR is used to select the desired analog input pin. (See SFR Definition 5.1). When the AMUX is enabled, the user selects which port is to be used (bits PRTSL0–1), and then the pin in the selected port (bits PINSL0–2) to be the analog input.

The PGA amplifies the AMUX output signal by an amount determined by the states of the AMPGN2–0 bits in the ADC Configuration register, ADC0CF (SFR Definition 5.2). The PGA can be software-programmed for gains of 0.5, 1, 2, 4, 8 or 16. It defaults to a gain of 1 on reset.

C8051F2xx

Mnemonic	Description	Bytes	Clock Cycles
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal Adjust A	1	1
Logical Operations			
ANL A,Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A,@Ri	AND indirect RAM to A	1	2
ANL A,#data	AND immediate to A	2	2
ANL direct,A	AND A to direct byte	2	2
ANL direct,#data	AND immediate to direct byte	3	3
ORL A,Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A,@Ri	OR indirect RAM to A	1	2
ORL A,#data	OR immediate to A	2	2
ORL direct,A	OR A to direct byte	2	2
ORL direct,#data	OR immediate to direct byte	3	3
XRL A,Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A,@Ri	Exclusive-OR indirect RAM to A	1	2
XRL A,#data	Exclusive-OR immediate to A	2	2
XRL direct,A	Exclusive-OR A to direct byte	2	2
XRL direct,#data	Exclusive-OR immediate to direct byte	3	3
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through carry	1	1
SWAP A	Swap nibbles of A	1	1
Data Transfer			
MOV A,Rn	Move register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A,@Ri	Move indirect RAM to A	1	2

Table 9.1. CIP-51 Instruction Set Summary (Continued)

9.2. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. There are 256 bytes of internal data memory and 8 kB of internal program memory address space implemented within the CIP-51. The CIP-51 memory organization is shown in Figure 9.2.

9.2.1. Program Memory

The CIP-51 has a 8 kB program memory space. The MCU implements 8320 bytes of this program memory space as in-system, reprogrammable Flash memory, organized in a contiguous block from addresses 0x0000 to 0x207F. Note: 512 bytes (0x1E00 - 0x1FFF) of this memory are reserved for factory use and are not available for user program storage.

Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature provides a mechanism for the CIP-51 to update program code and use the program memory space for non-volatile data storage. Refer to Section 10 Flash Memory for further details.

9.2.2. Data Memory

The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF. The lower 128 bytes of data memory are used for general purpose registers and memory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the direct bit addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper 128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F will access the upper 128 bytes of data memory. Figure 9.2 illustrates the data memory organization of the CIP-51.

Additionally, the C8051F206/226/236 feature 1024 Bytes of RAM mapped in the external data memory space. All address locations may be accessed using the MOVX instruction. (Please see Section 11).

SFR	Definition	9.4.	PSW:	Program	Status	Word
-----	------------	------	-------------	---------	--------	------

R/W	R/\	N	R/W	R/W	R/W	R/W	R/W	R	Reset Value		
CY	A	C	F0	RS1	RS0	OV	F1	PARITY	00000000		
Bit7	Bit	6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable	SFR Address: 0xD0		
Bit7:	CY: Ca This bi (subtra	arry Flag. it is set w action). If	hen the is clea	last arithmored to 0 by a	etic operatic all other arit	n results in hmetic oper	a carry (adrations.	dition) or a	borrow		
Bit6:	AC: Auxiliary Carry Flag. This bit is set when the last arithmetic operation results in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic operations.										
Bit5:	 F0: User Flag 0. This is a bit-addressable, general-purpose flag for use under software control. 										
Bits4–3:	Bits4–3: RS1–RS0: Register Bank Select. These bits select which register bank is used during register accesses.										
Γ	RS1 RS0 Register Bank Address										
	0	0		0	0x00–0x0	7					
	0	1		1	0x08–0x0	F					
	1	0		2	0x10–0x1	7					
	1	1		3	0x18–0x1	F					
Bit2:	 Note: Any instruction which changes the RS1–RS0 bits must not be immediately followed by the "MOV Rn, A" instruction. Bit2: OV: Overflow Flag. This bit is set to 1 under the following circumstances: •An ADD, ADDC, or SUBB instruction causes a sign-change overflow. •A MUL instruction results in an overflow (result is greater than 255). •A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases 										
Bit1:	F1: User Flag 1. This is a bit-addressable, general purpose flag for use under software control.										
Bit0:	PARITY: Parity Flag. This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum is even.										

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
EXVLD	-	ESCI3	ESCI2	ESCI1	ESCI0	EADC0	-	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xE7	
 Bit7: EXVLD: Enable External Clock Source Valid (XTLVLD) Interrupt. This bit sets the masking of the XTLVLD interrupt. 0: Disable all XTLVLD interrupts. 1: Enable interrupt requests generated by the XTLVLD flag (OSCXCN.7) 									
Bit6:	Reserved.	Must write (). Reads 0						
 Bit5: ESCI3: Enable Software Controlled Interrupt 3. This bit sets the masking of Software Controlled Interrupt 3. 0: Disable Software Controlled Interrupt 3. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 3. 									
Bit4:	 ESCI2: Enable Software Controlled Interrupt 2. This bit sets the masking of Software Controlled Interrupt 2. 0: Disable Software Controlled Interrupt 2. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 2. 								
Bit3:	 ESCI1: Enable Software Controlled Interrupt 1. This bit sets the masking of Software Controlled Interrupt 1. 0: Disable Software Controlled Interrupt 1. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 1. 								
Bit2:	ESCI0: Enable Software Controlled Interrupt 0. This bit sets the masking of Software Controlled Interrupt 0. 0: Disable Software Controlled Interrupt 0. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 0.								
Bit1:	EADC0: Enable ADC0 End of Conversion Interrupt. This bit sets the masking of the ADC0 End of Conversion Interrupt. 0: Disable ADC0 Conversion Interrupt. 1: Enable interrupt requests generated by the ADC0 Conversion Interrupt.								
Bit0:	Reserved.	Read = 0, V	Vrite = don'	t care.					

SFR Definition 9.11. EIE2: Extended Interrupt Enable 2

11. On-Chip XRAM (C8051F206/226/236)

The C8051F206/226/236 features 1024 Bytes of RAM mapped into the external data memory space. All address locations may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using indirect MOVX addressing mode. If the MOVX instruction is used with an 8-bit operand (such as @R1), then the high byte is the External Memory Interface Control Register (EMI0CN, shown in SFR Definition 11.1). Addressing using 8 bits will map to one of four 256-byte pages, and these pages are selected by setting the PGSEL bits in the EMI0CN register.

NOTE: The MOVX instruction is also used for write to the Flash memory. Please see section 10 for details. The MOVX instruction will access XRAM by default.

For any of the addressing modes, the upper 6 bits of the 16-bit external data memory address word are "don't cares". As a result, the 1024-byte RAM is mapped modulo style ("wrap around") over the entire 64k of possible address values. For example, the XRAM byte at address 0x0000 is also at address 0x0400, 0x0800, 0x0C00, 0x1000, etc. This feature is useful when doing a linear memory fill, as the address pointer does not have to be reset when reaching the RAM block boundary.

SFR Definition 11.1. EMI0CN: External Memory Interface Control

R	R	R	R	R	R	R/W	R/W	Reset Value			
-	-	-	-	-	-	PGSEL1	PGSEL0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xAF			
Bits7–2: Bits1–0:	- - - PGSEL1 PGSEL0 0000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 0xAF Bits7-2: Not Used -read only 000000b Bits1-0: XRAM Page Select Bits PGSEL[1:0] The XRAM Page Select bits provide the high byte of the 16-bit external memory address when using an 8-bit MOVX command, effectively selecting a 256-byte page of RAM. The upper 6 bits are "don't cares", so the 1k address blocks are repeated modulo over the entire data memory address space. 00:0x000 - 0x0FF 01:0x100 - 0x1FF 10:0x200 - 0x2FF 11:0x300 - 0x3FF										

13. Oscillator

The MCU includes an internal oscillator and an external oscillator drive circuit, either of which can generate the system clock. The MCU boots from the internal oscillator after any reset. This internal oscillator can be enabled/disabled and its frequency can be set using the Internal Oscillator Control Register (OSCICN) as shown in SFR Definition 13.1. The internal oscillator's electrical specifications are given in Table 13.1.

Both oscillators are disabled when the RST pin is held low. The MCU can run from the internal oscillator permanently, or it can switch to the external oscillator if desired using CLKSL bit in the OSCICN Register. The external oscillator requires an external resonator, crystal, capacitor, or RC network connected to the XTAL1/XTAL2 pins (see Figure 13.1). The oscillator circuit must be configured for one of these sources in the OSCXCN register. An external CMOS clock can also provide the system clock by driving the XTAL1 pin. The XTAL1 and XTAL2 pins are NOT 5 V tolerant.

Figure 13.1. Oscillator Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
MSCLKE	-	-	IFRDY	CLKSL	IOSCEN	IFCN1	IFCN0	00000100		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xB2		
Bit7:	MSCLKE: Missing Clock Enable Bit									
	0: Missing	Clock Deteo	ctor Disable	d						
	1: Missing	Clock Deteo	ctor Enabled	d; triggers a	reset if a m	issing clock	is detecte	d		
Bits6–5:	UNUSED.	Read = 00b	, Write = do	on't care						
Bit4:	IFRDY: Inte	rnal Oscilla	tor Frequen	cy Ready F	lag					
	0: Internal	Oscillator F	requency no	ot running a	t speed spe	cified by the	e IFCN bits	.		
	1: Internal	Oscillator F	requency ru	nning at sp	eed specifie	ed by the IF	CN bits.			
Bit3:	CLKSL: Sys	stem Clock	Source Sele	ect Bit						
	0: Uses Int	ernal Oscilla	ator as Syst	em Clock.						
	1: Uses Ex	ternal Oscil	lator as Sys	tem Clock.						
Bit2:	IOSCEN: In	iternal Oscil	lator Enable	e Bit						
	0: Internal	Oscillator D	isabled							
	1: Internal	Oscillator E	nabled	-						
Bits1–0:	IFCN1-0: In	ternal Oscil	lator Freque	ency Contro	ol Bits					
	00: Interna	l Oscillator 1	typical frequ	iency is 2 M	1Hz.					
	01: Interna	Oscillator 1	typical frequ	iency is 4 M	lHz.					
	10: Interna	Oscillator	typical frequ	iency is 8 M	lHz.					
	11: Internal Oscillator typical frequency is 16 MHz.									

SFR Definition 13.1. OSCICN: Internal Oscillator Control

Table 13.1. Internal Oscillator Electrical Characteristics

-40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Internal Oscillator Frequency	OSCICN.[1:0] = 00	1.5	2.0	2.5	MHz
	OSCICN.[1:0] = 01	3.0	4.0	5.0	
	OSCICN.[1:0] = 10	6.0	8.0	10	
	OSCICN.[1:0] = 11	12	16	20	
Internal Oscillator Current Consumption	OSCICN.2 = 1	_	200	_	μA
Internal Oscillator Temperature Stability		_	4	_	ppm/°C
Internal Oscillator Power Supply (V _{DD})			6.4		%/V
Stability					

SFR Definition 14.9. P1MODE: Port1 Digital/Analog Input Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF2
Bits7–0:	Port1 Digita 0: Corresp comparato 1: Corresp	al/Analog Ou bonding Por ors). bonding Por	utput Mode t1 pin Digita t1 pin Digita	Il Input disa Il Input is er	bled. (For a nabled.	analog use,	i.e., ADC	or

SFR Definition 14.10. P2: Port2 Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
P2.7	P2.0	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	1111111	
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
							(bit addressable)	0xA0	
Bits7–0:	 ts7–0: P2.[7:0] (Write - Output appears on I/O pins per PRT0MX, PRT1MX, and PRT2MX registers) 0: Logic Low Output. 1: Logic High Output (high impedance if corresponding PRT2CF.n bit = 0) (Read - Regardless of PRT0MX, PRT1MX, and PRT2MX Register settings). 0: P2.n is logic low. 1: P2.n is logic high. 								

SFR Definition 14.11. PRT2CF: Port2 Configuration Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xA6
Bits7–0:	 PRT2CF.[7:0]: Output Configuration Bits for P2.7–P2.0 (respectively) 0: Corresponding P2.n Output Mode is Open-Drain. 1: Corresponding P2.n Output Mode is Push-Pull. 							

R/W	R/W	R	F	2	R	R/W	R/W	R/W	Reset Value
CKPH	A CKPC	DL BC	2 BC	C1	BC0	SPIFRS2	SPIFRS1	SPIFRS0	00000111
Bit7	Bit6	Bit	5 Bi	t4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0x9A
Bit7:	CKPHA: SPI Clock Phase. This bit controls the SPI clock phase. 0: Data sampled on first edge of SCK period. 1: Data sampled on second edge of SCK period.								
Bit6:	CKPOL: SPI Clock Polarity. This bit controls the SPI clock polarity. 0: SCK line low in idle state. 1: SCK line high in idle state.								
Bits5–3	B: BC2–B Indicate	C0: SPI Bit es which of	Count. the up to 8	3 bits o	of the SPI	word have b	een transm	itted.	
		BC2–BC0		Bit T	ransmitte	d			
	0	0	0	Bit	0 (LSB)				
	0	0	1		Bit 1				
	0	1	0		Bit 2				
	0	1	1		Bit 3				
	1	0	0		Bit 4				
	1	0	1		Bit 5				
	1	1	0		Bit 6				
	1	1	1	Bit	7 (MSB)				
Bits2–0	: SPIFR These t data tra	S2–SPIFR hree bits d insfer in ma	S0: SPI Fr etermine th aster mode	ame S ne nur e. The	ize. nber of bit y are igno	s to shift in/c ored in slave	out of the SF mode.	PI shift regi	ster during a
	0	SPIFRS	0	Bits	s Shifted	_			
	0	0	0		1				
	0	0	1		2				
	0	1	0		3				
	0	1	1		4				
	1	0	0		5				
	1	0	1		7				
	1	1	1		8	-			
				I	0				

SFR Definition 15.1. SPI0CFG: SPI Configuration

17. Timers

The CIP-51 implements three, 16-bit counter/timers comparable with those found in the standard 8051 MCU's. These can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. Timer 2 offers additional capabilities not available in Timers 0 and 1, such as capture and baud rate generation.

Timer 0 and Timer 1:	Timer 2:
13-bit counter/timer	16-bit counter/timer with auto-reload
16-bit counter/timer	16-bit counter/timer with capture
8-bit counter/timer with auto-reload	Baud rate generator
Two 8-bit counter/timers (Timer 0 only)	

When functioning as a timer, the counter/timer registers are incremented on each clock tick. Clock ticks are derived from the system clock divided by either one or twelve as specified by the Timer Clock Select bits (T2M–T0M) in CKCON. The twelve-clocks-per-tick option provides compatibility with the older generation of the 8051 family. Applications that require a faster timer can use the one-clock-per-tick option.

When functioning as a counter, a counter/timer register is incremented on each high-to-low transition at the selected input pin (P0.4/T0, P0.5/T1, or P0.6/T2. Events with a frequency of up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it should be held at a given level for at least two full system clock cycles to ensure the level is sampled.

17.1. Timer 0 and Timer 1

Timer 0 and Timer 1 are accessed and controlled through SFR's. Each counter/timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control (TCON) register is used to enable Timer 0 and Timer 1 as well as indicate their status. Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits M1–M0 in the Counter/Timer Mode (TMOD) register. Each timer can be configured independently. Following is a detailed description of each operating mode.

17.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as a 13-bit counter/timer in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSB's of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if enabled.

The C/T0 bit (TMOD.2) selects the counter/timer's clock source. Clearing C/T selects the system clock as the input for the timer. When C/T0 is set to logic 1, high-to-low transitions at the selected input pin increment the timer register. (Refer to section 14 for information on selecting and configuring external I/O pins.)

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is 0 or the input signal /INT0 is logic-level one. Setting GATE0 to logic 1 allows the timer to be controlled by the external input signal /INT0, facilitating pulse width measurements.

17.2. Timer 2

Timer 2 is a 16-bit counter/timer formed by the two 8-bit SFR's: TL2 (low byte) and TH2 (high byte). As with Timers 0 and 1, Timer 2 can use either the system clock or transitions on an external input pin as its clock source. The Counter/Timer Select bit C/T2 bit (T2CON.1) selects the clock source for Timer 2. Clearing C/T2 selects the system clock as the input for the timer (divided by either one or twelve as specified by the Timer Clock Select bit T2M in CKCON). When C/T2 is set to 1, high-to-low transitions at the T2 input pin increment the counter/timer register. (Refer to Section 14 for information on selecting and configuring external I/O pins.) Timer 2 can also be used to start an ADC Data Conversion (see section 5).

Timer 2 offers capabilities not found in Timer 0 and Timer 1. It operates in one of three modes: 16-bit Counter/Timer with Capture, 16-bit Counter/Timer with Auto-Reload or Baud Rate Generator Mode. Timer 2's operating mode is selected by setting configuration bits in the Timer 2 Control (T2CON) register. Below is a summary of the Timer 2 operating modes and the T2CON bits used to configure the counter/timer. Detailed descriptions of each mode follow.

RCLK	TCLK	CP/RL2	TR2	Mode
0	0	1	1	16-bit Counter/Timer with Capture
0	0	0	1	16-bit Counter/Timer with Auto-Reload
0	1	Х	1	Baud Rate Generator for TX
1	0	Х	1	Baud Rate Generator for RX
1	1	Х	1	Baud Rate Generator for TX and RX
Х	Х	Х	0	Off

SFR Definition 17.8. T2CON: Timer 2 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
							(bit addressable	e) 0xC8			
Bit7:	TF2: Time	r 2 Overflov	v Flag.								
	Set by hardware when Timer 2 overflows from 0xFFFF to 0x0000. When the Timer 2 inter-										
	rupt is ena	bled, setting	g this bit ca	uses the C	PU to vecto	or to the Tin	ner 2 interrup	t service rou-			
	tine. This	bit is not au	itomatically	cleared by	hardware a	and must b	e cleared by	software.			
D:40.		of be set wh	en RCLK a	ind/or ICL	care logic	l.					
BITO:	EXF2: IIM	er 2 Extern	al Flag.	onturo or ro	lood in only	and by a bi	ab to low trop	wition on the			
	T2EX input	t nin and E	YEN2 is loc	ic 1 Whor	the Timer	2 interrunt	is enabled s	etting this hit			
	causes the	CPU to ve	ctor to the	Timer 2 Inte	errupt servi	ce routine	This bit is no	ot automati-			
	cally cleare	ed by hardv	vare and m	ust be clea	red by softv	vare.					
Bit5:	RCLK: Re	ceive Clock	Flag.		,						
	Selects wh	nich timer is	used for th	ne UART's r	eceive cloc	k in modes	s 1 or 3.				
	0: Timer 1	overflows u	used for rec	eive clock.							
D '//	1: Timer 2	overflows u	used for rec	eive clock.							
Bit4:	ICLK: Ira	nsmit Clock	(Flag.		ronomit olo	ak in mada	o 1 or 2				
	0. Timer 1		used for tra	nemit clock	ransmit cio	ck in mode	S I 0I 3.				
	1: Timer 2	overflows	ised for tra	nsmit clock	•						
Bit3:	EXEN2: Ti	mer 2 Exter	rnal Enable								
	Enables hi	gh-to-low tr	ansitions o	n T2EX to t	rigger capt	ures or relo	ads when Ti	mer 2 is not			
	operating i	n Baud Rat	e Generato	or mode.	00 1						
	0: High-to-	low transition	ons on T2E	X ignored.							
	1: High-to-	low transition	ons on T2E	X cause a	capture or r	eload.					
Bit2:	TR2: Time	r 2 Run Co	ntrol.								
	I his bit en	ables/disab	les Timer 2								
	1. Timer 2	enabled									
Bit1:	C/T2: Cou	nter/Timer S	Select.								
2	0: Timer F	unction: Tir	mer 2 incre	mented by	clock define	ed by T2M	(CKCON.5).				
	1: Counte	r Function:	Timer 2 inc	remented t	by high-to-lo	ow transitio	ns on externa	al input pin			
	P0.6/T2.										
Bit0:	CP/RL2: C	apture/Relo	oad Select.								
	This bit se	lects wheth	er Timer 2	functions in	capture or	auto-reloa	d mode. EXE	EN2 must be			
	logic 1 for	high-to-low	transitions	on 12EX to	be recogn	ized and u	sed to trigger	captures or			
	mode	I RULK OF	I ULK IS SEI	, this dit is i	ignored and	a nimer 2 W	in iunction in	auto-reload			
	0. Auto-rel	oad on Tim	er 2 overflo	w or high-t	o-low transi	ition at T2F	X (FXFN2 –	1)			
	1: Capture	on high-to-	low transiti	on at T2EX	(EXEN2 =	1).		• ,•			
		3. 10			,	,					

SFR Definition 17.9. RCAP2L: Timer 2 Capture Register Low Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xCA
Bits 7–0: RCAP2L: Timer 2 Capture Register Low Byte. The RCAP2L register captures the low byte of Timer 2 when Timer 2 is configured in capture mode. When Timer 2 is configured in auto-reload mode, it holds the low byte of the reload value.								

SFR Definition 17.10. RCAP2H: Timer 2 Capture Register High Byte

SFR Definition 17.11. TL2: Timer 2 Low Byte

SFR Definition 17.12. TH2: Timer 2 High Byte

18.1. Flash Programming Commands

The Flash memory can be programmed directly over the JTAG interface using the Flash Control, Flash Data, Flash Address, and Flash Scale registers. These Indirect Data Registers are accessed via the JTAG Instruction Register. Read and write operations on indirect data registers are performed by first setting the appropriate DR address in the IR register. Each read or write is then initiated by writing the appropriate Indirect Operation Code (IndOpCode) to the selected data register. Incoming commands to this register have the following format:

19:18	17:0
IndOpCode	WriteData

IndOpCode: These bit set the operation to perform according to the following table:

IndOpCode	Operation
0x	Poll
10	Read
11	Write

The Poll operation is used to check the Busy bit as described below. Although a Capture-DR is performed, no Update-DR is allowed for the Poll operation. Since updates are disabled, polling can be accomplished by shifting in/out a single bit.

The Read operation initiates a read from the register addressed by the DRAddress. Reads can be initiated by shifting only 2 bits into the indirect register. After the read operation is initiated, polling of the Busy bit must be performed to determine when the operation is complete.

The write operation initiates a write of WriteData to the register addressed by DRAddress. Registers of any width up to 18 bits can be written. If the register to be written contains fewer than 18 bits, the data in WriteData should be left-justified, i.e. its MSB should occupy bit 17 above. This allows shorter registers to be written in fewer JTAG clock cycles. For example, an 8-bit register could be written by shifting only 10 bits. After a Write is initiated, the Busy bit should be polled to determine when the next operation can be initiated. The contents of the Instruction Register should not be altered while either a read or write operation is in progress.

Outgoing data from the indirect Data Register has the following format:

19	18:5	0
0	ReadData	Busy

The Busy bit indicates that the current operation is not complete. It goes high when an operation is initiated and returns low when complete. Read and Write commands are ignored while Busy is high. In fact, if polling for Busy to be low will be followed by another read or write operation, JTAG writes of the next operation can be made while checking for Busy to be low. They will be ignored until Busy is read low, at which time the new operation will initiate. This bit is placed at bit 0 to allow polling by single-bit shifts. When waiting for a Read to complete and Busy is 0, the following 18 bits can be shifted out to obtain the resulting data. ReadData is always right-justified. This allows registers shorter than 18 bits to be read using a reduced number of shifts. For example, the result from a byte-read requires 9 bit shifts (Busy + 8 bits).

