Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | FR81S | | Core Size | 32-Bit Single-Core | | Speed | 80MHz | | Connectivity | CANbus, CSIO, I ² C, LINbus, SPI, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 76 | | Program Memory Size | 320KB (320K x 8) | | Program Memory Type | FLASH | | EEPROM Size | 64K x 8 | | RAM Size | 56K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 37x12b; D/A 2x8b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 100-LQFP | | Supplier Device Package | 100-LQFP (14x14) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb91f522fwcpmc-gte2 | Table for clock supervisor and external low voltage detection reset initial value ON/OFF | Clock | CSV Initial value | LVD Initial value | Function | |-----------|-------------------|-------------------|----------| | | ON | ON | S | | a in alla | ON | OFF | U | | single | 055 | ON | Н | | | OFF | OFF | K | | | ON | ON | W | | Dest | ON | OFF | Y | | Dual | 055 | ON | J | | | OFF | OFF | L | ### ■ Storage of Semiconductor Devices Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following: - (1) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight. - (2) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C. - When you open Dry Package that recommends humidity 40% to 70% relative humidity. - (3) When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage. - (4) Avoid storing packages where they are exposed to corrosive gases or high levels of dust. #### ■ Baking Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking. Condition: 125°C/24 h ### ■ Static Electricity Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions: - (1) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity. - (2) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment. - (3) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). - Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended. - (4) Ground all fixtures and instruments, or protect with anti-static measures. - (5) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies. - 3. Precautions for Use Environment Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following: #### (1) Humidity Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing. (2) Discharge of Static Electricity When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges. (3) Corrosive Gases, Dust, or Oil Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices. (4) Radiation, Including Cosmic Radiation Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate. Document Number: 002-04662 Rev. *D ### MB91F522J, MB91F523J, MB91F524J, MB91F525J, MB91F526J Regulator FR81s CPU core Power-on reset MPU Debug Interface CR oscillator Instruction Data XBS XBS Crossbar Switch Flash On-chip bus(AHB) From Maste To Slave From Maste RAM ECC Control(XBS RAM) CAN (3ch) RX,TX RAM ECC Control (BackUp RAM) Async Bus Bridge (PCLK1 <-> PCLK2) Async Bus Bridge (PCLK1 <-> PCLK2) CAN prescaler CRC RTC/WDT1 Calibration DTTI.RTO 16bit Free-run timer (3ch) I/O port setting FRCK 16bit Input capture (4ch) 32bit Free-run timer(3ch) FRCK 16bit Output compare (6ch) 32bit Input capture(6ch) 12bit AD converter (26ch + 16ch) ICU 32bit Output compare(6ch) ADTG AIR enable(ADER) SOUT, OCU Base timer (2ch) TIOA,TIOB Bus Bridge (32bit <-> 16bit) U/D counter (2ch) AIN,BIN,ZIN Reload timer (8ch) TRG,PPG TIN,TOT 8bit DA converter (2ch DAO Bus Bridge (32bit <-> 16bit) Clock monitor External interrupt input (16ch) MONCLK Real time clock Watchdog timer(SW and HW) ⊠NMIX NMI DMA transfer request generate/cle Low-voltage detection (External power supply low-voltage detection) Clock control (divide control RSTX ⊠ Reset control register (Internal power supply low-voltage detection) Low-power consumption setting register Clock control (Clock setting, Main timer, Sub timer, PLL time Delay interrupt Interrupt controlle | | | Address offset val | ue / Register name | | D 11 | | | | |--|---|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|--|--|--| | Address - | +0 | Block | | | | | | | | 000120 _н | OCCP6 [R/W] W
00000000 00000000 00000000 | | | | | | | | | 000124 _н | | Output
Compare 6,7 | | | | | | | | 000128 _Н | _ | 32-bit OCU | | | | | | | | 00012С _Н | | OCCP8
00000000 00000000 | [R/W] W
00000000 00000000 | | | | | | | 000130н | | | [R/W] W
00000000 00000000 | | Output
Compare 8,9
32-bit OCU | | | | | 000134н | _ | _ | OCSH89 [R/W]
B,H,W
000 | OCSL89 [R/W]
B,H,W
000000 | | | | | | 000138 _H
to | | _ | _ | _ | Reserved | | | | | 0001В4 _Н
0001В8 _Н | EPFR64 [R/W]
B,H,W
00- | EPFR65 [R/W]
B,H,W
0000-000 | EPFR66 [R/W]
B,H,W
000000 | EPFR67 [R/W]
B,H,W
0000 | | | | | | 0001BС _н | EPFR68 [R/W]
B,H,W
0000 | EPFR69 [R/W]
B,H,W
0000 | EPFR70 [R/W]
B,H,W
00000 | EPFR71 [R/W]
B,H,W
-0-0-0-0 | | | | | | 0001C0 _н | EPFR72 [R/W]
B,H,W
000000-0 | EPFR73 [R/W]
B,H,W
00000000 | EPFR74 [R/W]
B,H,W
00000000 | EPFR75 [R/W]
B,H,W
00000000 | | | | | | 0001С4н | EPFR76 [R/W]
B,H,W
00000000 | EPFR77 [R/W]
B,H,W
000000 | EPFR78 [R/W]
B,H,W
00 | EPFR79 [R/W]
B,H,W
00000000 | Extended port function register | | | | | 0001С8 _н | EPFR80 [R/W]
B,H,W
00000 | EPFR81 [R/W]
B,H,W
00000000 | EPFR82 [R/W]
B,H,W
00000000 | EPFR83 [R/W]
B,H,W
-0000000 | | | | | | 0001СС _н | EPFR84 [R/W]
B,H,W
00000000 | EPFR85 [R/W]
B,H,W
000000 | EPFR86 [R/W]
B,H,W
00000 | EPFR87 [R/W]
B,H,W
00 | | | | | | 0001D0 _н | EPFR88 [R/W]
B,H,W
0 | _ | _ | _ | | | | | | 0001D4 _н | _ | _ | _ | _ | Reserved | | | | | 0001D8 _H | | 4 [R/W] H
XXXXXXXX | | [R] H
XXXXXXXX | - Reload Timer 4 | | | | | 0001DC _н | | 4 [R/W] H
XXXXXXXX | TMCSR4 [F
00000000 | Reload Timer 4 | | | | | | 0001E0 _H
to
0001EC _H | _ | _ | | | Reserved | | | | | 0001F0 _н | | 5 [R/W] H
XXXXXXXX | | [R] H
XXXXXXXX | Polond Times 5 | | | | | 0001F4 _Н | | 5 [R/W] H
XXXXXXXX | | R/W] B, H,W
0-000000 | Reload Timer 5 | | | | | Addoss | Address offset value / Register name | | | | | | | | | |--|---|-------|------------------------------|------------------------|---------------------------|--|--|--|--| | Address | +0 | +1 | +2 | +2 +3 | | | | | | | 000328 _H | DEAR [R] W XXXXXXXX XXXXXXXX XXXXXXXX | | | | | | | | | | 00032С _н | _ | _ | | DESR [R/W] H
000000 | | | | | | | 000330н | PABR0 [R/W] W XXXXXXXX XXXXXXXX XXXXXXX | | | | | | | | | | 000334н | _ | _ | | [R/W] H
0 000000 | can access this area) | | | | | | 000338н |) | PABR1 | [R/W] W
X XXXXXXXX XXXX00 | 000 | | | | | | | 00033Сн | _ | _ | | [R/W] H
0 000000 | | | | | | | 000340н |) | PABR2 | [R/W] W
X XXXXXXXX XXXX00 | 000 | | | | | | | 000344н | _ | _ | | [R/W] H
0 000000 | | | | | | | 000348н |) | PABR3 | [R/W] W
X XXXXXXXX XXXX00 | 000 | | | | | | | 00034Сн | _ | _ | | [R/W] H | | | | | | | 000350н | , | PABR4 | [R/W] W
X XXXXXXXX XXXX00 | 000 | | | | | | | 000354н | _ | _ | | [R/W] H | MPU [S]
(Only CPU core | | | | | | 000358н |) | PABR5 | [R/W] W
X XXXXXXXX XXXX00 | 000 | can access this area) | | | | | | 00035С _Н | _ | _ | | [R/W] H
0 000000 | | | | | | | 000360н |) | PABR6 | [R/W] W
X XXXXXXX XXXX00 | 000 | | | | | | | 000364н | _ | _ | | [R/W] H
0 000000 | | | | | | | 000368н | , | PABR7 | [R/W] W
X XXXXXXXX XXXX00 | 000 | | | | | | | 00036Сн | _ | _ | | | | | | | | | 000370 _Н
to
0003AC _Н | | 1 | _ | | | | | | | | 0003B0 _H
to
0003FC _H | _ | _ | _ | _ | Reserved [S] | | | | | | ۰ ماما | | Address offset val | ue / Register name | | Diesis | |--|-------------------------------|-------------------------------|---------------------------------|--------------------------------|--| | Address | +0 | +1 | +2 | +3 | Block | | 000440 _H | ICR00 [R/W] B,H,W | ICR01 [R/W] B,H,W | ICR02 [R/W] B,H,W | ICR03 [R/W] B,H,W | | | 000444 _H | ICR04 [R/W] B,H,W
11111 | ICR05 [R/W] B,H,W
11111 | ICR06 [R/W] B,H,W
11111 | ICR07 [R/W] B,H,W
11111 | | | 000448 _H | ICR08 [R/W] B,H,W
11111 | ICR09 [R/W] B,H,W
11111 | ICR10 [R/W] B,H,W
11111 | ICR11 [R/W] B,H,W
11111 | | | 00044С _н | ICR12 [R/W] B,H,W
11111 | ICR13 [R/W] B,H,W
11111 | ICR14 [R/W] B,H,W
11111 | ICR15 [R/W] B,H,W
11111 | | | 000450 _н | ICR16 [R/W] B,H,W
11111 | ICR17 [R/W] B,H,W
11111 | ICR18 [R/W] B,H,W
11111 | ICR19 [R/W] B,H,W
11111 | | | 000454 _Н | ICR20 [R/W] B,H,W
11111 | ICR21 [R/W] B,H,W
11111 | ICR22 [R/W] B,H,W
11111 | ICR23 [R/W] B,H,W
11111 | Interrupt | | 000458 _н | ICR24 [R/W] B,H,W
11111 | ICR25 [R/W] B,H,W
11111 | ICR26 [R/W] B,H,W
11111 | ICR27 [R/W] B,H,W
11111 | Controller [S] | | 00045С _н | ICR28 [R/W] B,H,W
11111 | ICR29 [R/W] B,H,W
11111 | ICR30 [R/W] B,H,W | ICR31 [R/W] B,H,W
11111 | | | 000460 _H | ICR32 [R/W] B,H,W
11111 | ICR33 [R/W] B,H,W | ICR34 [R/W] B,H,W | ICR35 [R/W] B,H,W
11111 | | | 000464н | ICR36 [R/W] B,H,W | ICR37 [R/W] B,H,W | ICR38 [R/W] B,H,W | ICR39 [R/W] B,H,W
11111 | | | 000468 _H | ICR40 [R/W] B,H,W
11111 | ICR41 [R/W] B,H,W | ICR42 [R/W] B,H,W | ICR43 [R/W] B,H,W
11111 | | | 00046С _н | ICR44 [R/W] B,H,W
11111 | ICR45 [R/W] B,H,W | ICR46 [R/W] B,H,W | ICR47 [R/W] B,H,W
11111 | | | 000470 _H
to
00047C _H | _ | _ | _ | _ | Reserved [S] | | 000480н | RSTRR [R]
B,H,W
XXXXXX | RSTCR [R/W]
B,H,W
1110 | STBCR [R/W]
B,H,W *
00011 | | Reset Control [S]
Power Control [S]
*: Writing STBCR
by DMA is
forbidden | | 000484н | _ | _ | _ | _ | Reserved [S] | | 000488 _H | DIVR0 [R/W] B,H,W
000 | DIVR1 [R/W] B,H,W
0001 | DIVR2 [R/W] B,H,W
0011 | _ | Clock Control [S] | | 00048C _H | _ | _ | _ | | Reserved [S] | | 000490 _H | IORR0 [R/W] B,H,W
-0000000 | IORR1 [R/W] B,H,W
-0000000 | IORR2 [R/W] B,H,W
-0000000 | IORR3 [R/W] B,H,W
-0000000 | | | 000494 _н | IORR4 [R/W] B,H,W
-0000000 | IORR5 [R/W] B,H,W
-0000000 | IORR6 [R/W] B,H,W
-0000000 | IORR7 [R/W] B,H,W
-0000000 | DMA request by peripheral [S] | | 000498 _H | IORR8 [R/W] B,H,W
-0000000 | IORR9 [R/W] B,H,W
-0000000 | IORR10 [R/W] B,H,W
-0000000 | IORR11 [R/W] B,H,W
-0000000 | | | A state | | Address offset va | lue / Register name | | Block | | | |--|---------------------------|--|-----------------------------------|--|------------------------|--|--| | Address | +0 | +0 +1 +2 +3 | | | | | | | 0012D4 _Н | | 16-bit Free-run timer selection | | | | | | | 0012D8 _н | | | W] B,H,W
)00000000 | | A/D activation compare | | | | 0012DC _H
to
0012FC _H | _ | _ | _ | _ | Reserved | | | | 001300 _н | | - | _ | | Reserved | | | | 001304н | ADTSS0[R/W]
B,H,W
0 | _ | _ | _ | 12-bit A/D | | | | 001308 _Н | | - | R/W] B,H,W
0 00000000 00000000 | | converter 1/2 unit | | | | 00130Сн | | OMPB0[R/W] H,W
00000000 | | ADCOMP1/ADCOMPB1[R/W] H,W
00000000 00000000 | | | | | 001310н | | ADCOMP2/ADCOMPB2[R/W] H,W
00000000 00000000
ADCOMP4/ADCOMPB4[R/W] H,W
00000000 00000000 | | OMPB3[R/W] H,W
00000000 | | | | | 001314н | | | | ADCOMP5/ADCOMPB5[R/W] H,W
00000000 00000000
ADCOMP7/ADCOMPB7[R/W] H,W
00000000 00000000 | | | | | 001318н | | | | | | | | | 00131Сн | | OMPB8[R/W] H,W
00000000 | | OMPB9[R/W] H,W
00000000 | | | | | 001320н | | OMPB10[R/W] H,W
00000000 | | OMPB11[R/W] H,W
00000000 | | | | | 001324н | | OMPB12[R/W] H,W
00000000 | | OMPB13[R/W] H,W
00000000 | 12-bit A/D | | | | 001328н | | OMPB14[R/W] H,W
00000000 | | OMPB15[R/W] H,W
00000000 | converter 1/2 unit | | | | 00132Сн | | OMPB16[R/W] H,W
00000000 | | OMPB17[R/W] H,W
00000000 | | | | | 001330н | ADCOMP18/ADC0
00000000 | OMPB18[R/W] H,W
00000000 | | OMPB19[R/W] H,W
00000000 | | | | | 001334н | | OMPB20[R/W] H,W
00000000 | ADCOMP21/ADC0
00000000 | | | | | | 001338н | ADCOMP22/ADC0
00000000 | OMPB22[R/W] H,W
00000000 | | OMPB23[R/W] H,W
00000000 | | | | | 00133Сн | | OMPB24[R/W] H,W
00000000 | | OMPB25[R/W] H,W
00000000 | | | | | 001340н | | OMPB26[R/W] H,W
00000000 | | OMPB27[R/W] H,W
00000000 | | | | 80 pins | | Interrupt | | Interrupt | | Default | | |--|-----------|-----------------|----------------------|------------------|------------------------|------------------| | Interrupt factor | Decimal | Hexa
decimal | level | Offset | address for
TBR | RN | | Reset | 0 | 0 | - | 3FC _H | 000FFFC _н | ı | | System reserved | 1 | 1 | - | 3F8 _H | 000FFFF8 _H | - | | System reserved | 2 | 2 | - | 3F4 _H | 000FFFF4 _H | ı | | System reserved | 3 | 3 | - | 3F0 _H | 000FFFF0 _н | - | | System reserved | 4 | 4 | - | 3EC _H | 000FFFEC _H | - | | FPU exception | 5 | 5 | - | 3E8 _H | 000FFFE8 _H | - | | Exception of instruction access protection violation | 6 | 6 | - | 3E4 _H | 000FFFE4 _н | - | | Exception of data access protection violation | 7 | 7 | - | 3E0 _H | 000FFFE0 _H | - | | Data access error interrupt | 8 | 8 | - | 3DC _H | 000FFFDC _H | ı | | INTE instruction | 9 | 9 | - | 3D8 _H | 000FFFD8 _H | ı | | Instruction break | 10 | 0A | - | 3D4 _H | 000FFFD4 _H | - | | System reserved | 11 | 0B | - | 3D0 _H | 000FFFD0 _н | ı | | System reserved | 12 | 0C | - | 3ССн | 000FFFCC _H | ı | | System reserved | 13 | 0D | - | 3C8 _H | 000FFFC8 _H | _ | | Exception of invalid instruction | 14 | 0E | - | 3C4 _H | 000FFFC4 _H | ı | | NMI request | | | | | | | | Error generation during internal bus diagnosis | | | 45 (5) | | | | | XBS RAM double-bit error generation | 15 | 0F | 15 (F _H) | 3С0н | 000FFFC0 _н | - | | Backup RAM double-bit error generation | 1 | | Fixed | | | | | TPU violation | 1 | | | | | | | External interrupt 0-7 | 16 | 10 | ICR00 | 3ВСн | 000FFFBC _H | 0 | | External interrupt 8-15 | | | | | | 1* ⁷ | | External low-voltage detection interrupt | 17 | 11 | ICR01 | 3B8 _H | 000FFFB8 _H | 1* | | Reload timer 0/1/4/5 | 18 | 12 | ICR02 | 3B4 _H | 000FFFB4 _н | 2* ² | | Reload timer 3/6/7 | 19 | 13 | ICR03 | 3B0 _H | 000FFFB0 _H | 3* ² | | Multi-function serial interface | | | | | | | | ch _. 0 (reception completed) | 20 | 4.4 | ICD04 | 240 | 00055540 | 4* ¹ | | Multi-function serial interface | 20 | 14 | ICR04 | 3AC _H | 000FFFAC _H | 4" | | ch _. 0 (status) | | | | | | | | Multi-function serial interface | 21 | 15 | ICDOE | 240 | 0005554.0 | 5* ¹ | | ch 0 (transmission completed) | 21 | 15 | ICR05 | 3A8 _H | 000FFFA8 _H | _ | | - | 22 | 16 | ICR06 | 3A4 _H | 000FFFA4 _н | _* ⁶ | | - | 23 | 17 | ICR07 | 3A0 _H | 000FFFA0 _H | -* ⁶ | | Multi-function serial interface | | | | | | | | ch_2 (reception completed) | 24 | 18 | ICR08 | 39Сн | 000FFF9С _н | 8* ¹ | | Multi-function serial interface | 24 | 10 | ICKUO | 39CH | 000FFF9CH | 0 | | ch 2 (status) | | | | | | | | Multi-function serial interface | 25 | 19 | ICR09 | 398н | 000FFF98 _н | 9* ¹ | | ch 2 (transmission completed) | 20 | 19 | 101108 | OGOH | 00011130H | 9 | | Multi-function serial interface | | | | | | | | ch 3 (reception completed) | 26 | 1A | ICR10 | 394 _H | 000FFF94 _н | 10* ¹ | | Multi-function serial interface | 20 | '^ | 101(10 | OOTH | 3001113 1 H | 10 | | ch 3 (status) | | | | | | | | Multi-function serial interface | 27 | 1B | ICR11 | 390 _H | 000FFF90 _H | 11 | | ch 3 (transmission completed) | | '0 | .5 | JJJH | OCCITION H | | | 120 pins | Interr | upt number | Interrupt | | Default | | | | |--|---------|-------------|--|------------------|-----------------------|------|-----------------------|----| | Interrupt factor | Decimal | Hexadecimal | level | Offset | address for
TBR | RN | | | | Reset | 0 | 0 | - | 3FC _H | 000FFFFC _H | - | | | | System reserved | 1 | 1 | - | 3F8 _H | 000FFFF8 _H | - | | | | System reserved | 2 | 2 | - | 3F4 _H | 000FFFF4 _H | - | | | | System reserved | 3 | 3 | - | 3F0 _H | 000FFFF0 _H | - | | | | System reserved | 4 | 4 | - | 3ЕСн | 000FFFEC _н | - | | | | FPU exception | 5 | 5 | - | 3E8 _H | 000FFFE8 _H | - | | | | Exception of instruction access protection violation | 6 | 6 | _ | 3E4 _H | 000FFFE4 _H | _ | | | | Exception of data access protection violation | 7 | 7 | _ | 3E0 _H | 000FFFE0 _H | - | | | | Data access error interrupt | 8 | 8 | - | | 000FFFDC _H | - | | | | INTE instruction | 9 | 9 | - | | 000FFFD8 _H | - | | | | Instruction break | 10 | 0A | - | | 000FFFD4 _H | - | | | | System reserved | 11 | 0B | - | | 000FFFD0 _H | _ | | | | System reserved | 12 | 0C | _ | | 000FFFCC _H | _ | | | | System reserved | 13 | 0D | _ | | 000FFFC8 _H | - | | | | Exception of invalid instruction | 14 | 0E | _ | | 000FFFC4 _H | _ | | | | NMI request | | 02 | | 00 ін | 000111016 | | | | | Error generation during internal bus diagnosis | | | | | | | | | | XBS RAM double-bit error generation | 15 | 0F | 15 (F _H) | 3C0 _H | 000FFFC0 _H | _ | | | | Backup RAM double-bit error generation | 13 | OI | Fixed | JCOH | OOOI I I COH | _ | | | | TPU violation | | | | | | | | | | External interrupt 0-7 | 16 | 10 | ICR00 | 2DC | 000FFFBC _H | 0 | | | | External interrupt 8-15 | 10 | 10 | ICKUU | SBCH | OUOFFFBCH | | | | | • | 17 | 11 | ICR01 | 3B8 _H | 000FFFB8 _H | 1* | | | | External low-voltage detection interrupt | 18 | 12 | ICR02 | 204 | 000FFFB4 _H | 2* | | | | Reload timer 0/1/4/5 | | | | | | 3* | | | | Reload timer 2/3/6/7 | 19 | 13 | ICR03 | 3B0 _H | 000FFFB0 _H | 3" | | | | Multi-function serial interface | | | | | | | | | | ch.0 (reception completed) | 20 | 20 | 20 | 14 | ICR04 | 3АСн | 000FFFAC _H | 4* | | Multi-function serial interface | | | | | | | | | | ch.0 (status) | | | | | | | | | | Multi-function serial interface | 21 | 15 | ICR05 | 3A8 _H | 000FFFA8 _н | 5* | | | | ch.0 (transmission completed) | | | | | | | | | | Multi-function serial interface | | | | | | | | | | ch.1 (reception completed) | 22 | 16 | ICR06 | 3A4 _H | 000FFFA4 _н | 6* | | | | Multi-function serial interface | | | | | | | | | | ch.1 (status) | | | | | | | | | | Multi-function serial interface | 23 | 17 | ICR07 | 3A0 _H | 000FFFA0 _н | 7* | | | | ch.1 (transmission completed) Multi-function serial interface | | | | | | | | | | ch.2 (reception completed) | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | 24 | 18 | ICR08 | 39Сн | 000FFF9С _н | 8* | | | | Multi-function serial interface | | | | | | | | | | ch.2 (status) Multi-function serial interface | 1 | | | | | | | | | | 25 | 19 | ICR09 | 398н | 000FFF98 _н | 9* | | | | ch.2 (transmission completed) | | | | | | | | | | Multi-function serial interface | | | | | | | | | | ch.3 (reception completed) | 26 | 1A | ICR10 | 394 _H | 000FFF94 _н | 10' | | | | Multi-function serial interface | | | | | | | | | | ch.3 (status) | | | | | | | | | ### Flash memory (1) Electrical Characteristics | Doromotor | V | Value | | | Domonico | |------------------------------------|---|-------|------|------|---| | Parameter | Min | Тур | Max | Unit | Remarks | | | - | 200 | 800 | ms | 8 Kbytes sector* ¹ , excluding internal preprogramming time | | 0 | _ | 300 | 1100 | ms | 8 Kbytes sector* ¹ , including internal preprogramming time | | Sector erase time | _ | 400 | 2000 | ms | 64 Kbytes sector* ¹ , excluding internal preprogramming time | | | _ | 700 | 3700 | ms | 64 Kbytes sector* ¹ , including internal preprogramming time | | 8-bit writing time | - | 9 | 288 | μs | Exclusive of overhead time at system level*1 | | 16-bit writing time | - | 12 | 384 | μs | Exclusive of overhead time at system level*1 | | ECC writing time | _ | 9 | 288 | μs | Exclusive of overhead time at system level*1 | | Erase cycle*²/
Data retain time | 1,000 cycles/
20 years,
10,000 cycles/
10 years,
100,000 cycles/
5 years | - | _ | _ | Average T _A =+85°C* ³ | ^{*1:} The guaranteed value for erasure up to 100,000 cycles. # (2) Notes While the Flash memory is written or erased, shutdown of the external power (Vcc) is prohibited. In the application system where Vcc might be shut down while writing or erasing, be sure to turn the power off by using an external voltage detection function. To put it concretely, after the external power supply voltage falls below the detection voltage (V_{DL}^*), hold Vcc at 2.7V or more within the duration calculated by the following expression: $$Td^*[\mu s] + (period of PCLK [\mu s] \times 257) + 50 [\mu s]$$ Document Number: 002-04662 Rev. *D ^{*2:} Number of erase cycles for each sector. ^{*3:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C). ^{*:} See "4.AC Characteristics (8) Low-voltage detection (External low-voltage detection) " # 15. Ordering Information MB91F52xxxD | Part number | Sub clock | CSV Initial value | LVD Initial value | Package* | |----------------|-----------|-------------------|-------------------|--------------------------------------| | MB91F526LWDPMC | Yes | ON | ON | | | MB91F526LJDPMC | | OFF | ON | | | MB91F525LWDPMC | | ON | ON | | | MB91F525LJDPMC | | OFF | ON | | | MB91F524LWDPMC | | ON | ON | | | MB91F524LJDPMC | | OFF | ON | | | MB91F523LWDPMC | | ON | ON | | | MB91F523LJDPMC | | OFF | ON | | | MB91F522LWDPMC | | ON | ON | | | MB91F522LJDPMC | | OFF | ON | LQP · 176 pin, | | MB91F526LSDPMC | None | ON | ON | Plastic | | MB91F526LHDPMC | | OFF | ON | | | MB91F525LSDPMC | | ON | ON | | | MB91F525LHDPMC | | OFF | ON | | | MB91F524LSDPMC | | ON | ON | | | MB91F524LHDPMC | | OFF | ON | | | MB91F523LSDPMC | | ON | ON | | | MB91F523LHDPMC | | OFF | ON | | | MB91F522LSDPMC | | ON | ON | | | MB91F522LHDPMC | | OFF | ON | | | MB91F526KWDPMC | Yes | ON | ON | | | MB91F526KJDPMC | | OFF | ON | | | MB91F525KWDPMC | | ON | ON | | | MB91F525KJDPMC | | OFF | ON | | | MB91F524KWDPMC | | ON | ON | | | MB91F524KJDPMC | | OFF | ON | | | MB91F523KWDPMC | | ON | ON | | | MB91F523KJDPMC | | OFF | ON | | | MB91F522KWDPMC | | ON | ON | | | MB91F522KJDPMC | | OFF | ON | LQS • 144 pin,
(Lead pitch 0.5mm) | | MB91F526KSDPMC | None | ON | ON | Plastic | | MB91F526KHDPMC | | OFF | ON | | | MB91F525KSDPMC | | ON | ON | | | MB91F525KHDPMC | | OFF | ON | | | MB91F524KSDPMC | | ON | ON | | | MB91F524KHDPMC | | OFF | ON | | | MB91F523KSDPMC | | ON | ON | | | MB91F523KHDPMC | | OFF | ON | | | MB91F522KSDPMC | | ON | ON | | | MB91F522KHDPMC | | OFF | ON | | ### **■** Workaround It is necessary to satisfy the below both conditions of (1) and (2). - (1) Interrupt levels that are used as sources for recovering from the watch mode (power off) are '31', before CPU state changes to the watch mode (power off) - (2) Don't use NMIX pin as source for recovering from the watch mode (power off) ## ■ Fix Status Will not be planned Document Number: 002-04662 Rev. *D | Page | Section | Change Results | | | | | | | | |------|-------------------|----------------|-----------------|-------|------------------|-----|-----|---------------------------------|--| | | | (Contin | - | | | | | | | | | | Pin no. | | | | | | Pin | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | | P025
WR1X ^{*4, *5} | | | | | | _ | 4 *1 | 7 *1 | 10 | 12 | SOT4_1 | | | | | | | | | | | PPG25_0 | | | | | | | | | | | TIN2_0 | | | | | | - | | - | _ | 13 | P172 | | | | | | | | _ | | 10 | PPG38_1 | | | | | | | | | | | P026 | | | | | | 4 *1 | c *1 | o *1 | 11 | 11 | A00 *3, *4, *5 | | | | | | 4 | 5 *1 | 8 *1 | 11 | 14 | SCK4_1
PPG26_0 | | | | | | | | | | | TIN3_0 | | | | | | | | | | | P027 | | | | | | | | | | | A01 *2, *3, *4, *5 | | | | | 4 *1 | 5 *1 | 6 *1 | 9 *1 | 12 | 15 | SCS40_1 | | | | | 4 | 5 | | 9 | 12 | 13 | PPG27_0 | | | | | | | | | | | TOT0_0 | | | | | | | | | | | RTO3_1 | | | 20 | ■PIN Description | - | - | - | - | - | 16 | P173 | | | 20 | ar in Description | | | | | | | PPG39_1
P030 | | | | | | | | | | | A02 *4, *5 | | | | | - | _ | 7 *1 | 10 *1 | 13 | 17 | SCS41_1 | | | | | | | | _ | | | PPG28_0 | | | | | | | | | | | TOT1_0 | | | | | | | | | | | P031 | | | | | | . *1 | . *1 | *1 | | | A03 *3, *4, *5 | | | | | - | 6 ^{*1} | 8 *1 | 11 *1 | 14 | 18 | SCS42_1 | | | | | | | | | | | PPG29_0
TOT2_0 ^{*3} | | | | | | | | | | | D032 | | | | | | | | | | | A04 *2, *3, *4, *5 | | | | | _ *1 | _ *1 | - *1 | *1 | | | SCS43_1 | | | | | 5 *1 | 7 *1 | 9 *1 | 12 *1 | 15 | 19 | PPG30 0 | | | | | | | | | | | TOT3_0 | | | | | | | | | | | RTO2_1 | | | | | | | | | | | P033 | | | | | | | | | | | A05 *2, *3, *4, *5 | | | | | a*1 | 0.*1 | 40*1 | 40*1 | 40 | | PPG31_0 | | | | | 6 *1 | 8 *1 | 10 *1 | 13 ^{*1} | 16 | 20 | ICU3_3 | | | | | | | | | | | TIN4_0
RTO1_1 | | | | | | | | | | | SCK3_2 | | | Page | Section | | Change Results | | | | | | | | |--------|------------------|----------|----------------|---------|---------|----------|-----|----------------|--|--| | | | A List o | f "Pin [| Descrip | tion" m | odified. | | | | | | | | (Error) | | | | | | | | | | | | (EIIOI) | | Pin | no | | | Pin | | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | 01 | - 00 | 100 | 120 | | 170 | P047 | | | | | | | | | | | | A17 | | | | | | 15 | 18 | 23 | 27 | 30 | 37 | AN45 | | | | | | | 10 | 20 | 21 | | 01 | TRG8_0 | | | | | | | | | | | | TIN3_2 | | | | | | | | | | | | SOT0_1
P177 | | | | | | | - | - | - | - | 38 | TRG11_0 | | | | | | | | | | | | P050 | | | | | | | | | 20 | 21 | 39 | A18 | | | | | | - | - | - | 28 | 31 | | TRG5_1 | | | | | | | | | | | | PPG33_0 | | | | | | | | | | 20 | 40 | P051 | | | | | | | - | - | - | 32 | 40 | A19
TRG9 0 | | | | | | | | | | | | P052 | | | | | | | - | - | - | 33 | 41 | A20 | | | | | ■PIN Description | | | | | | | PPG34_0 | | | | 23, 24 | | | | | | | | INT14_0 | | | | | · | | | | | | | P053 | | | | | | | | | | | | A21
AN44 | | | | | | 16 | 19 | 24 | 29 | 34 | 42 | PPG35_0 | | | | | | | | | | | | INT14_1 | | | | | | | | | | | | SCK0_1 | | | | | | | | | | | | P054 | | | | | | | - | - | - | 35 | 43 | SYSCLK | | | | | | | | | | | | PPG36_0 | | | | | | | | | | | | P055
CS2X | | | | | | - | | | | | | SIN10_0 | | | | | | 17 | 22 | 27 | 32 | 38 | 46 | AN43 | | | | | | | | | | | | PPG37_0 | | | | | | <u> </u> | | | | | | TIN4_1 | P056 | | | | | | | | | | | | CS3X
ICU9_0 | | | | | | | _ | _ | 33 | 39 | 49 | PPG0_1 | | | | | | | | | 33 | 39 | | ICU0_1 | | | | | | | | | | | | TIN5_1 | | | | | | | | | | | | DTTI_2 | | | | | | | | | | | | | | | | Page | Section | Change Results | | | | | | |------|------------------|--|--|--|--|--|--| | | | A List of "Pin Description" modified. | | | | | | | | | (Error) | | | | | | | | | Function*2 | | | | | | | | | General-purpose I/O port | | | | | | | | | External Bus chip select 3 output pin(0) | | | | | | | | | Input capture ch.9 input pin(0) | | | | | | | | | PPG ch.0 output pin(1) | | | | | | | | | Input capture ch.0 input pin(1) | | | | | | | 24 | ■PIN Description | Reload timer ch.5 event input pin(1) | | | | | | | | | Waveform generator ch.0 to ch.5 input pin(2) | | | | | | | | | (Correct) | | | | | | | | | Function ^{*9} | | | | | | | | | General-purpose I/O port | | | | | | | | | External Bus chip select 3 output pin | | | | | | | | | Input capture ch.9 input pin(0) | | | | | | | | | PPG ch.0 output pin(1) | | | | | | | | | Input capture ch.0 input pin(1) | | | | | | | | | Reload timer ch.5 event input pin(1) | | | | | | | | | Waveform generator ch.0 to ch.5 input pin(2) | | | | | | | Page | Section | | Change Results | | | | | | | | |------|------------------|-----------|---------------------------------------|------------------|--------|-----|----------|-----------------------------------|--|--| | | | A List o | A List of "Pin Description" modified. | | | | | | | | | | | (Error) | | | | | | | | | | | | | | Pin | | | | | | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | | | P000 | | | | | | | | | | | | D16 | | | | | | - | - | 94 | 111 | 131 | 159 | SIN1_0 | | | | | | | | | | | | TIOA0_1
INT2_0 | | | | | | | | | | | | P001 | | | | 33 | ■PIN Description | - | 75 | 95 | 112 | 132 | 160 | D17 | | | | | | | | | | | | SOT1_0
TIOA1 1 | | | | | | | | <u>I</u> | | | <u>I</u> | 110711_1 | | | | | | (Correct) | | | | | | | | | | | | | Pin no. | | | | | Pin | | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | | | P000 | | | | | | | | | | | | D16 *4, *5 | | | | | | | - | 94 *1 | 111 *1 | 131 | 159 | SIN1 0 | | | | | | | | | | | | TIOA0_1 *4 | | | | | | | | | | | | INT2_0 | | | | | | | *4 | *4 | *4 | | | P001
D17 ^{*3, *4, *5} | | | | | | - | 75 ^{*1} | 95 ^{*1} | 112*1 | 132 | 160 | SOT1_0 ^{*3} | | | | | | | | | | | | TIOA1 1 | | | # Sales, Solutions, and Legal Information ## **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. **Products** ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory PSoC cypress.com/psoc Touch Sensing cypress.com/touch USB Controllers cypress.com/usb Wireless/RF cypress.com/wireless **PSoC® Solutions** PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP **Cypress Developer Community** Community | Forums | Blogs | Video | Training | Components Technical Support cypress.com/support ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries © Cypress Semiconductor Corporation, 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-04662 Rev. *D June 23, 2016 Page 289 of 289