

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c27643-24lfxi
Supplier Device Package	48-QFN (7x7)
Package / Case	48-VFQFN Exposed Pad
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 85°C (TA)
Oscillator Type	Internal
Data Converters	A/D 4x14b; D/A 4x9b
Voltage - Supply (Vcc/Vdd)	3V ~ 5.25V
RAM Size	256 x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	16KB (16K x 8)
Number of I/O	44
Peripherals	POR, PWM, WDT
Connectivity	I ² C, SPI, UART/USART
Speed	24MHz
Core Size	8-Bit
Core Processor	M8C
Product Status	Obsolete
Details	

processor. The CPU utilizes an interrupt controller with 17 vectors, to simplify programming of real time embedded events. Program execution is timed and protected using the included Sleep and Watch Dog Timers (WDT).

Memory encompasses 16 KB of Flash for program storage, 256 bytes of SRAM for data storage, and up to 2 KB of EEPROM emulated using the Flash. Program Flash utilizes four protection levels on blocks of 64 bytes, allowing customized software IP protection.

The PSoC device incorporates flexible internal clock generators, including a 24 MHz IMO (internal main oscillator) accurate to 2.5% over temperature and voltage. The 24 MHz IMO can also be doubled to 48 MHz for use by the digital system. A low power 32 kHz ILO (internal low speed oscillator) is provided for the Sleep timer and WDT. If crystal accuracy is desired, the ECO (32.768 kHz external crystal oscillator) is available for use as a Real Time Clock (RTC) and can optionally generate a crystal-accurate 24 MHz system clock using a PLL. The clocks, together with programmable clock dividers (as a System Resource), provide the flexibility to integrate almost any timing requirement into the PSoC device.

PSoC GPIOs provide connection to the CPU, digital and analog resources of the device. Each pin's drive mode may be selected from eight options, allowing great flexibility in external interfacing. Every pin also has the capability to generate a system interrupt on high level, low level, and change from last read.

The Digital System

The Digital System is composed of 8 digital PSoC blocks. Each block is an 8-bit resource that can be used alone or combined with other blocks to form 8, 16, 24, and 32-bit peripherals, which are called user module references.

Digital System Block Diagram

Digital peripheral configurations include those listed below.

- PWMs (8 to 32 bit)
- PWMs with Dead band (8 to 32 bit)
- Counters (8 to 32 bit)
- Timers (8 to 32 bit)
- UART 8 bit with selectable parity (up to 2)
- SPI master and slave (up to 2)
- I2C slave and master (1 available as a System Resource)
- Cyclical Redundancy Checker/Generator (8 to 32 bit)
- IrDA (up to 2)
- Pseudo Random Sequence Generators (8 to 32 bit)

The digital blocks can be connected to any GPIO through a series of global buses that can route any signal to any pin. The buses also allow for signal multiplexing and for performing logic operations. This configurability frees your designs from the constraints of a fixed peripheral controller.

Digital blocks are provided in rows of four, where the number of blocks varies by PSoC device family. This allows you the optimum choice of system resources for your application. Family resources are shown in the table titled "PSoC Device Characteristics" on page 3.

The Analog System

The Analog System is composed of 12 configurable blocks, each comprised of an opamp circuit allowing the creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common PSoC analog functions (most available as user modules) are listed below.

- Analog-to-digital converters (up to 4, with 6- to 14-bit resolution, selectable as Incremental, Delta Sigma, and SAR)
- Filters (2, 4, 6, and 8 pole band-pass, low-pass, and notch)
- Amplifiers (up to 4, with selectable gain to 48x)
- Instrumentation amplifiers (up to 2, with selectable gain to 93x)
- Comparators (up to 4, with 16 selectable thresholds)
- DACs (up to 4, with 6- to 9-bit resolution)
- Multiplying DACs (up to 4, with 6- to 9-bit resolution)
- High current output drivers (four with 30 mA drive as a Core Resource)
- 1.3V reference (as a System Resource)
- DTMF dialer
- Modulators
- Correlators
- Peak detectors
- Many other topologies possible

CY8C27x43 Final Data Sheet PSoC™ Overview

Getting Started

The quickest path to understanding the PSoC silicon is by reading this data sheet and using the PSoC Designer Integrated Development Environment (IDE). This data sheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications. For in-depth information, along with detailed programming information, reference the $PSoC^{TM}$ Mixed Signal Array Technical Reference Manual.

For up-to-date Ordering, Packaging, and Electrical Specification information, reference the latest PSoC device data sheets on the web at http://www.cypress.com/psoc.

Development Kits

Development Kits are available from the following distributors: Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store at http://www.onfulfillment.com/cypressstore/ contains development kits, C compilers, and all accessories for PSoC development. Click on *PSoC (Programmable System-on-Chip)* to view a current list of available items.

Tele-Training

Free PSoC "Tele-training" is available for beginners and taught by a live marketing or application engineer over the phone. Five training classes are available to accelerate the learning curve including introduction, designing, debugging, advanced design, advanced analog, as well as application-specific classes covering topics like PSoC and the LIN bus. For days and times of the tele-training, see http://www.cypress.com/support/training.cfm.

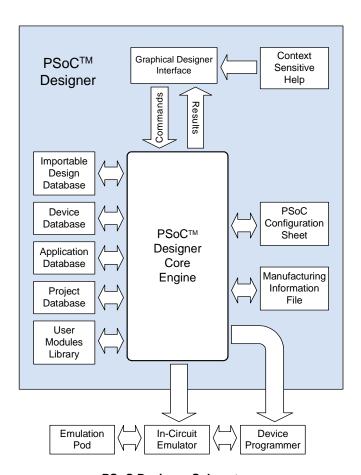
Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant, go to the following Cypress support web site: http://www.cypress.com/support/cypros.cfm.

Technical Support

PSoC application engineers take pride in fast and accurate response. They can be reached with a 4-hour guaranteed response at http://www.cypress.com/support/login.cfm.

Application Notes


A long list of application notes will assist you in every aspect of your design effort. To locate the PSoC application notes, go to http://www.cypress.com/design/results.cfm.

Development Tools

The Cypress MicroSystems PSoC Designer is a Microsoft® Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows NT 4.0, Windows 2000, Windows Millennium (Me), or Windows XP. (Reference the PSoC Designer Functional Flow diagram below.)

PSoC Designer helps the customer to select an operating configuration for the PSoC, write application code that uses the PSoC, and debug the application. This system provides design database management by project, an integrated debugger with In-Circuit Emulator, in-system programming support, and the CYASM macro assembler for the CPUs.

PSoC Designer also supports a high-level C language compiler developed specifically for the devices in the family.

PSoC Designer Subsystems

CY8C27x43 Final Data Sheet PSoC™ Overview

PSoC Designer Software Subsystems

Device Editor

The Device Editor subsystem allows the user to select different onboard analog and digital components called user modules using the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters.

The device editor also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic configuration allows for changing configurations at run time.

PSoC Designer sets up power-on initialization tables for selected PSoC block configurations and creates source code for an application framework. The framework contains software to operate the selected components and, if the project uses more than one operating configuration, contains routines to switch between different sets of PSoC block configurations at run time. PSoC Designer can print out a configuration sheet for a given project configuration for use during application programming in conjunction with the Device Data Sheet. Once the framework is generated, the user can add application-specific code to flesh out the framework. It's also possible to change the selected components and regenerate the framework.

Design Browser

The Design Browser allows users to select and import preconfigured designs into the user's project. Users can easily browse a catalog of preconfigured designs to facilitate time-to-design. Examples provided in the tools include a 300-baud modem, LIN Bus master and slave, fan controller, and magnetic card reader.

Application Editor

In the Application Editor you can edit your C language and Assembly language source code. You can also assemble, compile, link, and build.

Assembler. The macro assembler allows the assembly code to be merged seamlessly with C code. The link libraries automatically use absolute addressing or can be compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compiler. A C language compiler is available that supports Cypress MicroSystems' PSoC family devices. Even if you have never worked in the C language before, the product quickly allows you to create complete C programs for the PSoC family devices.

The embedded, optimizing C compiler provides all the features of C tailored to the PSoC architecture. It comes complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

The PSoC Designer Debugger subsystem provides hardware in-circuit emulation, allowing the designer to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow the designer to read and program and read and write data memory, read and write IO registers, read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also allows the designer to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help for the user. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer in getting started.

Hardware Tools

In-Circuit Emulator

A low cost, high functionality ICE (In-Circuit Emulator) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of the parallel or USB port. The base unit is universal and will operate with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full speed (24 MHz) operation.

Document Conventions

Acronyms Used

The following table lists the acronyms that are used in this document.

Acronym	Description
AC	alternating current
ADC	analog-to-digital converter
API	application programming interface
CPU	central processing unit
CT	continuous time
DAC	digital-to-analog converter
DC	direct current
ECO	external crystal oscillator
EEPROM	electrically erasable programmable read-only memory
FSR	full scale range
GPIO	general purpose IO
GUI	graphical user interface
HBM	human body model
ICE	in-circuit emulator
ILO	internal low speed oscillator
IMO	internal main oscillator
Ю	input/output
IPOR	imprecise power on reset
LSb	least-significant bit
LVD	low voltage detect
MSb	most-significant bit
PC	program counter
PLL	phase-locked loop
POR	power on reset
PPOR	precision power on reset
PSoC™	Programmable System-on-Chip™
PWM	pulse width modulator
RAM	random access memory
SC	switched capacitor
SLIMO	slow IMO
SMP	switch mode pump

Units of Measure

A units of measure table is located in the Electrical Specifications section. Table 3-1 on page 17 lists all the abbreviations used to measure the PSoC devices.

Numeric Naming

Hexidecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexidecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (e.g., 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimal.

Table of Contents

For an in depth discussion and more information on your PSoC device, obtain the *PSoC Mixed Signal Array Technical Reference Manual.* This document encompasses and is organized into the following chapters and sections.

1.	Pin	Information	8
	1.1	Pinouts	8
		1.1.1 8-Pin Part Pinout	8
		1.1.2 20-Pin Part Pinout	9
		1.1.3 28-Pin Part Pinout	10
		1.1.4 44-Pin Part Pinout	
		1.1.5 48-Pin Part Pinouts	12
2.	Reg	ister Reference	14
	2.1	Register Conventions	14
	2.2	Register Mapping Tables	
3.	Elec	etrical Specifications	17
	3.1	Absolute Maximum Ratings	18
	3.2	Operating Temperature	
	3.3	DC Electrical Characteristics	
	0.0	3.3.1 DC Chip-Level Specifications	
		3.3.2 DC General Purpose IO Specifications	
		3.3.3 DC Operational Amplifier Specifications	
		3.3.4 DC Analog Output Buffer Specifications	
		3.3.5 DC Switch Mode Pump Specifications	
		3.3.6 DC Analog Reference Specifications	
		3.3.7 DC Analog PSoC Block Specifications	
		3.3.8 DC POR and LVD Specifications	
	0.4	3.3.9 DC Programming Specifications	
	3.4	AC Electrical Characteristics	
		3.4.1 AC Chip-Level Specifications	
		3.4.2 AC General Purpose IO Specifications	
		3.4.3 AC Operational Amplifier Specifications 3.4.4 AC Digital Block Specifications	
		3.4.5 AC Analog Output Buffer Specifications	
		3.4.6 AC External Clock Specifications	
		3.4.7 AC Programming Specifications	
		3.4.8 AC I2C Specifications	
4.	Pac	kaging Information	36
	4.1	Packaging Dimensions	
	4.2	Thermal Impedances	
	4.3	Capacitance on Crystal Pins	
5.	Ord	ering Information	42
	5.1	Ordering Code Definitions	
6.	Sale	es and Service Information	44
	6.1	Revision History	
	-	Copyrights and Code Protection	

CY8C27x43 Final Data Sheet 1. Pin Information

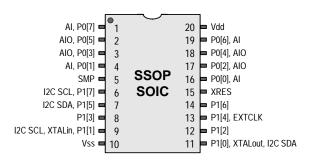

1.1.2 20-Pin Part Pinout

Table 1-2. 20-Pin Part Pinout (SSOP, SOIC)

Pin	Ту	ре	Pin	Description		
No.	Digital	Analog	Name	Description		
1	Ю	ı	P0[7]	Analog column mux input.		
2	10	10	P0[5]	Analog column mux input and column output.		
3	Ю	10	P0[3]	Analog column mux input and column output.		
4	Ю	I	P0[1]	Analog column mux input.		
5	Po	wer	SMP	Switch Mode Pump (SMP) connection to external components required.		
6	Ю		P1[7]	I2C Serial Clock (SCL)		
7	10		P1[5]	I2C Serial Data (SDA)		
8	Ю		P1[3]			
9	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)		
10	10 Power		Vss	Ground connection.		
11	Ю		P1[0]	Crystal Output (XTALout), I2C Serial Data (SDA)		
12	Ю		P1[2]			
13	Ю		P1[4]	Optional External Clock Input (EXTCLK)		
14	Ю		P1[6]			
15	Inp	out	XRES	Active high external reset with internal pull down.		
16	Ю	I	P0[0]	Analog column mux input.		
17	10	10	P0[2]	Analog column mux input and column outp		
18	Ю	Ю	P0[4]	Analog column mux input and column output		
19	Ю	I	P0[6]	Analog column mux input.		
20	Po	wer	Vdd	Supply voltage.		

LEGEND: A = Analog, I = Input, and O = Output.

CY8C27243 20-Pin PSoC Device

CY8C27x43 Final Data Sheet 1. Pin Information

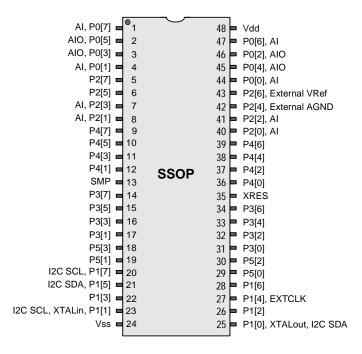

1.1.5 48-Pin Part Pinouts

Table 1-5. 48-Pin Part Pinout (SSOP)

No. Digital Digital Analog Polity Polity Digital Analog Polity Analog column mux input. 1 10 10 10 POI; Analog column mux input and column output. 3 10 10 POI; Analog column mux input and column output. 4 10 1 POI; Analog column mux input and column output. 6 10 P2I; Analog column mux input. 6 10 P2I; Analog column mux input. 7 10 1 P2I; Analog column mux input. 8 10 1 P2I; Description 8 10 1 P2I; Description 10 1 P2I; Description 11 10 1 P2I; Description 12 10 1 P2I; Description 13 10 P4I; Description Description 14 10 1 P2I; Description Description 15									
1	Pin No.		1	Pin Name	Description				
2		_			Analog column mux input				
3									
4									
Section P2 7 Section P2 5 Section P2 5 P3 5 P4 5		_	_						
6 IO P2[5] 7 IO I P2[3] Direct switched capacitor block input. 8 IO I P2[1] Direct switched capacitor block input. 9 IO P4[7] P4[7] 10 IO P4[5] P4[7] 11 IO P4[3] P4[1] 12 IO P4[1] P4[1] 13 Power SMP Switch Mode Pump (SMP) connection to external components required. 14 IO P3[7] P4[1] P4[1] 15 IO P3[5] P4[7] P4[7] 16 IO P3[3] P4[7]					7 titalog column max input.				
7 IO I P2[3] Direct switched capacitor block input. 8 IO I P2[1] Direct switched capacitor block input. 9 IO P4[7] P4[7] 10 IO P4[7] P4[7] 11 IO P4[3] P4[1] 12 IO P4[1] P4[1] 12 IO P4[1] P4[1] 13 Power SMP Switch Mode Pump (SMP) connection to external components required. 14 IO P3[7] P4[7] 15 IO P3[3] P4 16 IO P3[3] P4 17 IO P3[1] P4 18 IO P5[3] P4 19 IO P5[1] P4 20 IO P1[5] I2C Serial Clock (SCL) 21 IO P1[6] P4 22 IO P1[7] Crystal Input (XTALin), I2C Serial Data (SDA) 25 IO	_								
8			1		Direct switched capacitor block input				
9					· · · · · · · · · · · · · · · · · · ·				
10 IO P4[5] 11 IO P4[3] 12 IO P4[1] 13 Power SMP Switch Mode Pump (SMP) connection to external components required. 14 IO P3[7] P3[7] 15 IO P3[8] P3[7] 16 IO P3[8] P3[8] 17 IO P3[1] P3[1] 18 IO P5[3] P4[7] 19 IO P5[1] P5[7] 20 IO P1[7] I2C Serial Clock (SCL) 21 IO P1[8] P1[8] P1[8] 22 IO P1[9] Crystal Input (XTALin), I2C Serial Clock (SCL) 24 Power Vss Ground connection. 25 IO P1[9] Crystal Output (XTALin), I2C Serial Data (SDA) 26 IO P1[9] Crystal Output (XTALin), I2C Serial Data (SDA) 27 IO P1[8] Optional External Clock Input (EXTCLK) 28 IO	_				Birect switched capacitor block input.				
10									
12		_							
SMP									
external components required. 14			wer		Switch Mode Pump (SMP) connection to				
15	10	10	WCI	Olvii					
16	14	Ю		P3[7]					
17	15	10		P3[5]					
18	16	Ю		P3[3]					
19	17	Ю		P3[1]					
10	18	Ю		P5[3]					
21	19	Ю		P5[1]					
22	20	Ю		P1[7]	I2C Serial Clock (SCL)				
23	21	Ю		P1[5]	I2C Serial Data (SDA)				
Power Vss Ground connection. P1[0] Crystal Output (XTALout), I2C Serial Data (SDA)	22	Ю		P1[3]					
P1[0] Crystal Output (XTALout), I2C Serial Data (SDA)	23	Ю		P1[1]	Crystal Input (XTALin), I2C Serial Clock (SCL)				
SDA SDA	24	Po	wer	Vss	Ground connection.				
27	25	Ю		P1[0]					
28	26	10		P1[2]					
29	27	Ю		P1[4]	Optional External Clock Input (EXTCLK)				
30	28	Ю		P1[6]					
10	29	Ю		P5[0]					
32 IO P3[2] 33 IO P3[4] 34 IO P3[6] 35 Input XRES Active high external reset with internal pull down. 36 IO P4[0] 37 IO P4[2] 38 IO P4[4] 39 IO P4[6] 40 IO I P2[0] Direct switched capacitor block input. 41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO I P0[6] Analog column mux input.	30	Ю		P5[2]					
33 IO P3[4] 34 IO P3[6] 35 Input XRES Active high external reset with internal pull down. 36 IO P4[0] 37 IO P4[2] 38 IO P4[4] 39 IO P4[6] 40 IO I P2[0] Direct switched capacitor block input. 41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[6] Analog column mux input.	31	Ю		P3[0]					
34 IO P3[6] 35 Input XRES Active high external reset with internal pull down. 36 IO P4[0] 37 IO P4[2] 38 IO P4[4] 39 IO P4[6] 40 IO I P2[0] Direct switched capacitor block input. 41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[6] Analog column mux input.	32	Ю		P3[2]					
35	33	Ю		P3[4]					
down.	34	Ю		P3[6]					
37 IO P4[2] 38 IO P4[4] 39 IO P4[6] 40 IO I P2[0] Direct switched capacitor block input. 41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	35	Inp	out	XRES					
38 IO P4[4] 39 IO P4[6] 40 IO I P2[0] Direct switched capacitor block input. 41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	36	Ю		P4[0]					
39 IO P4[6] 40 IO I P2[0] Direct switched capacitor block input. 41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	37	Ю		P4[2]					
40 IO I P2[0] Direct switched capacitor block input. 41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	38	Ю		P4[4]					
41 IO I P2[2] Direct switched capacitor block input. 42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	39	Ю		P4[6]					
42 IO P2[4] External Analog Ground (AGND) 43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	40	Ю	I	P2[0]	Direct switched capacitor block input.				
43 IO P2[6] External Voltage Reference (VRef) 44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	41	Ю	I	P2[2]	Direct switched capacitor block input.				
44 IO I P0[0] Analog column mux input. 45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	42	Ю		P2[4]	External Analog Ground (AGND)				
45 IO IO P0[2] Analog column mux input and column output. 46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	43	Ю		P2[6]	External Voltage Reference (VRef)				
46 IO IO P0[4] Analog column mux input and column output. 47 IO I P0[6] Analog column mux input.	44	Ю	I	P0[0]	Analog column mux input.				
47 IO I P0[6] Analog column mux input.	45	Ю	Ю	P0[2]	Analog column mux input and column output.				
	46	Ю	Ю	P0[4]	Analog column mux input and column output.				
48 Power Vdd Supply voltage.	47	Ю	I	P0[6]	Analog column mux input.				
	48	Po	wer	Vdd	Supply voltage.				

LEGEND: A = Analog, I = Input, and O = Output.

CY8C27643 48-Pin PSoC Device

CY8C27x43 Final Data Sheet 2. Register Reference

Register Map Bank 1 Table: Configuration Space

Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASC10CR0	80	RW		C0	
PRT0DM1	01	RW		41		ASC10CR1	81	RW		C1	
PRT0IC0	02	RW		42		ASC10CR2	82	RW		C2	
PRT0IC1	03	RW		43		ASC10CR3	83	RW		C3	
PRT1DM0	04	RW		44		ASD11CR0	84	RW		C4	
PRT1DM1	05	RW		45		ASD11CR1	85	RW		C5	
PRT1IC0	06	RW		46		ASD11CR2	86	RW		C6	
PRT1IC1	07	RW		47		ASD11CR3	87	RW		C7	
PRT2DM0	08	RW		48		ASC12CR0	88	RW		C8	
PRT2DM1	09	RW		49		ASC12CR1	89	RW		C9	
PRT2IC0 PRT2IC1	0A 0B	RW RW		4A 4B		ASC12CR2 ASC12CR3	8A 8B	RW RW		CA CB	
PRT3DM0	0C	RW		4C		ASD13CR0	8C	RW		CC	-
PRT3DM1	0D	RW		4D		ASD13CR1	8D	RW		CD	-
PRT3IC0	0E	RW		4E		ASD13CR2	8E	RW		CE	
PRT3IC1	0F	RW		4F		ASD13CR3	8F	RW		CF	-
PRT4DM0	10	RW		50		ASD20CR0	90	RW	GDI_O_IN	D0	RW
PRT4DM1	11	RW		51		ASD20CR1	91	RW	GDI_E_IN	D1	RW
PRT4IC0	12	RW		52		ASD20CR2	92	RW	GDI_O_OU	D2	RW
PRT4IC1	13	RW		53		ASD20CR3	93	RW	GDI E OU	D3	RW
PRT5DM0	14	RW		54		ASC21CR0	94	RW		D4	1
PRT5DM1	15	RW		55		ASC21CR1	95	RW		D5	
PRT5IC0	16	RW		56		ASC21CR2	96	RW		D6	
PRT5IC1	17	RW		57		ASC21CR3	97	RW		D7	
	18			58		ASD22CR0	98	RW		D8	
	19			59		ASD22CR1	99	RW		D9	
	1A			5A		ASD22CR2	9A	RW		DA	
	1B			5B		ASD22CR3	9B	RW		DB	
	1C			5C		ASC23CR0	9C	RW		DC	
	1D			5D		ASC23CR1	9D	RW	OSC_GO_EN	DD	RW
	1E			5E		ASC23CR2	9E	RW	OSC_CR4	DE	RW
DDDOOFN	1F	DIA	OLIK ODO	5F	DIM	ASC23CR3	9F	RW	OSC_CR3	DF	RW
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	E0	RW
DBB000U	21	RW RW	CLK_CR1 ABF_CR0	61 62	RW RW		A1 A2		OSC_CR1	E1 E2	RW
DBB00C0	23	KVV	AMD_CR0	63	RW		A2 A3		VLT CR	E3	RW
DBB01FN	24	RW	AMD_CRO	64	IXVV		A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5		VEI_OWII	E5	- 1
DBB01OU	26	RW	AMD_CR1	66	RW		A6			E6	-
5550.00	27		ALT_CR0	67	RW		A7			E7	1
DCB02FN	28	RW	ALT_CR1	68	RW		A8		IMO_TR	E8	W
DCB02IN	29	RW	CLK_CR2	69	RW		A9		ILO_TR	E9	W
DCB02OU	2A	RW		6A			AA		BDG_TR	EA	RW
	2B			6B			AB		ECO_TR	EB	W
DCB03FN	2C	RW		6C			AC			EC	
DCB03IN	2D	RW		6D			AD			ED	
DCB03OU	2E	RW		6E			AE			EE	
	2F			6F			AF			EF	
DBB10FN	30	RW	ACB00CR3	70	RW	RDI0RI	B0	RW		F0	
DBB10IN	31	RW	ACB00CR0	71	RW	RDI0SYN	B1	RW		F1	
DBB10OU	32	RW	ACBOOCR1	72	RW	RDI0IS	B2	RW		F2	
DDD44EN	33	D\A/	ACBOACB2	73	RW	RDIOLT4	B3	RW		F3	
DBB11FN	34	RW	ACB01CR3	74	RW	RDIOLT1	B4	RW		F4	<u> </u>
DBB11IN DBB11OU	35	RW RW	ACB01CR0 ACB01CR1	75 76	RW RW	RDI0RO0 RDI0RO1	B5 B6	RW RW		F5	
ווטטווטטט	36 37	IVVV	ACB01CR1	77	RW	NDIONOT	B7	IXVV	CPU F	F6 F7	RL
DCB12FN	38	RW	ACB01CR2 ACB02CR3	78	RW	RDI1RI	B8	RW	J. U_I	F8	I.V.L.
DCB12IN DCB12IN	39	RW	ACB02CR0	79	RW	RDI1SYN	B9	RW		F9	
DCB120U	3A	RW	ACB02CR1	7A	RW	RDI1IS	BA	RW		FA	
	3B		ACB02CR2	7B	RW	RDI1LT0	BB	RW		FB	
DCB13FN	3C	RW	ACB03CR3	7C	RW	RDI1LT1	BC	RW		FC	\vdash
DCB13IN	3D	RW	ACB03CR0	7D	RW	RDI1RO0	BD	RW		FD	
DCB13OU	3E	RW	ACB03CR1	7E	RW	RDI1RO1	BE	RW	CPU_SCR1	FE	#
	3F		ACB03CR2	7F	RW		BF		CPU_SCR0	FF	#
			d should not be			# Access is bit					

Blank fields are Reserved and should not be accessed.

Access is bit specific.

3. Electrical Specifications

This chapter presents the DC and AC electrical specifications of the CY8C27x43 PSoC device. For the most up to date electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.

Specifications are valid for $-40^{o}C \le T_{A} \le 85^{o}C$ and $T_{J} \le 100^{o}C$, except where noted. Specifications for devices running at greater than 12 MHz are valid for $-40^{o}C \le T_{A} \le 70^{o}C$ and $T_{J} \le 82^{o}C$.

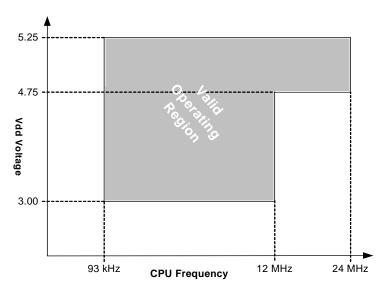


Figure 3-1. Voltage versus CPU Frequency

The following table lists the units of measure that are used in this chapter.

Table 3-1: Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure		
°C	degree Celsius	μW	micro watts		
dB	decibels	mA	milli-ampere		
fF	femto farad	ms	milli-second		
Hz	hertz	mV	milli-volts		
KB	1024 bytes	nA	nano ampere		
Kbit	1024 bits	ns	nanosecond		
kHz	kilohertz	nV	nanovolts		
kΩ	kilohm	Ω	ohm		
MHz	megahertz	pA	pico ampere		
MΩ	megaohm	pF	pico farad		
μΑ	micro ampere	pp	peak-to-peak		
μF	micro farad	ppm	parts per million		
μΗ	micro henry	ps	picosecond		
μs	microsecond	sps	samples per second		
μV	micro volts	σ	sigma: one standard deviation		
μVrms	micro volts root-mean-square	V	volts		

3.3.3 DC Operational Amplifier Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

The Operational Amplifier is a component of both the Analog Continuous Time PSoC blocks and the Analog Switched Cap PSoC blocks. The guaranteed specifications are measured in the Analog Continuous Time PSoC block. Typical parameters apply to 5V at 25°C and are for design guidance only.

Table 3-6. 5V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value)					
	Power = Low, Opamp Bias = High	_	1.6	10	mV	
	Power = Medium, Opamp Bias = High	_	1.3	8	mV	
	Power = High, Opamp Bias = High	_	1.2	7.5	mV	
TCV _{OSOA}	Average Input Offset Voltage Drift	_	7.0	35.0	μV/°C	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pA	Gross tested to 1 μA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
V _{CMOA}	Common Mode Voltage Range	0.0	_	Vdd	V	The common-mode input voltage range is mea-
	Common Mode Voltage Range (high power or high opamp bias)	0.5	_	Vdd - 0.5		sured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common Mode Rejection Ratio		_	_	dB	Specification is applicable at high power. For all
	Power = Low	60				other bias modes (except high power, high opamp bias), minimum is 60 dB.
	Power = Medium	60				opanip bias), minimum is 60 db.
	Power = High	60				
G _{OLOA}	Open Loop Gain		-	_	dB	Specification is applicable at high power. For all
	Power = Low	60				other bias modes (except high power, high opamp bias), minimum is 60 dB.
	Power = Medium	60				opanip bias), minimum is oo ub.
	Power = High	80				
V _{OHIGHOA}	High Output Voltage Swing (internal signals)					
	Power = Low	Vdd - 0.2	-	-	V	
	Power = Medium	Vdd - 0.2	-	_	V	
	Power = High	Vdd - 0.5	-	-	V	
V_{OLOWOA}	Low Output Voltage Swing (internal signals)					
	Power = Low	_	-	0.2	V	
	Power = Medium	_	-	0.2	V	
	Power = High	-	-	0.5	V	
I _{SOA}	Supply Current (including associated AGND buffer)					
	Power = Low, Opamp Bias = Low	-	150	200	μΑ	
	Power = Low, Opamp Bias = High	_	300	400	μΑ	
	Power = Medium, Opamp Bias = Low	-	600	800	μΑ	
	Power = Medium, Opamp Bias = High	_	1200	1600	μΑ	
	Power = High, Opamp Bias = Low	-	2400	3200	μΑ	
	Power = High, Opamp Bias = High	_	4600	6400	μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	60	_	-	dB	$0V \le V_{IN} \le (Vdd - 2.25)$ or $(Vdd - 1.25V) \le V_{IN} \le Vdd$.

Table 3-7. 3.3V DC Operational Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input Offset Voltage (absolute value)					
	Power = Low, Opamp Bias = High	_	1.65	10	mV	
	Power = Medium, Opamp Bias = High	_	1.32	8	mV	
	High Power is 5 Volts Only					
TCV_OSOA	Average Input Offset Voltage Drift	_	7.0	35.0	μV/ºC	
I _{EBOA}	Input Leakage Current (Port 0 Analog Pins)	-	20	-	pA	Gross tested to 1 μA.
C _{INOA}	Input Capacitance (Port 0 Analog Pins)	-	4.5	9.5	pF	Package and pin dependent. Temp = 25°C.
V _{CMOA}	Common Mode Voltage Range	0.2	_	Vdd - 0.2	V	The common-mode input voltage range is measured through an analog output buffer. The specification includes the limitations imposed by the characteristics of the analog output buffer.
CMRR _{OA}	Common Mode Rejection Ratio		_	-	dB	Specification is applicable at high power. For
	Power = Low	50				all other bias modes (except high power, high opamp bias), minimum is 60 dB.
	Power = Medium	50				opamp bias), minimum is 60 db.
	Power = High	50				
G_{OLOA}	Open Loop Gain		_	-	dB	Specification is applicable at high power. For
	Power = Low	60				all other bias modes (except high power, high opamp bias), minimum is 60 dB.
	Power = Medium	60				opamp slasy, minimum to do ab.
	Power = High	80				
$V_{OHIGHOA}$	High Output Voltage Swing (internal signals)					
	Power = Low	Vdd - 0.2	_	-	V	
	Power = Medium	Vdd - 0.2	_	-	V	
	Power = High is 5V only	Vdd - 0.2	_	_	V	
V_{OLOWOA}	Low Output Voltage Swing (internal signals)					
	Power = Low	-	_	0.2	V	
	Power = Medium	-	_	0.2	V	
	Power = High		-	0.2	V	
I _{SOA}	Supply Current (including associated AGND buffer)					
	Power = Low, Opamp Bias = Low	-	150	200	μΑ	
	Power = Low, Opamp Bias = High	-	300	400	μΑ	
	Power = Medium, Opamp Bias = Low	-	600	800	μΑ	
	Power = Medium, Opamp Bias = High	-	1200	1600	μΑ	
	Power = High, Opamp Bias = Low	-	2400	3200	μΑ	
	Power = High, Opamp Bias = High		4600	6400	μΑ	
PSRR _{OA}	Supply Voltage Rejection Ratio	50	_	-	dB	$\begin{aligned} 0 &V \leq V_{\text{IN}} \leq (\text{Vdd - 2.25}) \text{ or} \\ &(\text{Vdd - 1.25V}) \leq V_{\text{IN}} \leq \text{Vdd}. \end{aligned}$

3.3.6 DC Analog Reference Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

The guaranteed specifications are measured through the Analog Continuous Time PSoC blocks. The power levels for AGND refer to the power of the Analog Continuous Time PSoC block. The power levels for RefHi and RefLo refer to the Analog Reference Control register. The limits stated for AGND include the offset error of the AGND buffer local to the Analog Continuous Time PSoC block. Reference control power is high.

Table 3-11. Silicon Revision A – 5V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.274	1.30	1.326	V
-	$AGND = Vdd/2^{a}$	Vdd/2 - 0.030	Vdd/2 - 0.004	Vdd/2 + 0.003	V
_	AGND = 2 x BandGap ^a	2 x BG - 0.043	2 x BG - 0.010	2 x BG + 0.024	V
-	AGND = P2[4] (P2[4] = Vdd/2) ^a	P2[4] - 0.013	P2[4]	P2[4] + 0.014	V
_	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V
_	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V
_	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	V
_	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.140	Vdd/2 + BG - 0.018	Vdd/2 + BG + 0.103	V
_	RefHi = 3 x BandGap	3 x BG - 0.112	3 x BG - 0.018	3 x BG + 0.076	V
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.113	2 x BG + P2[6] - 0.018	2 x BG + P2[6] + 0.077	V
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.130	P2[4] + BG - 0.016	P2[4] + BG + 0.098	V
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.133	P2[4] + P2[6] - 0.016	P2[4] + P2[6] + 0.100	V
_	RefHi = 3.2 x BandGap	3.2 x BG - 0.112	3.2 x BG	3.2 x BG + 0.076	V
_	RefLo = Vdd/2 - BandGap	Vdd/2 - BG - 0.051	Vdd/2 - BG + 0.024	Vdd/2 - BG + 0.098	V
_	RefLo = BandGap	BG - 0.082	BG + 0.023	BG + 0.129	V
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.084	2 x BG - P2[6] + 0.025	2 x BG - P2[6] + 0.134	V
-	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.026	P2[4] - BG + 0.107	V
_	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.057	P2[4] - P2[6] + 0.026	P2[4] - P2[6] + 0.110	V

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Table 3-12. Silicon Revision B – 5V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V
_	AGND = Vdd/2 ^a	Vdd/2 - 0.030	Vdd/2	Vdd/2 + 0.007	V
_	AGND = 2 x BandGap ^a	2 x BG - 0.043	2 x BG	2 x BG + 0.024	V
_	$AGND = P2[4] (P2[4] = Vdd/2)^{a}$	P2[4] - 0.011	P2[4]	P2[4] + 0.011	V
_	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V
_	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V
_	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	V
_	RefHi = Vdd/2 + BandGap	Vdd/2 + BG - 0.1	Vdd/2 + BG - 0.01	Vdd/2 + BG + 0.1	V
-	RefHi = 3 x BandGap	3 x BG - 0.06	3 x BG - 0.01	3 x BG + 0.06	V
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 1.3V)	2 x BG + P2[6] - 0.06	2 x BG + P2[6] - 0.01	2 x BG + P2[6] + 0.06	V
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	P2[4] + BG - 0.06	P2[4] + BG - 0.01	P2[4] + BG + 0.06	V
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.06	V
_	RefHi = 3.2 x BandGap	3.2 x BG - 0.06	3.2 x BG - 0.01	3.2 x BG + 0.06	V
-	RefLo = Vdd/2 - BandGap	Vdd/2 - BG - 0.051	Vdd/2 - BG + 0.01	Vdd/2 - BG + 0.06	V
_	RefLo = BandGap	BG - 0.06	BG + 0.01	BG + 0.06	V
-	RefLo = 2 x BandGap - P2[6] (P2[6] = 1.3V)	2 x BG - P2[6] - 0.04	2 x BG - P2[6] + 0.01	2 x BG - P2[6] + 0.04	V
-	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	P2[4] - BG - 0.056	P2[4] - BG + 0.01	P2[4] - BG + 0.056	V
-	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 1.3V)	P2[4] - P2[6] - 0.056	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.056	V

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Table 3-13. Silicon Revision A – 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units			
BG	Bandgap Voltage Reference	1.274	1.30	1.326	V			
_	AGND = Vdd/2 ^a	Vdd/2 - 0.027	Vdd/2 - 0.003	Vdd/2 + 0.002	V			
-	AGND = 2 x BandGap ^a	Not Allowed		•	•			
_	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4] + 0.001	P2[4] + 0.009	V			
-	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V			
-	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V			
-	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	mV			
-	RefHi = Vdd/2 + BandGap	Not Allowed	•	•				
_	RefHi = 3 x BandGap	Not Allowed						
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)	Not Allowed						
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	Not Allowed						
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.075	P2[4] + P2[6] - 0.009	P2[4] + P2[6] + 0.057	V			
_	RefHi = 3.2 x BandGap	Not Allowed			•			
_	RefLo = Vdd/2 - BandGap	Not Allowed	Not Allowed					
_	RefLo = BandGap	Not Allowed						
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)	Not Allowed						
-	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	Not Allowed	Not Allowed					
_	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] - P2[6] - 0.048	P2[4] - P2[6] + 0.022	P2[4] - P2[6] + 0.092	V			

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Note See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

Table 3-14. Silicon Revision B - 3.3V DC Analog Reference Specifications

Symbol	Description	Min	Тур	Max	Units
BG	Bandgap Voltage Reference	1.28	1.30	1.32	V
_	AGND = Vdd/2 ^a	Vdd/2 - 0.027	Vdd/2	Vdd/2 + 0.005	V
_	AGND = 2 x BandGap ^a	Not Allowed	•		
_	AGND = P2[4] (P2[4] = Vdd/2)	P2[4] - 0.008	P2[4]	P2[4] + 0.009	V
_	AGND = BandGap ^a	BG - 0.009	BG	BG + 0.009	V
_	AGND = 1.6 x BandGap ^a	1.6 x BG - 0.018	1.6 x BG	1.6 x BG + 0.018	V
_	AGND Block to Block Variation (AGND = Vdd/2) ^a	-0.034	0.000	0.034	mV
_	RefHi = Vdd/2 + BandGap	Not Allowed		•	
_	RefHi = 3 x BandGap	Not Allowed			
_	RefHi = 2 x BandGap + P2[6] (P2[6] = 0.5V)	Not Allowed			
_	RefHi = P2[4] + BandGap (P2[4] = Vdd/2)	Not Allowed			
_	RefHi = P2[4] + P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] + P2[6] - 0.06	P2[4] + P2[6] - 0.01	P2[4] + P2[6] + 0.057	V
_	RefHi = 3.2 x BandGap	Not Allowed			•
_	RefLo = Vdd/2 - BandGap	Not Allowed			
_	RefLo = BandGap	Not Allowed			
_	RefLo = 2 x BandGap - P2[6] (P2[6] = 0.5V)	Not Allowed			
_	RefLo = P2[4] - BandGap (P2[4] = Vdd/2)	Not Allowed			
_	RefLo = P2[4]-P2[6] (P2[4] = Vdd/2, P2[6] = 0.5V)	P2[4] - P2[6] - 0.048	P2[4] - P2[6] + 0.01	P2[4] - P2[6] + 0.048	V

a. AGND tolerance includes the offsets of the local buffer in the PSoC block.

Note See Application Note AN2012 "Adjusting PSoC Microcontroller Trims for Dual Voltage-Range Operation" for information on trimming for operation at 3.3V.

3.3.7 DC Analog PSoC Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Table 3-15. DC Analog PSoC Block Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
R _{CT}	Resistor Unit Value (Continuous Time)	_	12.2	_	kΩ	
C _{SC}	Capacitor Unit Value (Switch Cap)	-	80	_	fF	

3.3.8 DC POR and LVD Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and -40°C \leq T_A \leq 85°C, or 3.0V to 3.6V and -40°C \leq T_A \leq 85°C, respectively. Typical parameters apply to 5V and 3.3V at 25°C and are for design guidance only.

Note The bits PORLEV and VM in the table below refer to bits in the VLT_CR register. See the *PSoC Mixed Signal Array Technical Reference Manual* for more information on the VLT_CR register.

Table 3-16. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
	Vdd Value for PPOR Trip (positive ramp)					
V_{PPOR0R}	PORLEV[1:0] = 00b		2.91		V	
V _{PPOR1R}	PORLEV[1:0] = 01b	_	4.39	_	V	
V_{PPOR2R}	PORLEV[1:0] = 10b		4.55		V	
	Vdd Value for PPOR Trip (negative ramp)					
V_{PPOR0}	PORLEV[1:0] = 00b		2.82		V	
V _{PPOR1}	PORLEV[1:0] = 01b	_	4.39	_	V	
V_{PPOR2}	PORLEV[1:0] = 10b		4.55		V	
	PPOR Hysteresis					
V_{PH0}	PORLEV[1:0] = 00b	_	92	_	mV	
V_{PH1}	PORLEV[1:0] = 01b	_	0	_	mV	
V_{PH2}	PORLEV[1:0] = 10b	_	0	_	mV	
	Vdd Value for LVD Trip					
V_{LVD0}	VM[2:0] = 000b	2.86	2.92	2.98 ^a	V	
V_{LVD1}	VM[2:0] = 001b	2.96	3.02	3.08	V	
V_{LVD2}	VM[2:0] = 010b	3.07	3.13	3.20	V	
V_{LVD3}	VM[2:0] = 011b	3.92	4.00	4.08	V	
V_{LVD4}	VM[2:0] = 100b	4.39	4.48	4.57	V	
V_{LVD5}	VM[2:0] = 101b	4.55	4.64	4.74 ^b	V	
V_{LVD6}	VM[2:0] = 110b	4.63	4.73	4.82	V	
V_{LVD7}	VM[2:0] = 111b	4.72	4.81	4.91	v	
	Vdd Value for PUMP Trip					
V_{PUMP0}	VM[2:0] = 000b	2.96	3.02	3.08	V	
V_{PUMP1}	VM[2:0] = 001b	3.03	3.10	3.16	V	
V_{PUMP2}	VM[2:0] = 010b	3.18	3.25	3.32	V	
V_{PUMP3}	VM[2:0] = 011b	4.11	4.19	4.28	V	
V_{PUMP4}	VM[2:0] = 100b	4.55	4.64	4.74	V	
V_{PUMP5}	VM[2:0] = 101b	4.63	4.73	4.82	V	
V_{PUMP6}	VM[2:0] = 110b	4.72	4.82	4.91	v	
V_{PUMP7}	VM[2:0] = 111b	4.90	5.00	5.10	V	

a. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.

b. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.

3.4.4 AC Digital Block Specifications

The following table lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75V to 5.25V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, or 3.0V to 3.6V and $-40^{\circ}C \le T_A \le 85^{\circ}C$, respectively. Typical parameters apply to 5V and 3.3V at $25^{\circ}C$ and are for design guidance only.

Table 3-22. AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes
All	Maximum Block Clocking Frequency (> 4.75V)			49.2		4.75V < Vdd < 5.25V.
Functions	Maximum Block Clocking Frequency (< 4.75V)			24.6		3.0V < Vdd < 4.75V.
Timer	Capture Pulse Width	50 ^a	-	_	ns	
	Maximum Frequency, No Capture	-	_	49.2	MHz	4.75V < Vdd < 5.25V.
	Maximum Frequency, With Capture	-	-	24.6	MHz	
Counter	Enable Pulse Width	50 ^a	-	-	ns	
	Maximum Frequency, No Enable Input	-	_	49.2	MHz	4.75V < Vdd < 5.25V.
	Maximum Frequency, Enable Input	-	_	24.6	MHz	
Dead Band	Kill Pulse Width:					
	Asynchronous Restart Mode	20	_	_	ns	
	Synchronous Restart Mode	50 ^a	_	_	ns	
	Disable Mode	50 ^a	-	-	ns	
	Maximum Frequency	_	_	49.2	MHz	4.75V < Vdd < 5.25V.
CRCPRS (PRS Mode)	Maximum Input Clock Frequency	_	-	49.2	MHz	4.75V < Vdd < 5.25V.
CRCPRS (CRC Mode)	Maximum Input Clock Frequency	_	-	24.6	MHz	
SPIM	Maximum Input Clock Frequency	-	-	8.2	MHz	Maximum data rate at 4.1 MHz due to 2 x over clocking.
SPIS	Maximum Input Clock Frequency	_	_	4.1	ns	
	Width of SS_ Negated Between Transmissions	50 ^a	-	-	ns	
Transmitter	Maximum Input Clock Frequency ^b Silicon A Silicon B	-	-	16.4 24.6	MHz MHz	Maximum data rate at 2.05 MHz due to 8 x over clocking. Maximum data rate at 3.08 MHz due to 8 x over clocking.
Receiver	Maximum Input Clock Frequency ^b					oloomig.
	Silicon A	_	-	16.4	MHz	Maximum data rate at 2.05 MHz due to 8 x over clocking.
	Silicon B	_	_	24.6	MHz	Maximum data rate at 3.08 MHz due to 8 x over clocking.

a. 50 ns minimum input pulse width is based on the input synchronizers running at 24 MHz (42 ns nominal period).

b. Refer to the Ordering Information chapter on page 42.

4. Packaging Information

This chapter illustrates the packaging specifications for the CY8C27x43 PSoC device, along with the thermal impedances for each package and the typical package capacitance on crystal pins.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/support/link.cfm?mr=poddim.

4.1 Packaging Dimensions

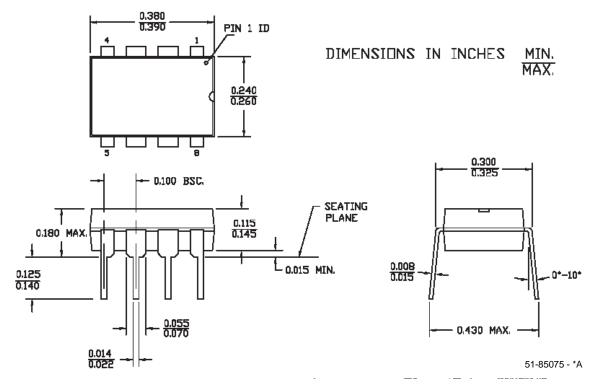


Figure 4-1. 8-Lead (300-Mil) PDIP

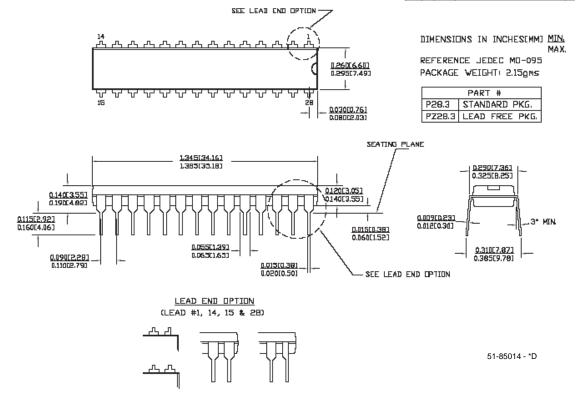


Figure 4-4. 28-Lead (300-Mil) Molded DIP

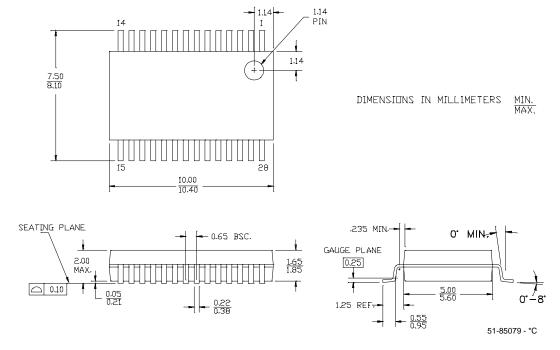


Figure 4-5. 28-Lead (210-Mil) SSOP

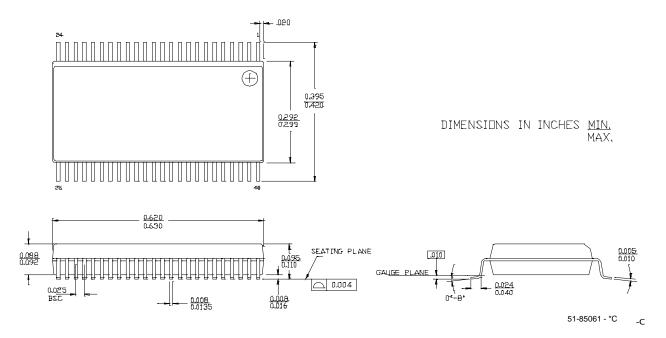


Figure 4-8. 48-Lead (300-Mil) SSOP

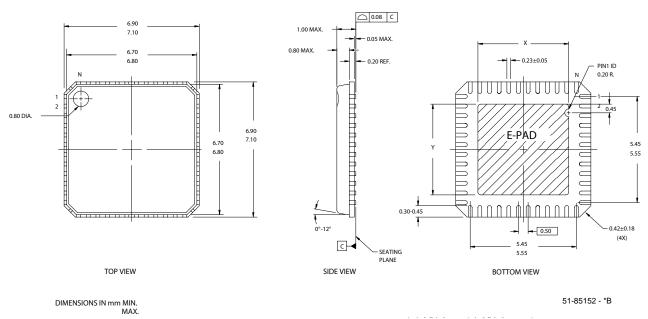


Figure 4-9. 48-Lead (7x7 mm) MLF

4.2 Thermal Impedances

Table 4-1. Thermal Impedances per Package

Package	Typical θ _{JA} *
8 PDIP	120 °C/W
20 SSOP	95 °C/W
20 SOIC	79 °C/W
28 PDIP	67 °C/W
28 SSOP	95 °C/W
28 SOIC	71 °C/W
44 TQFP	58 °C/W
48 SSOP	69 °C/W
48 MLF	18 °C/W

^{*} $T_J = T_A + POWER \times \theta_{JA}$

4.3 Capacitance on Crystal Pins

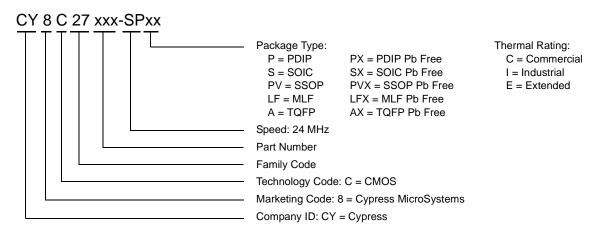
Table 4-2: Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
8 PDIP	2.8 pF
20 SSOP	2.6 pF
20 SOIC	2.5 pF
28 PDIP	3.5 pF
28 SSOP	2.8 pF
28 SOIC	2.7 pF
44 TQFP	2.6 pF
48 SSOP	3.3 pF
48 MLF	2.3 pF

5. Ordering Information

The following table lists the CY8C27x43 PSoC device family's key package features and ordering codes.

Table 5-1. CY8C27x43 PSoC Device Family Key Features and Ordering Information


Package	Ordering Code	Flash (Kbytes)	RAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks (Rows of 4)	Analog Blocks (Columns of 3)	Digital 10 Pins	Analog Inputs	Analog Outputs	XRES Pin
CY8C27x43 Silicon B – These parts are lead free and offer the following improvements. The DEC_CR1 register selections are enhanced to allow any digital block to be the decimator clock source, the ECO EX and ECO EXW bits in the CPU_SCR1 register are readable, and the accuracy of the analog reference is enhanced (see the Electrical Specifications chapter). All silicon A errata are fixed in silicon B.											
8 Pin (300 Mil) DIP	CY8C27143-24PXI	16	256	No	-40C to +85C	8	12	6	4	4	No
20 Pin (210 Mil) SSOP	CY8C27243-24PVXI	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
20 Pin (210 Mil) SSOP (Tape and Reel)	CY8C27243-24PVXIT	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
20 Pin (300 Mil) SOIC	CY8C27243-24SXI	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
20 Pin 300 Mil) SOIC (Tape and Reel)	CY8C27243-24SXIT	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
28 Pin (300 Mil) DIP	CY8C27443-24PXI	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (210 Mil) SSOP	CY8C27443-24PVXI	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (210 Mil) SSOP (Tape and Reel)	CY8C27443-24PVXIT	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (300 Mil) SOIC	CY8C27443-24SXI	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (300 Mil) SOIC (Tape and Reel)	CY8C27443-24SXIT	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
44 Pin TQFP	CY8C27543-24AXI	16	256	Yes	-40C to +85C	8	12	40	12	4	Yes
44 Pin TQFP (Tape and Reel)	CY8C27543-24AXIT	16	256	Yes	-40C to +85C	8	12	40	12	4	Yes
48 Pin (300 Mil) SSOP	CY8C27643-24PVXI	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (300 Mil) SSOP (Tape and Reel)	CY8C27643-24PVXIT	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (7x7) MLF	CY8C27643-24LFXI	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (7x7) MLF (Tape and Reel)	CY8C27643-24LFXIT	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes
CY8C27x43 Silicon A – Silicon A	is not recommended for n	ew desi	gns.								
8 Pin (300 Mil) DIP	CY8C27143-24PI	16	256	No	-40C to +85C	8	12	6	4	4	No
20 Pin (210 Mil) SSOP	CY8C27243-24PVI	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
20 Pin (210 Mil) SSOP (Tape and Reel)	CY8C27243-24PVIT	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
20 Pin (300 Mil) SOIC	CY8C27243-24SI	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
20 Pin 300 Mil) SOIC (Tape and Reel)	CY8C27243-24SIT	16	256	Yes	-40C to +85C	8	12	16	8	4	Yes
28 Pin (300 Mil) DIP	CY8C27443-24PI	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (210 Mil) SSOP	CY8C27443-24PVI	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes

CY8C27x43 Final Data Sheet 5. Ordering Information

Table 5-1. CY8C27x43 PSoC Device Family Key Features and Ordering Information (continued)

Package	Ordering Code	Flash (Kbytes)	RAM (Bytes)	Switch Mode Pump	Temperature Range	Digital Blocks (Rows of 4)	Analog Blocks (Columns of 3)	Digital IO Pins	Analog Inputs	Analog Outputs	XRES Pin
28 Pin (210 Mil) SSOP (Tape and Reel)	CY8C27443-24PVIT	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (300 Mil) SOIC	CY8C27443-24SI	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
28 Pin (300 Mil) SOIC (Tape and Reel)	CY8C27443-24SIT	16	256	Yes	-40C to +85C	8	12	24	12	4	Yes
44 Pin TQFP	CY8C27543-24AI	16	256	Yes	-40C to +85C	8	12	40	12	4	Yes
44 Pin TQFP (Tape and Reel)	CY8C27543-24AIT	16	256	Yes	-40C to +85C	8	12	40	12	4	Yes
48 Pin (300 Mil) SSOP	CY8C27643-24PVI	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (300 Mil) SSOP (Tape and Reel)	CY8C27643-24PVIT	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (7x7) MLF	CY8C27643-24LFI	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes
48 Pin (7x7) MLF (Tape and Reel)	CY8C27643-24LFIT	16	256	Yes	-40C to +85C	8	12	44	12	4	Yes

5.1 Ordering Code Definitions

