
Silicon Labs - C8051F236 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	32
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	<u>.</u>
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f236

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	11
	1.1. CIP-51TM Microcontroller Core	15
	1.1.1. Fully 8051 Compatible	15
	1.1.2. Improved Throughput	15
	1.1.3. Additional Features	
	1.2. On-Board Memory	17
	1.3. JTAG	18
	1.4. Digital/Analog Configurable I/O	19
	1.5. Serial Ports	20
	1.6. Analog to Digital Converter	20
	1.7. Comparators	
2.	Absolute Maximum Ratings	23
3.	Global DC Electrical Characteristics	24
4.	Pinout and Package Definitions	25
5.	ADC (8-Bit, C8051F220/1/6 Only)	32
	5.1. Analog Multiplexer and PGA	32
	5.2. ADC Modes of Operation	
	5.3. ADC Programmable Window Detector	
6.	ADC (12-Bit, C8051F206 Only)	
	6.1. Analog Multiplexer and PGA	
	6.2. ADC Modes of Operation	41
	6.3. ADC Programmable Window Detector	46
7.	Voltage Reference (C8051F206/220/221/226)	
8.		
9.	CIP-51 Microcontroller	
	9.1. Instruction Set	
	9.1.1. Instruction and CPU Timing	
	9.1.2. MOVX Instruction and Program Memory	
	9.2. Memory Organization	
	9.2.1. Program Memory	
	9.2.2. Data Memory	
	9.2.3. General Purpose Registers	
	9.2.4. Bit Addressable Locations	
	9.2.5. Stack	
	9.3. Special Function Registers	
	9.3.1. Register Descriptions	
	9.4. Interrupt Handler	
	9.4.1. MCU Interrupt Sources and Vectors	
	9.4.2. External Interrupts	
	9.4.3. Software Controlled Interrupts	
	9.4.4. Interrupt Priorities	
	9.4.5. Interrupt Latency	
	9.4.6. Interrupt Register Descriptions	17

C8051F2xx

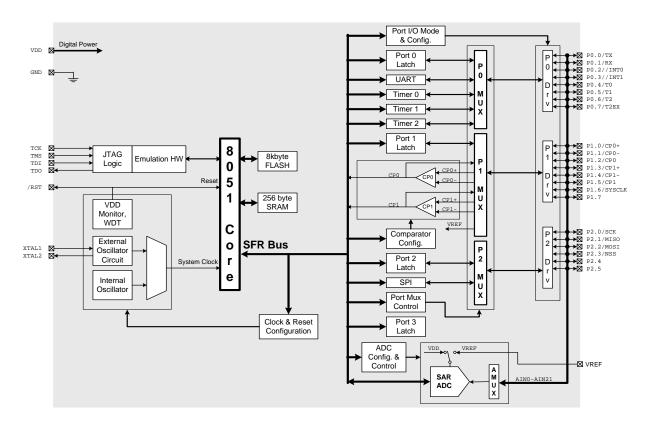


Figure 1.2. C8051F221 Block Diagram (32 LQFP)

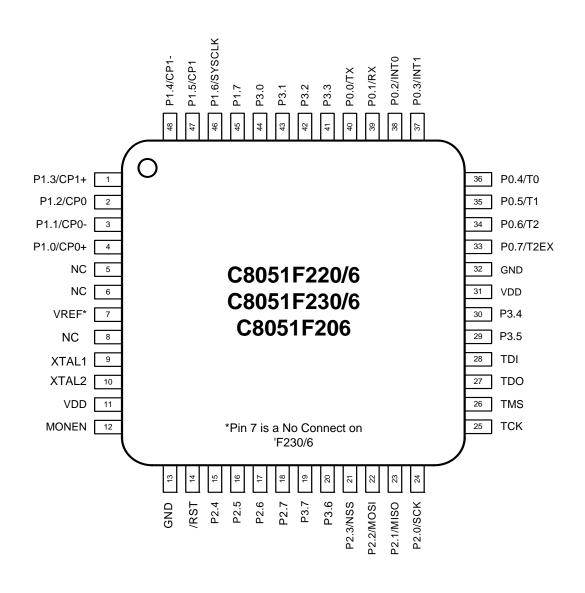


Figure 4.1. TQFP-48 Pin Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
ADCSC2		ADCSC0	-	-	AMPGN2		AMPGN0	01100000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
Biti	Bito	Dito	DRH	Dito	DILL	Bitt	Bito	0xBC			
Bits7-5:	ADCSC2-0	: ADC SAR	Conversior	n Clock Per	iod Bits						
	000: SAR Conversion Clock = 1 System Clock										
	001: SAR Conversion Clock = 2 System Clocks										
	010: SAR (
	011: SAR (
	1xx: SAR C			•							
	NOTE: SA				than or equ	al to 2MHz.					
	UNUSED.										
Bits2–0:	AMPGN2-0		nal Amplifie	er Gain							
	000: Gain :										
	001: Gain :	_									
	010: Gain :										
	011: Gain =										
	10x: Gain =										
	11x: Gain =	= 0.5									

SFR Definition 5.2. ADC0CF: ADC Configuration Register

Table 5.1. 8-Bit ADC Electrical Characteristics

VDD = 3.0 V, VREF = 2.40 V, PGA Gain = 1, -40 to +85 ×C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units				
DC Accuracy		•			•				
Resolution			8	—	bits				
Integral Nonlinearity			—	±1/2	LSB				
Differential Nonlinearity	Guaranteed Monotonic	_	—	±1/2	LSB				
Offset Error		±2	—	±1/2	LSB				
Gain Error		±2	—	±1/2	LSB				
Offset Temperature Coefficient			±0.25	_	ppm/°C				
Dynamic Performance (10 kHz sine	wave input, 0 to –1 dB of full	scale, 10	0 ksps)						
Signal-to-Noise Plus Distortion		49.5	—	_	dB				
Total Harmonic Distortion	Up to the 5 th harmonic	-60	-65	_	dB				
Spurious-Free Dynamic Range			-65	_	dB				
Conversion Rate		•			•				
Conversion Time in SAR Clocks		16	—	—	clocks				
SAR Clock Frequency			—	2.5	MHz				
Track/Hold Acquisition Time		1.5	—	_	μs				
Throughput Rate		_	—	100	ksps				
Analog Inputs	·								
Input Voltage Range		0	—	V_{DD}	V				
Input Capacitance			10	_	pF				
Power Specifications									
Power Supply Current	Operating Mode, 100 ksps		0.45	1.0	mA				
Power Supply Current in Shutdown			0.1	1	μA				
Power Supply Rejection			±0.3		mV/V				

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ADCSC2	ADCSC1	ADCSC0	-	-	AMPGN2	AMPGN1	AMPGN0	01100000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xBC
	001: SAR (010: SAR (011: SAR (1xx: SAR (NOTE: SA	Conversion Conversion Conversion Conversion Conversion R conversio	Clock = 1 S Clock = 2 S Clock = 4 S Clock = 8 S Clock = 16 S n clock sho	system Cloc system Cloc system Cloc system Cloc Systems Cl uld be less	k ks ks ks ocks	al to 2MHz.		
	UNUSED. AMPGN2–(,					
DIG2 0.	000: Gain :		nui / inpine					
	001: Gain :							
	010: Gain :	-						
	011: Gain = 10x: Gain =							
	1x: Gain =	-						

SFR Definition 6.2. ADC0CF: ADC Configuration ('F220/1/6 and 'F206)

Table 7.1. Reference Electrical Characteristics

 V_{DD} = 3.0 V, Temperature –40 to +85 ×C

External Reference ([REFS	6L1: REFSL0] = 00), V _{REF} = 2.4 V)	Min	Тур	Max	Units
Input Voltage Range		1.00		(V _{DD}) – 0.3 V	V
Input Current		_	0.1	10	μA
Input Resistance		100		—	MΩ

R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CP1EN	CP10UT	CP1RIF	CP1FIF	CP1HYP1	CP1HYP0	CP1HYN1	CP1HYNC	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0x9F
	00/51/0							
Bit7:	CP1EN: Co	•						
	0: Compara							
Dito	1: Compara			lata Elan				
Bit6:	CP1OUT: C 0: Voltage	•	•	late Flag				
	1: Voltage							
Bit5:	CP1RIF: Co			ae Interrunt	Flag			
Dito.					s occurred s	ince this fla	n was clea	ared
					ccurred since			
Bit4:	CP1FIF: Co					o ano nag n		•
			•	• •	is occurred s	since this fla	ad was clea	ared
					ccurred sinc			
Bit3-2:			• •		sis Control B	•		
	00: Positive	e Hysteresis	s Disabled	-				
	01: Positive	e Hysteresis	s = 2 mV					
	10: Positive	e Hysteresis	s = 4 mV					
	11: Positive	e Hysteresis	s = 10 mV					
Bit1-0:			•		esis Control I	Bits		
	00: Negativ							
	01: Negativ							
	10: Negativ							
	11: Negativ	e Hysteres	is = 10 mV					

SFR Definition 8.2. CPT1CN: Comparator 1 Control

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through register R0–R1

rel - 8-bit, signed (two's compliment) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct - 8-bit internal data location's address. This could be a direct-access Data RAM location (0x00– 0x7F) or an SFR (0x80–0xFF).

#data - 8-bit constant

#data 16 - 16-bit constant

bit - Direct-addressed bit in Data RAM or SFR.

addr 11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr 16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
EXVLD	-	ESCI3	ESCI2	ESCI1	ESCI0	EADC0	-	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xE7			
Bit7:	This bit sets the masking of the XTLVLD interrupt.0: Disable all XTLVLD interrupts.1: Enable interrupt requests generated by the XTLVLD flag (OSCXCN.7)										
Bit6:	Reserved. Must write 0. Reads 0.										
Bit5:	 Bit5: ESCI3: Enable Software Controlled Interrupt 3. This bit sets the masking of Software Controlled Interrupt 3. 0: Disable Software Controlled Interrupt 3. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 3. 										
Bit4:	ESCI2: Enable Software Controlled Interrupt 2. This bit sets the masking of Software Controlled Interrupt 2. 0: Disable Software Controlled Interrupt 2. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 2.										
Bit3:	This bit set 0: Disable	able Softwar s the maskir Software Co interrupt req	ng of Softwa	are Controll terrupt 1.	ed Interrupt	1. are Controlle	ed Interrup	ot Bit 1.			
Bit2:	This bit set 0: Disable	 ESCI0: Enable Software Controlled Interrupt 0. This bit sets the masking of Software Controlled Interrupt 0. 0: Disable Software Controlled Interrupt 0. 1: Enable interrupt requests generated setting the Software Controlled Interrupt Bit 0. 									
Bit1:	This bit set 0: Disable	EADC0: Enable ADC0 End of Conversion Interrupt.This bit sets the masking of the ADC0 End of Conversion Interrupt.0: Disable ADC0 Conversion Interrupt.1: Enable interrupt requests generated by the ADC0 Conversion Interrupt.									
Bit0:	Reserved.	Read = 0, \	Vrite = don'	t care.							

SFR Definition 9.11. EIE2: Extended Interrupt Enable 2

10. Flash Memory

This MCU includes 8 k + 128 bytes of on-chip, re-programmable Flash memory for program code and nonvolatile data storage. The Flash memory can be programmed in-system, a single byte at a time, through the JTAG interface or by software using the MOVX instruction. Once cleared to 0, a Flash bit must be erased to set it back to 1. The bytes would typically be erased (set to 0xFF) before being reprogrammed. The write and erase operations are automatically timed by hardware for proper execution. Data polling to determine the end of the write/erase operation is not required. The Flash memory is designed to withstand at least 20,000 write/erase cycles. Refer to Table 10.1 for the electrical characteristics of the Flash memory.

10.1. Programming The Flash Memory

The simplest means of programming the Flash memory is through the JTAG interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the JTAG commands to program Flash memory, see Section 18.1.

The Flash memory can be programmed by software using the MOVX instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, flash write operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic 1. Writing to Flash remains enabled until the PSWE bit is cleared by software.

To ensure the contents of the Flash contents, it is strongly recommended that the on-chip V_{DD} monitor be enabled (by tieing the MONEN pin 'high') in any application that writes and/or erases Flash memory from software.

Writes to Flash memory can clear bits but cannot set them. Only an erase operation can set bits in Flash. The byte location to be programmed must be erased before a new value can be written. The 8kbyte Flash memory is organized in 512-byte sectors. The erase operation applies to an entire sector (setting all bytes in the sector to 0xFF). Setting the PSEE Program Store Erase Enable bit (PSCTL.1) and PSWE Program Store Write Enable bit (PSCTL.0) to logic 1 and then using the MOVX command to write a data byte to any byte location within the sector will erase an entire 512-byte sector. The data byte written can be of any value because it is not actually written to the Flash. Flash erasure remains enabled until the PSEE bit is cleared by software. The following sequence illustrates the algorithm for programming the Flash memory by software:

- 1. Disable interrupts.
- 2. Enable Flash Memory write/erase in FLSCL Register using FLASCL bits.
- 3. Set PSEE (PSCTL.1) to enable Flash sector erase.
- 4. Set PSWE (PSCTL.0) to enable Flash writes.
- 5. Use MOVX to write a data byte to any location within the 512-byte sector to be erased.
- 6. Clear PSEE to disable Flash sector erase.
- Use MOVX to write a data byte to the desired byte location within the erased 512-byte sector. Repeat until finished. (Any number of bytes can be written from a single byte to and entire sector.)
- 8. Clear the PSWE bit to disable Flash writes.

Write/Erase timing is automatically controlled by hardware based on the prescaler value held in the Flash Memory Timing Prescaler register (FLSCL). The 4-bit prescaler value FLASCL determines the time interval for write/erase operations. The FLASCL value required for a given system clock is shown in SFR Definition 10.2, along with the formula used to derive the FLASCL values. When FLASCL is set to 1111b, the

11. On-Chip XRAM (C8051F206/226/236)

The C8051F206/226/236 features 1024 Bytes of RAM mapped into the external data memory space. All address locations may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using indirect MOVX addressing mode. If the MOVX instruction is used with an 8-bit operand (such as @R1), then the high byte is the External Memory Interface Control Register (EMI0CN, shown in SFR Definition 11.1). Addressing using 8 bits will map to one of four 256-byte pages, and these pages are selected by setting the PGSEL bits in the EMI0CN register.

NOTE: The MOVX instruction is also used for write to the Flash memory. Please see section 10 for details. The MOVX instruction will access XRAM by default.

For any of the addressing modes, the upper 6 bits of the 16-bit external data memory address word are "don't cares". As a result, the 1024-byte RAM is mapped modulo style ("wrap around") over the entire 64k of possible address values. For example, the XRAM byte at address 0x0000 is also at address 0x0400, 0x0800, 0x0C00, 0x1000, etc. This feature is useful when doing a linear memory fill, as the address pointer does not have to be reset when reaching the RAM block boundary.

SFR Definition 11.1. EMI0CN: External Memory Interface Control

R	R	R	R	R	R	R/W	R/W	Reset Value	
-	-	-	-	-	-	PGSEL1	PGSEL0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
								0xAF	
- - - - PGSEL1 PGSEL0 0000000 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:									

SFR Definition 13.2	. OSCXCN: External	Oscillator Control
---------------------	--------------------	---------------------------

R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
XTLVLD					XFCN2	XFCN1	XFCN0	00110000			
Bit7	Bit6		Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:			
								0xB1			
Bit7:	(Valid o 0: Crys	0: Crystal Oscilla nly when XOSCI tal Oscillator is u	MD = 1xx.) inused or no	ot yet stabl	9						
Bits6–4:	 Crystal Oscillator is running and stable Bits6–4: XOSCMD2–0: External Oscillator Mode Bits 00x: Off. XTAL1 pin is grounded internally. 010: System Clock from External CMOS Clock on XTAL1 pin. 011: System Clock from External CMOS Clock on XTAL1 pin divided by 2. 10x: RC/C Oscillator Mode with divide by 2 stage. 110: Crystal Oscillator Mode 111: Crystal Oscillator Mode with divide by 2 stage. 										
D:+0.		•		•	-						
Bit3: Bits2–0:		VED. Read = u -0: External Osc									
Dit32-0.		1: see table belo	•								
	XFCN	Crystal (XOSC		RC (XO	SCMD = 10)x) C (X	OSCMD =	10x)			
	000	f ≤ 12.5		-	25 kHz		Factor = 0				
	001	12.5 kHz < f ≤			< f ≤ 50 kH		Factor = 1				
	010	30.35 kHz < f s		-	$< f \le 100 \text{ kH}$		K Factor = 4.4				
	011	93.8 kHz < f ≤			< f ≤ 200 k		Factor = 1				
	100	267 kHz < f ≤			< f ≤ 400 k		Factor = 3				
	101	722 kHz < f ≤	2.23 MHz	400 kHz	< f ≤ 800 k	Hz K	Factor = 1	00			
	110	2.23 MHz < f ≤	6.74 MHz	800 kHz	< f ≤ 1.6 M	Hz K	Factor = 4	20			
	111	f > 6.74	MHz	1.6 MHz	< f ≤ 3.2 M	Hz K	Factor = 14	400			
	Choose	(Circuit from Fig XFCN value to t from Figure 13	match the c	rystal frequ	iency.	1x)					
	•	oscillation frequ	•		- 100						
		(10 ³) / (R x C), v		-							
	f = frequ	ency of oscillati	on in MHz								
		acitor value in p									
	R = Pul	-up resistor valu	e in k Ω								
C MODE	<pre>C MODE (Circuit from Figure 13.1, Option 3; XOSCMD = 10x) Choose K Factor (KF) for the oscillation frequency desired: f = KF / (C x AV+), where f = frequency of oscillation in MHz C = capacitor value on XTAL1, XTAL2 pins in pF</pre>										
	$V_{DD} = F$	ower supply vol	tage on MC	U in volts							

SFR Definition 14.9. P1MODE: Port1 Digital/Analog Input Mode

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								11111111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xF2
Bits7–0:	comparato	oonding Por rs).	•		,	analog use,	i.e., ADC o	Dr

SFR Definition 14.10. P2: Port2 Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0	11111111	
Bit7	Bit6	Bit	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:	
							(bit addressable)	0xA0	
Bits7–0:		itout appea	rs on I/O pi	ns per PRT	OMX PRT	1MX and F	PRT2MX regist	ters)	
Bits7–0:	(Write - Ou			ns per PRT	TOMX, PRT	1MX, and F	PRT2MX regis	ters)	
Bits7–0:	(Write - Ou 0: Logic Lo	ow Output.		•	·	·	C C	ters)	
Bits7–0:	(Write - Ou 0: Logic Lo 1: Logic H	ow Output. ligh Output	(high impe	dance if co	rresponding	g PRT2CF.	n bit = 0)	ters)	
Bits7–0:	(Write - Ou 0: Logic Lo 1: Logic H	ow Output. ligh Output egardless o		dance if co	rresponding	g PRT2CF.	n bit = 0)	ters)	

SFR Definition 14.11. PRT2CF: Port2 Configuration Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
								0xA6
Bits7–0:	PRT2CF.[7: 0: Corresp 1: Corresp	onding P2.	n Output Mo	ode is Open	Drain.	espectively)		

C8051F2xx

15.2. Operation

Only a SPI master device can initiate a data transfer. The SPI is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.1). Writing a byte of data to the SPI data register (SPI0DAT) when in Master Mode starts a data transfer. The SPI master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. The SPI master can be configured to shift in/out from one to eight bits in a transfer operation in order to accommodate slave devices with different word lengths. The SPIFRS bits in the SPI Configuration Register (SPI0CFG.[2:0]) are used to select the number of bits to shift in/out in a transfer operation.

While the SPI master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. The data byte received from the slave replaces the data in the master's data register. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data transfer in both directions is synchronized with the serial clock generated by the master. Figure 15.3 illustrates the full-duplex operation of an SPI master and an addressed slave.

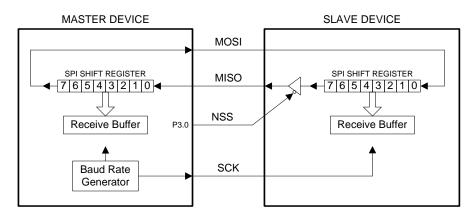


Figure 15.3. Full Duplex Operation

The SPI data register is double buffered on reads, but not on a write. If a write to SPI0DAT is attempted during a data transfer, the WCOL flag (SPI0CN.6) will be set to logic 1 and the write is ignored. The current data transfer will continue uninterrupted. A read of the SPI data register by the system controller actually reads the receive buffer. If the receive buffer still holds unread data from a previous transfer when the last bit of the current transfer is shifted into the SPI shift register, a receive overrun occurs and the RXOVRN flag (SPI0CN.4) is set to logic 1. The new data is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte causing the overrun is lost.

When the SPI is enabled and not configured as a master, it will operate as an SPI slave. Another SPI device acting as a master will initiate a transfer by driving the NSS signal low. The master then shifts data out of the shift register on the MOSI pin using the its serial clock. The SPIF flag is set to logic 1 at the end of a data transfer (when the NSS signal goes high). The slave can load its shift register for the next data transfer by writing to the SPI data register. The slave must make the write to the data register at least one SPI serial clock cycle before the master starts the next transmission. Otherwise, the byte of data already in the slave's shift register will be transferred.

SFR Definition	15.2.	SPI0CN:	SPI	Control
----------------	-------	---------	-----	---------

R/W	R/W	R/W	R/W	R	R	R/W	R/W	Reset Value				
SPIF	WCOL	MODF	RXOVRN	TXBSY	SLVSEL	MSTEN	SPIEN	00000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xF8				
Bit7:	7: SPIF: SPI Interrupt Flag. This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enable setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is automatically cleared by hardware. It must be cleared by software.											
Bit6:	WCOL: Write Collision Flag. This bit is set to logic 1 by hardware (and generates a SPI interrupt) to indicate a write to th SPI data register was attempted while a data transfer was in progress. It is cleared by sof ware.											
Bit5:	This bit is s collision is a	detected (N	by hardwar	nd MSTEN		Pl interrupt) v bit is not aut						
Bit4:	This bit is s still holds u shifted into	nread data	by hardwar from a previ ft register. T	ous transfe	er and the la	st bit of the	current tra	eceive buffer Insfer is are. It must				
Bit3:		et to logic 1	•			e transfer is	in progres	s. It is				
Bit2:	SLVSEL: Slave Selected Flag. This bit is set to logic 1 whenever the NSS pin is low indicating it is enabled as a slave. It is cleared to logic 0 when NSS is high (slave disabled).											
Bit1:	MSTEN: Master Mode Enable. 0: Disable master mode. Operate in slave mode. 1: Enable master mode. Operate as a master.											
Bit0:	SPIEN: SPI Enable. This bit enables/disables the SPI. 0: SPI disabled. 1: SPI enabled.											

If T1M (CKCON.4) is logic 1, then the above equation becomes:

T1_OVERFLOWRATE = (SYSCLK) / (256 - TH1).

If T1M (CKCON.4) is logic 0, then the above equation becomes:

 $T1_OVERFLOWRATE = (SYSCLK/12) / (256 - TH1).$

The Timer 2 overflow rate, when in Baud Rate Generator Mode and using an internal clock source, is determined solely by the Timer 2 16-bit reload value (RCAP2H:RCAP2L). The Timer 2 clock source is fixed at SYSCLK/2. The Timer 2 overflow rate can be calculated as follows:

T2_OVERFLOWRATE = (SYSCLK/2) / (65536 - [RCAP2H:RCAP2L]).

Timer 2 can be selected as the baud rate generator for RX and/or TX by setting RCLK (T2CON.5) and/or TCLK (T2CON.4), respectively. When either RCLK or TCLK is set to logic 1, Timer 2 interrupts are automatically disabled and the timer is forced into Baud Rate Generator Mode with SYSCLK/2 as its clock source. If a different timebase is required, setting the C/T2 bit (T2CON.1) to logic 1 will allow Timer 2 to be clocked from the external input pin T2. See the Timers section for complete timer configuration details.

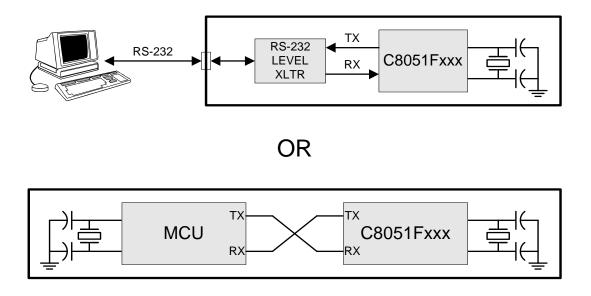


Figure 16.5. UART Modes 1, 2, and 3 Interconnect Diagram

	SFR	Definition	17.2.	TMOD:	Timer Mod	le
--	-----	------------	-------	-------	-----------	----

R/W	R/	W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
GATE	1 C/	Γ1 ٦	T1M1 T1M0		GATE0	C/T0	T0M1	T0M0	00000000	
Bit7	Bit7 Bit6		Bit5	Bit4	Bit3	Bit1	Bit0	SFR Address: 0x89		
Bit7:	GATE	1: Timer								
Bitr.					irrespective	of /INT1 lo	gic level.			
1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic level one. Bit6: C/T1: Counter/Timer 1 Select.										
					nented by clo					
			nction: T	imer 1 incre	emented by	high-to-low	transitions	on externa	al input pin	
Bits5–4	P0.5/1		imor 1 M	Node Selec	\					
DI130-4					ation mode.					
	111000				adon modo.					
	T1M1	T1M0			Mode					
	0	0	Mode (): 13-bit cou	unter/timer					
	<u>^</u>	1	Mode	1: 16-bit cou						
	0		woue		unter/timer					
	0	0			nter/timer wi	th auto-relo	ad			
	-	-	Mode 2	2: 8-bit cour			ad			
Bit3: Bit2: Bits1–0	GATE 0: Tim 1: Tim C/T0: 0: Tin 1: Co P0.4/T 0: T0M1.	0 1 er 0 enal er 0 enal counter/ ner Funct unter Fur r0. –T0M0: 1	Mode 2 Mode 3 0 Gate 0 oled whe oled only Timer So ion: Tim nction: T	2: 8-bit cour 3: Timer 1 li Control. en TR0 = 1 / when TR0 elect. er 0 increm imer 0 incre	nter/timer wi nactive/stop irrespective) = 1 AND /I nented by clo emented by	of /INT0 lo NT0 = logic ock defined high-to-low	gic level. level one. by T0M bit			
Bit2:	GATE 0: Tim 1: Tim C/T0: 0: Tin 1: Co P0.4/T 0: T0M1.	0 1 er 0 enal er 0 enal counter/ ner Funct unter Fur r0. –T0M0: 1	Mode 2 Mode 3 0 Gate 0 oled whe oled only Timer So ion: Tim nction: T	2: 8-bit cour 3: Timer 1 li Control. en TR0 = 1 / when TR0 elect. er 0 increm imer 0 incre	nter/timer wi nactive/stop irrespective) = 1 AND /l nented by clo emented by ct.	of /INT0 lo NT0 = logic ock defined high-to-low	gic level. level one. by T0M bit			
Bit2:	GATE 0: Tim 1: Tim 1: Tim C/T0: 0: Tin 1: Co P0.4/T): T0M1- These	0 1 er 0 enal er 0 enal counter/ ner Funct unter Fur co. -T0M0: T bits sele	Mode 2 Mode 3 O Gate 0 oled whe oled only Timer Se ion: Tim nction: T	2: 8-bit cour 3: Timer 1 li Control. en TR0 = 1 / when TR0 elect. er 0 increm imer 0 incre	nter/timer wi nactive/stop irrespective) = 1 AND /I nented by clo emented by clo emented by ct. ration mode.	of /INT0 lo NT0 = logic ock defined high-to-low	gic level. level one. by T0M bit			
Bit2:	1 GATE 0: Tim 1: Tim C/T0: 0: Tin 1: Co P0.4/T 0: T0M1- These T0M1	0 1 er 0 enat er 0 enat er 0 enat Counter/ ner Funct unter Fur T0. -T0M0: 1 bits sele T0M0	Mode 2 Mode 3 O Gate 0 oled whe oled only Timer 0 ion: Tim nction: T	2: 8-bit cour 3: Timer 1 li 2: Timer 0 lincrem 2: Timer 0 lincrem 2: Timer 0 oper	nter/timer wi nactive/stop irrespective) = 1 AND /I nented by clo emented by ct. ation mode. Mode unter/timer	of /INT0 lo NT0 = logic ock defined high-to-low	gic level. level one. by T0M bit			
Bit2:	1 1 GATE 0: Tim 1: Tim C/T0: 0: Tin 1: Co P0.4/I 0: TOM1- These TOM1 0	0 1 er 0 enal er 0 enal er 0 enal counter/ ner Funct unter Fur 0. -T0M0: T bits sele 0	Mode 2 Mode 3 O Gate 0 oled whe oled only Timer Se ion: Tim nction: T Timer 0 N oct the Ti Mode 0	2: 8-bit cour 3: Timer 1 li Control. en TR0 = 1 / when TR0 elect. er 0 increm ïmer 0 increm Mode Select imer 0 oper 0: 13-bit cou	nter/timer wi nactive/stop irrespective) = 1 AND /I nented by clo emented by ct. ation mode. Mode unter/timer	ped of /INT0 lo NT0 = logic bock defined high-to-low	gic level. level one. by TOM bit transitions			

	_							Reset Value				
WRMD3	WRMD2	2 WRMD1	WRMD0	RDMD3	RDMD2	RDMD1	RDMD0	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
This register determines how the Flash interface logic will respond to reads and writes to the FLA DAT Register.												
 Bits7–4: WRMD3–0: Write Mode Select Bits. The Write Mode Select Bits control how the interface logic responds to writes to the FLA DAT Register per the following values: 0000: A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise ignored. 												
		FLASHDAT										
		y the FLASH	•					•				
	c o u 0	FLASHDAT ontaining the ccur. FLASH ser space will x1E00 – 0x1F values for WI	address in F ADR is not a be erased FFF).	FLASHADR affected. If (i.e. entire F	. FLASHDA FLASHADR	AT must be R = 0x1DFE	0xA5 for the - 0x1DFF, 1	e erase to the entire				
Dite 2 Or		0. Dood Mod	Coloct Dite									
Bits3–0:	The Read	0: Read Mode I Mode Select ster per the fo	t Bits contro	I how the in	erface logic	responds t	to reads to t	he FLASH-				
	0000: A		•		n the FLAS	HDAT regis	IDAT register, but is otherwise					
		FLASHDAT no operation						OR register				
	o F	FLASHDAT peration is ac LASHDAT. T rithout initiatin	tive and any his mode al	/ data from a lows single	a previous r	ead has alr	eady been r	ead from				
	(All other	values for RE	MD3–0 are	reserved.)								

JTAG Register Definition 18.2. FLASHCON: JTAG Flash Control

JTAG Register Definition 18.3. FLASHADR: JTAG Flash Address

												Reset Value
												0x0000
Bit15											Bit0	-
	•									•		egister failed.
Bits1	5–0: I	Flash	Opera	ation 1	16-bit	Addre	SS.					

ſ

DOCUMENT CHANGE LIST

Revision 1.5 to Revision 1.6

• Table 3.1 on page 24 corrected to show 32 kHz instead of 32 MHz.

