

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

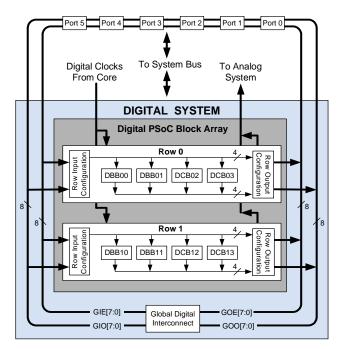
Details

2010	
Product Status	Obsolete
Core Processor	M8C
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	24
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
Data Converters	A/D 4x14b; D/A 4x9b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c27443-24pvi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

processor. The CPU utilizes an interrupt controller with 17 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).


Memory encompasses 16 KB of Flash for program storage, 256 bytes of SRAM for data storage, and up to 2 KB of EEPROM emulated using the Flash. Program Flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The Digital System is composed of 8 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Digital System Block Diagram

Digital peripheral configurations include those listed below.

- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 32 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8 bit with selectable parity (up to 2)
- SPI master and slave (up to 2)
- I2C slave and master (1 available as a System Resource)
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA (up to 2)
- Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled "PSoC Device Characteristics" on page 3.

The Analog System

The Analog System is composed of 12 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (up to 4, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2, 4, 6, and 8 pole band-pass, low-pass, and notch)
- Amplifiers (up to 4, with selectable gain to 48x)
- Instrumentation amplifiers (up to 2, with selectable gain to 93x)
- Comparators (up to 4, with 16 selectable thresholds)
- DACs (up to 4, with 6- to 9-bit resolution)
- Multiplying DACs (up to 4, with 6- to 9-bit resolution)
- High current output drivers (four with 30 mA drive as a Core Resource)
- 1.3V reference (as a System Resource)
- DTMF dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

Getting Started

The quickest path to understanding the PSoC silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, reference the *PSoCTM Mixed Signal Array Technical Reference Manual.*

For up-to-date Ordering, Packaging, and Electrical Specification information, reference the latest PSoC device data sheets on the web at http://www.cypress.com/psoc.

Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store at http://www.onfulfillment.com/cypressstore/ contains development kits, C compilers, and all accessories for PSoC development. Click on *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Tele-Training

Free PSoC "Tele-training" is available for beginners and taught by a live marketing or application engineer over the phone. Five training classes are available to accelerate the learning curve including introduction, designing, debugging, advanced design, advanced analog, as well as application-specific classes covering topics like PSoC and the LIN bus. For days and times of the tele-training, see http://www.cypress.com/support/training.cfm.

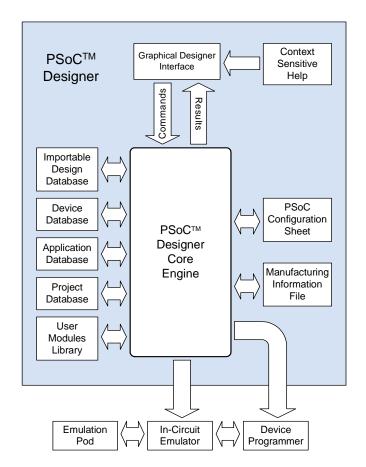
Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant, go to the following Cypress support web site: http://www.cypress.com/support/cypros.cfm.

Technical Support

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support/login.cfm.

Application Notes


A long list of application notes will assist you in every aspect of your design effort. To locate the PSoC application notes, go to http://www.cypress.com/design/results.cfm.

Development Tools

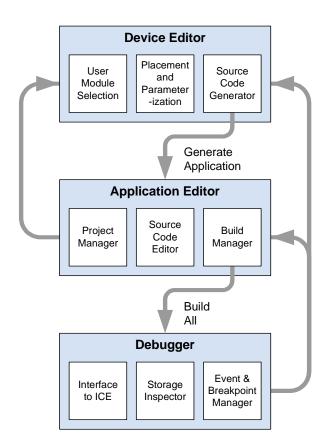
The Cypress MicroSystems PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP. (Reference the PSoC Designer Functional Flow diagram below.)

PSoC Designer helps the customer to select an operating configuration for the PSoC, write application code that uses the PSoC, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high-level C language compiler developed specifically for the devices in the family.

PSoC Designer Subsystems

Designing with User Modules


The development process for the PSoC device differs from that of a traditional fixed function microprocessor. The configurable analog and digital hardware blocks give the PSoC architecture a unique flexibility that pays dividends in managing specification change during development and by lowering inventory costs. These configurable resources, called PSoC Blocks, have the ability to implement a wide variety of user-selectable functions. Each block has several registers that determine its function and connectivity to other blocks, multiplexers, buses, and to the IO pins. Iterative development cycles permit you to adapt the hardware as well as the software. This substantially lowers the risk that you will have to select a different part to meet the final design requirements.

To speed the development process, the PSoC Designer Integrated Development Environment (IDE) provides a library of pre-built, pre-tested hardware peripheral functions, called "User Modules." User modules make selecting and implementing peripheral devices simple, and come in analog, digital, and mixed signal varieties. The standard User Module library contains over 50 common peripherals such as ADCs, DACs Timers, Counters, UARTs, and other not-so common peripherals such as DTMF Generators and Bi-Quad analog filter sections.

Each user module establishes the basic register settings that implement the selected function. It also provides parameters that allow you to tailor its precise configuration to your particular application. For example, a Pulse Width Modulator User Module configures one or more digital PSoC blocks, one for each 8 bits of resolution. The user module parameters permit you to establish the pulse width and duty cycle. User modules also provide tested software to cut your development time. The user module application programming interface (API) provides highlevel functions to control and respond to hardware events at run-time. The API also provides optional interrupt service routines that you can adapt as needed.

The API functions are documented in user module data sheets that are viewed directly in the PSoC Designer IDE. These data sheets explain the internal operation of the user module and provide performance specifications. Each data sheet describes the use of each user module parameter and documents the setting of each register controlled by the user module.

The development process starts when you open a new project and bring up the Device Editor, a graphical user interface (GUI) for configuring the hardware. You pick the user modules you need for your project and map them onto the PSoC blocks with point-and-click simplicity. Next, you build signal chains by interconnecting user modules to each other and the IO pins. At this stage, you also configure the clock source connections and enter parameter values directly or by selecting values from drop-down menus. When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Application" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the high-level user module API functions.

User Module and Source Code Development Flows

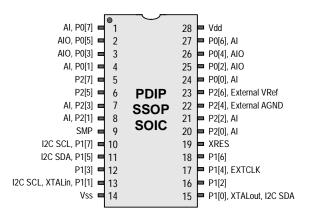
The next step is to write your main program, and any sub-routines using PSoC Designer's Application Editor subsystem. The Application Editor includes a Project Manager that allows you to open the project source code files (including all generated code files) from a hierarchal view. The source code editor provides syntax coloring and advanced edit features for both C and assembly language. File search capabilities include simple string searches and recursive "grep-style" patterns. A single mouse click invokes the Build Manager. It employs a professional-strength "makefile" system to automatically analyze all file dependencies and run the compiler and assembler as necessary. Project-level options control optimization strategies used by the compiler and linker. Syntax errors are displayed in a console window. Double clicking the error message takes you directly to the offending line of source code. When all is correct, the linker builds a HEX file image suitable for programming.

The last step in the development process takes place inside the PSoC Designer's Debugger subsystem. The Debugger downloads the HEX image to the In-Circuit Emulator (ICE) where it runs at full speed. Debugger capabilities rival those of systems costing many times more. In addition to traditional single-step, run-to-breakpoint and watch-variable features, the Debugger provides a large trace buffer and allows you define complex breakpoint events that include monitoring address and data bus values, memory locations and external signals.

1.1.2 20-Pin Part Pinout

Table 1-2. 20-Pin Part Pinout (SSOP, SOIC)

Pin	Ту	ре	Pin	
No.	Digital	Analog	Name	Description
1	10	I	P0[7]	Analog column mux input.
2	10	10	P0[5]	Analog column mux input and column output.
3	10	10	P0[3]	Analog column mux input and column output.
4	10	I	P0[1]	Analog column mux input.
5	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required.
6	10		P1[7]	I2C Serial Clock (SCL)
7	10		P1[5]	I2C Serial Data (SDA)
8	10		P1[3]	
9	10		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)
10	Power		Vss	Ground connection.
11	IO		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)
12	ю		P1[2]	
13	10		P1[4]	Optional External Clock Input (EXTCLK)
14	10		P1[6]	
15	Inj	out	XRES	Active high external reset with internal pull down.
16	IO	Ι	P0[0]	Analog column mux input.
17	10	10	P0[2]	Analog column mux input and column output.
18	Ю	10	P0[4]	Analog column mux input and column output.
19	ю	Ι	P0[6]	Analog column mux input.
20	Po	wer	Vdd	Supply voltage.


CY8C27243 20-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

Table 1-3. 28-Pin Part Pinout (PDIP, SSOP, SOIC)

Pin	Туре		Pin	Description		
No.	Digital	Analog	Name	Description		
1	10	I	P0[7]	Analog column mux input.		
2	10	10	P0[5]	Analog column mux input and column output.		
3	10	10	P0[3]	Analog column mux input and column output.		
4	10	I	P0[1]	Analog column mux input.		
5	10		P2[7]			
6	10		P2[5]			
7	10	I	P2[3]	Direct switched capacitor block input.		
8	10	I	P2[1]	Direct switched capacitor block input.		
9	Pov	wer	SMP	Switch Mode Pump (SMP) connection to external components required.		
10	10		P1[7]	I2C Serial Clock (SCL)		
11	10		P1[5]	I2C Serial Data (SDA)		
12	10		P1[3]			
13	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)		
14	4 Power V		Vss	Ground connection.		
15	Ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)		
16	10		P1[2]			
17	10		P1[4]	Optional External Clock Input (EXTCLK)		
18	10		P1[6]			
19	Inp	out	XRES	Active high external reset with internal pull down.		
20	Ю	I	P2[0]	Direct switched capacitor block input.		
21	10	I	P2[2]	Direct switched capacitor block input.		
22	10		P2[4]	External Analog Ground (AGND)		
23	Ю		P2[6]	External Voltage Reference (VRef)		
24	Ю	I	P0[0]	Analog column mux input.		
25	Ю	Ю	P0[2]	Analog column mux input and column output.		
26	Ю	Ю	P0[4]	Analog column mux input and column output.		
27	Ю	I	P0[6]	Analog column mux input.		
28	Pov	wer	Vdd	Supply voltage.		

CY8C27443 28-Pin PSoC Device

LEGEND: A = Analog, I = Input, and O = Output.

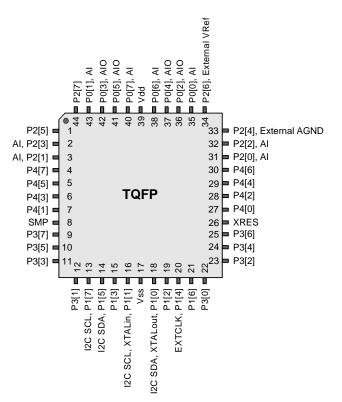

1.1.4 44-Pin Part Pinout

Table 1-4. 44-Pin Part Pinout (TQFP)

Pin	Туре		Pin	D			
No.	Digital	Analog	Name	Description			
1	Ю		P2[5]				
2	IO	I	P2[3]	Direct switched capacitor block input.			
3	Ю	I	P2[1]	Direct switched capacitor block input.			
4	IO		P4[7]				
5	IO		P4[5]				
6	Ю		P4[3]				
7	IO		P4[1]				
8	Pov	wer	SMP	Switch Mode Pump (SMP) connection to external components required.			
9	10		P3[7]				
10	IO		P3[5]				
11	Ю		P3[3]				
12	IO		P3[1]				
13	IO		P1[7]	I2C Serial Clock (SCL)			
14	ю		P1[5]	I2C Serial Data (SDA)			
15	Ю		P1[3]				
16	ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)			
17	Po	wer	Vss	Ground connection.			
18	IO		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)			
19	ю		P1[2]				
20	IO		P1[4]	Optional External Clock Input (EXTCLK)			
21	IO		P1[6]				
22	IO		P3[0]				
23	10		P3[2]				
24	10		P3[4]				
25	10		P3[6]				
26	Inp	out	XRES	Active high external reset with internal pull down.			
27	IO		P4[0]				
28	IO		P4[2]				
29	Ю		P4[4]				
30	Ю		P4[6]				
31	IO	I	P2[0]	Direct switched capacitor block input.			
32	IO	I	P2[2]	Direct switched capacitor block input.			
33	IO		P2[4]	External Analog Ground (AGND)			
34	IO		P2[6]	External Voltage Reference (VRef)			
35	Ю	I	P0[0]	Analog column mux input.			
36	IO	IO	P0[2]	Analog column mux input and column output.			
37	IO	IO	P0[4]	Analog column mux input and column output.			
38	IO	I	P0[6]	Analog column mux input.			
39	Pov	wer	Vdd	Supply voltage.			
40	IO	I	P0[7]	Analog column mux input.			
41	IO	10	P0[5]	Analog column mux input and column output.			
42	IO	IO	P0[3]	Analog column mux input and column output.			
43	IO	I	P0[1]	Analog column mux input.			
44	IO		P2[7]				

LEGEND: A = Analog, I = Input, and O = Output.

CY8C27543 44-Pin PSoC Device

This chapter presents the DC and AC electrical specifications of the CY8C27x43 PSoC device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.

Specifications are valid for $-40^{\circ}C \le T_A \le 85^{\circ}C$ and $T_J \le 100^{\circ}C$, except where noted. Specifications for devices running at greater than 12 MHz are valid for $-40^{\circ}C \le T_A \le 70^{\circ}C$ and $T_J \le 82^{\circ}C$.

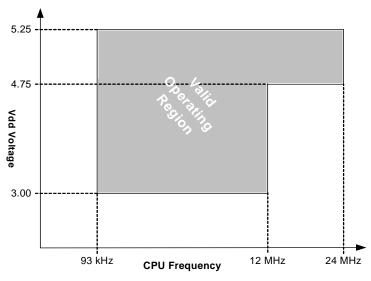


Figure 3-1. Voltage versus CPU Frequency

The following table lists the units of measure that are used in this chapter.

Table 3-1: Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	μW	micro watts
dB	decibels	mA	milli-ampere
fF	femto farad	ms	milli-second
Hz	hertz	mV	milli-volts
KB	1024 bytes	nA	nano ampere
Kbit	1024 bits	ns	nanosecond
kHz	kilohertz	nV	nanovolts
kΩ	kilohm	Ω	ohm
MHz	megahertz	pА	pico ampere
MΩ	megaohm	pF	pico farad
μA	micro ampere	рр	peak-to-peak
μF	micro farad	ppm	parts per million
μH	micro henry	ps	picosecond
μs	microsecond	sps	samples per second
μV	micro volts	σ	sigma: one standard deviation
μVrms	micro volts root-mean-square	V	volts

3.3 DC Electrical Characteristics

3.3.1 DC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 3-4. DC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
Vdd	Supply Voltage	3.00	-	5.25	V	
I _{DD}	Supply Current	-	5	8	mA	Conditions are Vdd = 5.0V, $T_A = 25 \ ^{o}C$, CPU = 3 MHz, 48 MHz = Disabled. VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{DD3}	Supply Current	-	3.3	6.0	mA	Conditions are Vdd = $3.3V$, T _A = $25 ^{\circ}$ C, CPU = 3 MHz, 48 MHz = Disabled, VC1 = 1.5 MHz, VC2 = 93.75 kHz, VC3 = 93.75 kHz.
I _{SB}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT. ^a	-	3	6.5	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, -40 $^oC \leq T_A \leq ~55 ~^oC.$
I _{SBH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, and WDT at high temperature. ^a	-	4	25	μΑ	Conditions are with internal slow speed oscillator, Vdd = 3.3V, 55 ^{o}C < T_A $\leq~85$ $^{o}C.$
I _{SBXTL}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal. ^a	-	4	7.5	μΑ	Conditions are with properly loaded, 1 μW max, 32.768 kHz crystal. Vdd = 3.3V, -40 °C $\leq T_A \leq$ 55 °C.
I _{SBXTLH}	Sleep (Mode) Current with POR, LVD, Sleep Timer, WDT, and external crystal at high temperature. ^a	-	5	26	μΑ	Conditions are with properly loaded, 1 μW max, 32.768 kHz crystal. Vdd = 3.3V, 55 oC < T_A \leq 85 $^oC.$
V_{REF}	Reference Voltage (Bandgap) for Silicon A ^b	1.275	1.300	1.325	V	Trimmed for appropriate Vdd.
V_{REF}	Reference Voltage (Bandgap) for Silicon B ^b	1.280	1.300	1.320	V	Trimmed for appropriate Vdd.

a. Standby current includes all functions (POR, LVD, WDT, Sleep Time) needed for reliable system operation. This should be compared with devices that have similar functions enabled.

b. Refer to the Ordering Information chapter on page 42.

3.3.2 DC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table	3-5. D	C GPIO	Specifications
-------	--------	--------	----------------

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull up Resistor	4	5.6	8	kΩ	
R _{PD}	Pull down Resistor	4	5.6	8	kΩ	
V _{OH}	High Output Level	Vdd - 1.0	-	-	V	IOH = 10 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])).
V _{OL}	Low Output Level	-	-	0.75	V	IOL = 25 mA, Vdd = 4.75 to 5.25V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])).
V _{IL}	Input Low Level	-	-	0.8	V	Vdd = 3.0 to 5.25
V _{IH}	Input High Level	2.1	-		V	Vdd = 3.0 to 5.25
V _H	Input Hysterisis	-	60	-	mV	
IIL	Input Leakage (Absolute Value)	-	1	-	nA	Gross tested to 1 µA.
C _{IN}	Capacitive Load on Pins as Input	-	3.5	10	pF	Package and pin dependent. Temp = 25°C.
C _{OUT}	Capacitive Load on Pins as Output	-	3.5	10	pF	Package and pin dependent. Temp = 25° C.

3.3.6 DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.274	1.30	1.326	V
-	$AGND = Vdd/2^{a}$	Vdd/2 - 0.030	Vdd/2 - 0.004	Vdd/2 + 0.003	V
-	AGND = 2 x BandGap ^a	2 x BG - 0.043	2 x BG - 0.010	2 x BG + 0.024	V
-	AGND = P2[4] (P2[4] = Vdd/2) ^a	P2[4] - 0.013	P2[4]	P2[4] + 0.014	V
-	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V
-	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	V
-	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.140	Vdd/2 + BG - 0.018	Vdd/2 + BG + 0.103	V
-	RefHi = 3 x BandGap	3 x BG - 0.112	3 x BG - 0.018	3 x BG + 0.076	V
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.113	2 x BG + P2[6] - 0.018	2 x BG + P2[6] + 0.077	V
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.130	P2[4] + BG - 0.016	P2[4] + BG + 0.098	V
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.133	P2[4] + P2[6] - 0.016	P2[4] + P2[6] + 0.100	V
-	RefHi = 3.2 x BandGap	3.2 x BG - 0.112	3.2 x BG	3.2 x BG + 0.076	V
-	RefLo = Vdd/2 – BandGap	Vdd/2 - BG - 0.051	Vdd/2 - BG + 0.024	Vdd/2 - BG + 0.098	V
-	RefLo = BandGap	BG - 0.082	BG + 0.023	BG + 0.129	V
-	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.084	2 x BG - P2[6] + 0.025	2 x BG - P2[6] + 0.134	V
-	RefLo = P2[4] – BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.026	P2[4] - BG + 0.107	V
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.057	P2[4] - P2[6] + 0.026	P2[4] - P2[6] + 0.110	V

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Table 3-12. Silicon Revision B – 5V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Мах	Units
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V
-	$AGND = Vdd/2^a$	Vdd/2 - 0.030	Vdd/2	Vdd/2 + 0.007	V
-	AGND = 2 x BandGap ^a	2 x BG - 0.043	2 x BG	2 x BG + 0.024	V
-	AGND = P2[4] (P2[4] = Vdd/2) ^a	P2[4] - 0.011	P2[4]	P2[4] + 0.011	V
_	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V
-	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	V
-	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.1	Vdd/2 + BG - 0.01	Vdd/2 + BG + 0.1	V
-	RefHi = 3 x BandGap	3 x BG - 0.06	3 x BG - 0.01	3 x BG + 0.06	V
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.06	2 x BG + P2[6] - 0.01	2 x BG + P2[6] + 0.06	V
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.06	P2[4] + BG - 0.01	P2[4] + BG + 0.06	V
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.06	V
-	RefHi = 3.2 x BandGap	3.2 x BG - 0.06	3.2 x BG - 0.01	3.2 x BG + 0.06	V
-	RefLo = Vdd/2 - BandGap	Vdd/2 - BG - 0.051	Vdd/2 - BG + 0.01	Vdd/2 - BG + 0.06	V
-	RefLo = BandGap	BG - 0.06	BG + 0.01	BG + 0.06	V
-	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.04	2 x BG - P2[6] + 0.01	2 x BG - P2[6] + 0.04	V
-	RefLo = P2[4] – BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.01	P2[4] - BG + 0.056	V
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.056	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.056	V

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Symbol	Description	Min	Тур	Max	Units				
BG	Bandgap Voltage Reference	1.274	1.30	1.326	V				
-	$AGND = Vdd/2^a$	Vdd/2 - 0.027	Vdd/2 - 0.003	Vdd/2 + 0.002	V				
-	AGND = 2 x BandGap ^a	Not Allowed	•	•					
-	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4] + 0.001	P2[4] + 0.009	V				
_	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V				
_	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V				
-	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	mV				
_	RefHi = Vdd/2 + BandGap	Not Allowed							
-	RefHi = 3 x BandGap	Not Allowed							
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)	Not Allowed							
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	Not Allowed							
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.075	P2[4] + P2[6] - 0.009	P2[4] + P2[6] + 0.057	V				
_	RefHi = 3.2 x BandGap	Not Allowed							
_	RefLo = Vdd/2 - BandGap	Not Allowed							
_	RefLo = BandGap	Not Allowed							
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)	Not Allowed							
-	RefLo = P2[4] – BandGap (P2[4] = Vdd/2)	Not Allowed							
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] - P2[6] - 0.048	P2[4] - P2[6] + 0.022	P2[4] - P2[6] + 0.092	V				

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Note See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

Table 3-14. Silicon Revision B – 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Мах	Units					
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V					
_	$AGND = Vdd/2^{a}$	Vdd/2 - 0.027	Vdd/2	Vdd/2 + 0.005	V					
-	AGND = 2 x BandGap ^a	Not Allowed								
-	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4]	P2[4] + 0.009	V					
-	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V					
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V					
-	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	mV					
-	RefHi = Vdd/2 + BandGap	Not Allowed	•							
-	RefHi = 3 x BandGap	Not Allowed								
-	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)	Not Allowed								
-	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	Not Allowed								
-	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.057	V					
-	RefHi = 3.2 x BandGap	Not Allowed								
-	RefLo = Vdd/2 - BandGap	Not Allowed	Not Allowed							
-	RefLo = BandGap	Not Allowed	Not Allowed							
-	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)	Not Allowed	Not Allowed							
-	RefLo = P2[4] – BandGap (P2[4] = Vdd/2)	Not Allowed	Not Allowed							
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] - P2[6] - 0.048	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.048	V					

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Note See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

3.3.7 DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 3-15. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor Unit Value (Continuous Time)	-	12.2	-	kΩ	
C _{SC}	Capacitor Unit Value (Switch Cap)	-	80	-	fF	

3.3.8 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the PSoC Mixed Signal Array Technical Reference Manual for more information on the VLT_CR register.

Table 3-16. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
	Vdd Value for PPOR Trip (positive ramp)					
V _{PPOR0R}	PORLEV[1:0] = 00b		2.91		V	
V _{PPOR1R}	PORLEV[1:0] = 01b	-	4.39	-	V	
V _{PPOR2R}	PORLEV[1:0] = 10b		4.55		V	
	Vdd Value for PPOR Trip (negative ramp)					
V _{PPOR0}	PORLEV[1:0] = 00b		2.82		V	
V _{PPOR1}	PORLEV[1:0] = 01b	-	4.39	-	V	
V _{PPOR2}	PORLEV[1:0] = 10b		4.55		V	
	PPOR Hysteresis					
V _{PH0}	PORLEV[1:0] = 00b	-	92	-	mV	
V _{PH1}	PORLEV[1:0] = 01b	-	0	-	mV	
V _{PH2}	PORLEV[1:0] = 10b	-	0	-	mV	
	Vdd Value for LVD Trip					
V _{LVD0}	VM[2:0] = 000b	2.86	2.92	2.98 ^a	V	
V _{LVD1}	VM[2:0] = 001b	2.96	3.02	3.08	V	
V _{LVD2}	VM[2:0] = 010b	3.07	3.13	3.20	V	
V _{LVD3}	VM[2:0] = 011b	3.92	4.00	4.08	V	
V _{LVD4}	VM[2:0] = 100b	4.39	4.48	4.57	V	
V _{LVD5}	VM[2:0] = 101b	4.55	4.64	4.74 ^b	V	
V _{LVD6}	VM[2:0] = 110b	4.63	4.73	4.82	V V	
V _{LVD7}	VM[2:0] = 111b	4.72	4.81	4.91	v	
	Vdd Value for PUMP Trip					
V _{PUMP0}	VM[2:0] = 000b	2.96	3.02	3.08	V	
V _{PUMP1}	VM[2:0] = 001b	3.03	3.10	3.16	V	
V _{PUMP2}	VM[2:0] = 010b	3.18	3.25	3.32	V	
V _{PUMP3}	VM[2:0] = 011b	4.11	4.19	4.28	V	
V _{PUMP4}	VM[2:0] = 100b	4.55	4.64	4.74	V V	
V _{PUMP5}	VM[2:0] = 101b	4.63	4.73	4.82	v	
V _{PUMP6}	VM[2:0] = 110b	4.72	4.82	4.91	v	
V _{PUMP7}	VM[2:0] = 111b	4.90	5.00	5.10	v	

a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

3.4 AC Electrical Characteristics

3.4.1 AC Chip-Level Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Symbol	Description	Min	Тур	Мах	Units	Notes
F _{IMO}	Internal Main Oscillator Frequency	23.4	24	24.6 ^a	MHz	Trimmed. Utilizing factory trim values.
F _{CPU1}	CPU Frequency (5V Nominal)	0.93	24	24.6 ^{a,b}	MHz	Trimmed. Utilizing factory trim values.
F _{CPU2}	CPU Frequency (3.3V Nominal)	0.93	12	12.3 ^{b,c}	MHz	Trimmed. Utilizing factory trim values.
F _{48M}	Digital PSoC Block Frequency	0	48	49.2 ^{a,b,d}	MHz	Refer to the AC Digital Block Specifications below.
F _{24M}	Digital PSoC Block Frequency	0	24	24.6 ^{b, d}	MHz	
F _{32K1}	Internal Low Speed Oscillator Frequency	15	32	64	kHz	
F _{32K2}	External Crystal Oscillator	-	32.768	-	kHz	Accuracy is capacitor and crystal dependent. 50% duty cycle.
F _{PLL}	PLL Frequency	-	23.986	-	MHz	Multiple (x732) of crystal frequency.
Jitter24M2	24 MHz Period Jitter (PLL)	-	-	600	ps	
T _{PLLSLEW}	PLL Lock Time	0.5	-	10	ms	
T _{PLLSLEWS} . LOW	PLL Lock Time for Low Gain Setting	0.5	-	50	ms	
T _{OS}	External Crystal Oscillator Startup to 1%	-	1700	2620	ms	
T _{OSACC}	External Crystal Oscillator Startup to 100 ppm	-	2800	3800	ms	The crystal oscillator frequency is within 100 ppm of its final value by the end of the T _{osacc} period. Correct operation assumes a properly loaded 1 uW maximum drive level 32.768 kHz crystal. 3.0V \leq Vdd \leq 5.5V, -40 $^{\circ}C \leq T_{A} \leq 85 ^{\circ}C$.
Jitter32k	32 kHz Period Jitter	-	100		ns	
T _{XRST}	External Reset Pulse Width	10	-	-	μs	
DC24M	24 MHz Duty Cycle	40	50	60	%	
Step24M	24 MHz Trim Step Size	-	50	-	kHz	
Fout48M	48 MHz Output Frequency	46.8	48.0	49.2 ^{a,c}	MHz	Trimmed. Utilizing factory trim values.
Jitter24M1	24 MHz Period Jitter (IMO)	-	600		ps	
F _{MAX}	Maximum frequency of signal on row input or row output.	-	-	12.3	MHz	
T _{RAMP}	Supply Ramp Time	0	-	-	μs	

a. 4.75V < Vdd < 5.25V.

b. Accuracy derived from Internal Main Oscillator with appropriate trim for Vdd range.

c. 3.0V < Vdd < 3.6V. See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

d. See the individual user module data sheets for information on maximum frequencies for user modules.

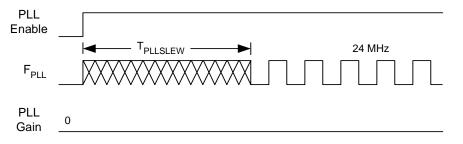


Figure 3-3. PLL Lock Timing Diagram

3.4.2 AC General Purpose IO Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 3-19. AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO Operating Frequency	0	-	12	MHz	
TRiseF	Rise Time, Normal Strong Mode, Cload = 50 pF	3	-	18	ns	Vdd = 4.5 to 5.25V, 10% - 90%
TFallF	Fall Time, Normal Strong Mode, Cload = 50 pF	2	-	18	ns	Vdd = 4.5 to 5.25V, 10% - 90%
TRiseS	Rise Time, Slow Strong Mode, Cload = 50 pF	10	27	-	ns	Vdd = 3 to 5.25V, 10% - 90%
TFallS	Fall Time, Slow Strong Mode, Cload = 50 pF	10	22	-	ns	Vdd = 3 to 5.25V, 10% - 90%

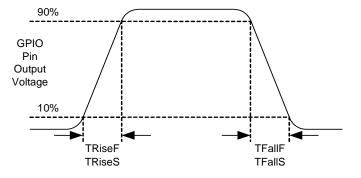


Figure 3-8. GPIO Timing Diagram

3.4.3 AC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Settling times, slew rates, and gain bandwidth are based on the Analog Continuous Time PSoC block.

Power = High and Opamp Bias = High is not supported at 3.3V.

Table 3-20. 5V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	3.9	μs	
	Power = Medium, Opamp Bias = High	-	-	0.72	μs	
	Power = High, Opamp Bias = High	-	-	0.62	μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	5.9	μs	
	Power = Medium, Opamp Bias = High	-	-	0.92	μs	
	Power = High, Opamp Bias = High	-	-	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.15	-	-	V/µs	
	Power = Medium, Opamp Bias = High	1.7	-	-	V/µs	
	Power = High, Opamp Bias = High	6.5	-	-	V/µs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.01	-	-	V/µs	
	Power = Medium, Opamp Bias = High	0.5	-	-	V/µs	
	Power = High, Opamp Bias = High	4.0	-	-	V/µs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp Bias = Low	0.75	-	-	MHz	
	Power = Medium, Opamp Bias = High	3.1	-	-	MHz	
	Power = High, Opamp Bias = High	5.4	-	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	100	-	nV/rt-Hz	

Table 3-21. 3.3V AC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
T _{ROA}	Rising Settling Time from 80% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	3.92	μs	
	Power = Low, Opamp Bias = High	-	-	0.72	μs	
T _{SOA}	Falling Settling Time from 20% of ΔV to 0.1% of ΔV (10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	-	-	5.41	μs	
	Power = Medium, Opamp Bias = High	-	-	0.72	μs	
SR _{ROA}	Rising Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.31	-	-	V/µs	
	Power = Medium, Opamp Bias = High	2.7	-	-	V/µs	
SR _{FOA}	Falling Slew Rate (20% to 80%)(10 pF load, Unity Gain)					
	Power = Low, Opamp Bias = Low	0.24	-	-	V/µs	
	Power = Medium, Opamp Bias = High	1.8	-	-	V/µs	
BW _{OA}	Gain Bandwidth Product					
	Power = Low, Opamp Bias = Low	0.67	-	-	MHz	
	Power = Medium, Opamp Bias = High	2.8	-	-	MHz	
E _{NOA}	Noise at 1 kHz (Power = Medium, Opamp Bias = High)	-	100	-	nV/rt-Hz	

3.4.4 AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C $\leq T_A \leq 85^{\circ}$ C, or 3.0V to 3.6V and -40°C $\leq T_A \leq 85^{\circ}$ C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 3-22. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
All	Maximum Block Clocking Frequency (> 4.75V)			49.2		4.75V < Vdd < 5.25V.
Functions	Maximum Block Clocking Frequency (< 4.75V)			24.6		3.0V < Vdd < 4.75V.
Timer	Capture Pulse Width	50 ^a	-	-	ns	
	Maximum Frequency, No Capture	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
	Maximum Frequency, With Capture	-	-	24.6	MHz	
Counter	Enable Pulse Width	50 ^a	-	-	ns	
	Maximum Frequency, No Enable Input	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
	Maximum Frequency, Enable Input	-	-	24.6	MHz	
Dead Band	Kill Pulse Width:					
	Asynchronous Restart Mode	20	-	-	ns	
	Synchronous Restart Mode	50 ^a	-	-	ns	
	Disable Mode	50 ^a	-	-	ns	
	Maximum Frequency	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
CRCPRS (PRS Mode)	Maximum Input Clock Frequency	-	-	49.2	MHz	4.75V < Vdd < 5.25V.
CRCPRS (CRC Mode)	Maximum Input Clock Frequency	-	-	24.6	MHz	
SPIM	Maximum Input Clock Frequency	-	-	8.2	MHz	Maximum data rate at 4.1 MHz due to 2 x over clocking.
SPIS	Maximum Input Clock Frequency	-	-	4.1	ns	
	Width of SS_Negated Between Transmissions	50 ^a	-	-	ns	
Transmitter	Maximum Input Clock Frequency b					
	Silicon A	-	-	16.4	MHz	Maximum data rate at 2.05 MHz due to 8 x over clocking.
	Silicon B	-	-	24.6	MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking.
Receiver	Maximum Input Clock Frequency ^b					
	Silicon A	-	-	16.4	MHz	Maximum data rate at 2.05 MHz due to 8 x over clocking.
	Silicon B	-	-	24.6	MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking.

a. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

b. Refer to the Ordering Information chapter on page 42.

3.4.6 AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

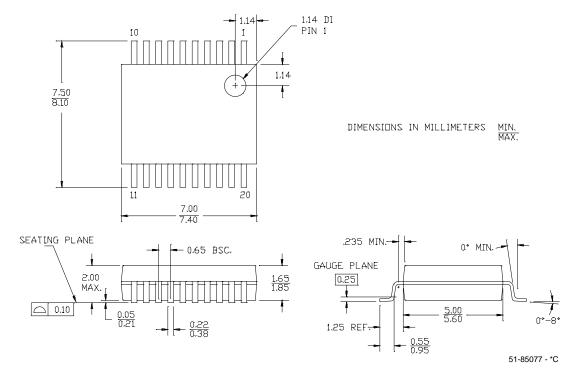
Table 3-25. 5V AC External Clock Specifications

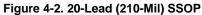
Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency	0.093	-	24.6	MHz	
-	High Period	20.6	-	5300	ns	
-	Low Period	20.6	-	-	ns	
-	Power Up IMO to Switch	150	-	-	μs	

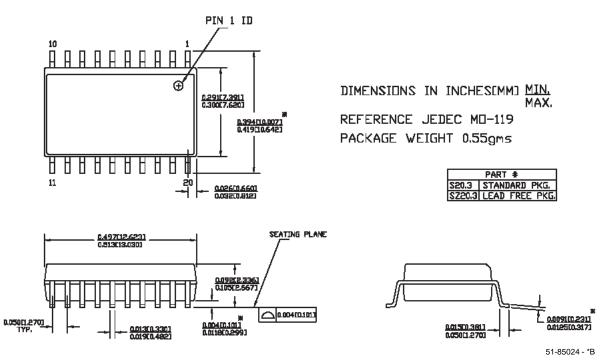
Table 3-26. 3.3V AC External Clock Specifications

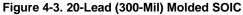
Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency with CPU Clock divide by 1 ^a	0.093	-	12.3	MHz	
FOSCEXT	Frequency with CPU Clock divide by 2 or greater ^b	0.186	-	24.6	MHz	
-	High Period with CPU Clock divide by 1	41.7	-	5300	ns	
-	Low Period with CPU Clock divide by 1	41.7	-	-	ns	
-	Power Up IMO to Switch	150	-	-	μs	

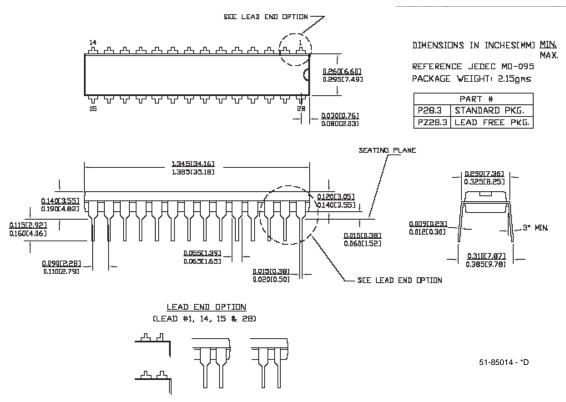
a. Maximum CPU frequency is 12 MHz at 3.3V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.

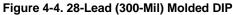

b. If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty percent duty cycle requirement is met.

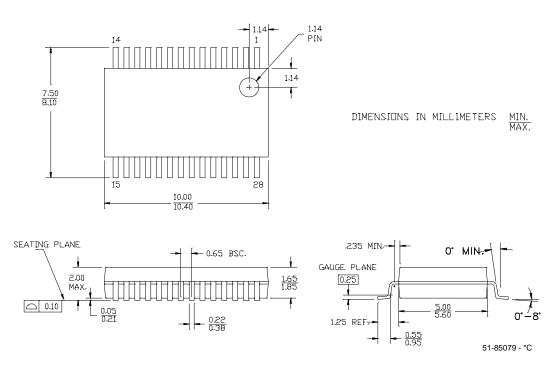

3.4.7 AC Programming Specifications

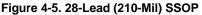

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

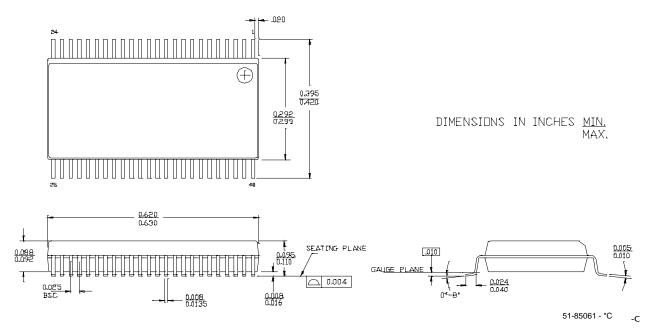

Table 3-27. AC Programming Specifications

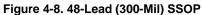

Symbol	Description	Min	Тур	Max	Units	Notes
T _{RSCLK}	Rise Time of SCLK	1	-	20	ns	
T _{FSCLK}	Fall Time of SCLK	1	-	20	ns	
T _{SSCLK}	Data Set up Time to Falling Edge of SCLK	40	-	-	ns	
T _{HSCLK}	Data Hold Time from Falling Edge of SCLK	40	-	-	ns	
F _{SCLK}	Frequency of SCLK	0	-	8	MHz	
T _{ERASEB}	Flash Erase Time (Block)	-	10	-	ms	
T _{WRITE}	Flash Block Write Time	-	10	-	ms	
T _{DSCLK}	Data Out Delay from Falling Edge of SCLK	-	-	45	ns	Vdd > 3.6
T _{DSCLK3}	Data Out Delay from Falling Edge of SCLK	-	-	50	ns	$3.0 \leq V dd \leq 3.6$

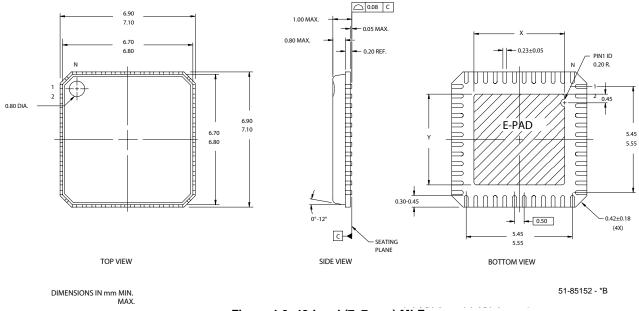














6. Sales and Service Information

To obtain information about Cypress MicroSystems or PSoC sales and technical support, reference the following information or go to the section titled "Getting Started" on page 4 in this document.

Cypress MicroSystems

2700 162nd Street SW Building D Lynnwood, WA 98037 Phone: 800.669.0557 Facsimile: 425.787.4641

Web Sites: Company Information – http://www.cypress.com Sales – http://www.cypress.com/aboutus/sales_locations.cfm Technical Support – http://www.cypress.com/support/login.cfm

6.1 Revision History

Table 6-1. CY8C27x43 Data Sheet Revision History

Revision	ECN #	Issue Date	Origin of Change	Description of Change			
*	127087	7/01/2003	New Silicon.	New document (Revision **).			
'A	128780	7/29/2003	Engineering and NWJ.	New electrical spec additions, fix of Core Architecture links, corrections to some text, tables, draw- ings, and format.			
B	128992	8/14/2003	NWJ	Interrupt controller table fixed, refinements to Electrical Spec section and Register chapter.			
C	129283	8/28/2003	NWJ	Significant changes to the Electrical Specifications section.			
Ď	129442	9/09/2003	NWJ	Changes made to Electrical Spec section. Added 20/28-Lead SOIC packages and pinouts.			
Έ	130129	10/13/2003	NWJ	Revised document for Silicon Revision A.			
'F	130651	10/28/2003	NWJ	Refinements to Electrical Specification section and I2C chapter.			
G	131298	11/18/2003	NWJ	Revisions to GDI, RDI, and Digital Block chapters. Revisions to AC Digital Block Spec and miscella- neous register changes.			
Ή	229416	See ECN	SFV	New data sheet format and organization. Reference the <i>PSoC Mixed Signal Array Technical Reference Manual</i> for additional information. Title change.			
1	247529	See ECN	SFV	Added Silicon B information to this data sheet.			

6.2 Copyrights and Code Protection

Copyrights

© Cypress MicroSystems, Inc. 2000 – 2004. All rights reserved. PSoC™, PSoC Designer™, and Programmable System-on-Chip™ are trademarks of Cypress MicroSystems, Inc. All other trademarks or registered trademarks referenced herein are property of the respective corporations.

The information contained herein is subject to change without notice. Cypress MicroSystems assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress MicroSystems product. Nor does it convey or imply any license under patent or other rights. Cypress MicroSystems does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress MicroSystems products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress MicroSystems against all charges. Cypress MicroSystems products are not warranted nor intended to be used for medical, life-support, life-saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress MicroSystems.

Flash Code Protection

Note the following details of the Flash code protection features on Cypress MicroSystems devices.

Cypress MicroSystems products meet the specifications contained in their particular Cypress MicroSystems Data Sheets. Cypress MicroSystems believes that its family of products is one of the most secure families of its kind on the market today, regardless of how they are used. There may be methods, unknown to Cypress MicroSystems, that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and possibly illegal. Neither Cypress MicroSystems nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Cypress MicroSystems is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly evolving. We at Cypress Micro-Systems are committed to continuously improving the code protection features of our products.