

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	FR81S
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, CSIO, EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	120
Program Memory Size	1.0625MB (1.0625M × 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	136К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 48x12b; D/A 2x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb91f526kwcpmc-gsk5e1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MB91520 Series

- D/A converter (R-2R type)
 8-bit resolution : 2ch
- External interrupt input: 8 channels × 2 units total 16 channels
 - Level ("H" / "L"), or edge detection (rising or falling) enabled
- Multi-function serial communication (built-in transmission/reception FIFO memory) : Max.12 channels
 - 5V tolerant input: 4 channels ch.6, ch.8, ch.9, ch.11 CMOS hysteresis input
 VART (Asynchronous serial interface) >
 - Full-duplex double buffering system, 64-step transmission FIFO memory, 64-step reception FIFO memory
 - □ Parity or no parity is selectable.
 - □ Built-in dedicated baud rate generator
 - □ An external clock can be used as the transfer clock
 - □ Parity, frame, and overrun error detection functions provided
 - DMA transfer support
 <CSIO (Synchronous serial interface) >
 - Full-duplex double buffering system, 64-step transmission FIFO memory, 64-step reception FIFO memory
 - □ SPI supported; master and slave systems supported; 5 to 16, 20, 24, 32-bit data length can be set.
 - Built-in dedicated baud rate generator (Master operation)
 - □ An external clock can be entered. (Slave operation)
 - □ Overrun error detection function is provided
 - DMA transfer support
 - Serial chip select SPI function <LIN (Asynchronous Serial Interface for LIN) >
 - Full-duplex double buffering system, 64-step transmission FIFO memory, 64-step reception FIFO memory
 - □ LIN protocol revision 2.1 supported
 - □ Master and slave systems supported
 - □ Framing error and overrun error detection
 - □ LIN synch break generation and detection; LIN synch delimiter generation
 - □ Built-in dedicated baud rate generator
 - An external clock can be adjusted by the reload counter
 - DMA transfer support
 - $\square \quad \text{Hard assist function} \\ < |^2C >$
 - □ 2 channels ch.3 , ch.4 Standard mode/fast mode supported.
 - 6 channels ch.5 to ch.8, ch.10, ch.11 Standard mode supported.
 - Full-duplex double buffering system, 64-step transmission FIFO memory, 64-step reception FIFO memory
 - □ Standard mode (Max. 100kbps) / fast mode (Max. 400kbps) supported
 - DMA transfer supported (for transmission only)
- CAN Controller (CAN) : 3 channels
 - □ Transfer speed : Up to 1Mbps
 - □ 128-transmission/reception message buffering : 1 channel (ch.0),

64-transmission/reception message buffering : 2 channels (ch.1 and ch.2)

- PPG: 16-bit × Max. 48 channels
 - □ LED drive output 4 channels 11ch to 14ch
 - □ Reload timer : 16-bit × Max.8 channels
 - Free-run timer : 16-bit × 3 channels 32-bit × Max 3 channels
- Input capture : 16-bit × 4 channels (linked to the free-run timer) 32-bit × Max 6 channels (linked to the free-run timer)
- Output compare : 16-bit × 6 channels (linked to the free-run timer) 32-bit × Max 6 channels (linked to the free-run timer)
- Waveform generator : 6 channels
- Up/Down counter
 - □ 8/16-bit Up/Down counter × 2 channels
- Real-time clock (RTC) (for day, hours, minutes, seconds)
 Main or sub oscillation frequency can be selected for the operation clock
- Calibration: Real-time clock (RTC) of the subclock drive
 The main clock to sub clock ratio can be corrected by setting the real-time clock prescaler
- Clock Supervisor
 - Monitoring abnormality (by damaged quartz, etc.) of suboscillation (32kHz) (dual clock products) of the outside and main oscillation (4 MHz)
 - □ When abnormality is detected, it switches to the CR clock.
 - □ Initial value ON/OFF can be selected by the part number.
- Base timer : Max.2 channels
 - □ 16-bit timer
 - □ Any of four PWM/PPG/PWC/reload timer functions can be selected and used
 - □ As for the PWC function and the reload timer function, a pair of 16-bit timers can be used as one 32-bit timer in the cascade mode
- CRC generation
- Watchdog timer
 - □ Hardware watchdog
 - Software watchdog (possible to set the valid range for counter clearing)
- NMI (non-maskable interrupt)
- Interrupt controller
- Interrupt request batch read
 - □ The interrupt existence from two or more peripherals can be read by a series of register.
- I/O relocation
 - □ Peripheral function pins can be reassigned.
- Low-power consumption mode
 - □ Sleep / Stop / Watch / Sub RUN mode
 - Stop (power shutdown) / Watch (power shutdown) mode

Product lineup comparison 100 pins

	MB91F522F	MB91F523F	MB91F524F	MB91F525F	MB91F526F
System Clock		On chip F	PLL Clock multip	le method	
Minimum instruction execution time		·	12.5ns (80MHz	.)	
Flash Capacity (Program)	(256+64)KB	(384+64)KB	(512+64)KB	(768+64)KB	(1024+64)KB
Flash Capacity (Data)			64KB		
RAM Capacity	(48+	8)KB	(64+8)KB	(96+8)KB	(128+8)KB
External BUS I/F			Nono		
(22address/16data/4cs)			None		
DMA Transfer			16ch		
16-bit Base Timer			1ch		
Free-run Timer		16	bit×3ch, 32bit×	3ch	
Input capture		16	bit×4ch, 32bit×	6ch	
Output Compare		16	bit×6ch, 32bit×	6ch	
16-bit Reload Timer			8ch		
PPG			16bit×34ch		
Up/down Counter			2ch		
Clock Supervisor			Yes		
External Interrupt			8ch×2units		
A/D converter		12bit×21ch	n (1unit), 12bit×	16ch (1unit)	
D/A converter (8bit)			2ch		
Multi-Function Serial Interface			12ch ^{*1}		
CAN		64m	sg×2ch/128msg	g×1ch	
Hardware Watchdog Timer			Yes		
CRC Formation			Yes		
Low-voltage detection reset			Yes		
Flash Security			Yes		
ECC Flash/WorkFlash			Yes		
ECC RAM			Yes		
Memory Protection Function (MPU)			Yes		
Floating point arithmetic (FPU)			Yes		
Real Time Clock (RTC)			Yes		
General-purpose port (#GPIOs)			76 ports		
SSCG			Yes		
Sub clock			Yes		
CR oscillator			Yes		
NMI request function			Yes		
OCD (On Chip Debug)			Yes		
TPU (Timing Protection Unit)			Yes		
Key code register			Yes		
Waveform generator			6ch		
Operation guaranteed temperature			-40°C to +125°	~	
(T _A)			-70 C (0 $+120$ (5	
Power supply			2.7V to 5.5V *2		
Package			LQI100		

*1: Only channel 5, channel 6, channel 7, channel 8 and channel 11 support the I2C (standard mode).

*2: The initial detection voltage of the external low voltage detection is 2.8V±8% (2.576V to 3.024V). This LVD setting and internal LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage. Below the minimum guaranteed MCU operation voltage, MCU operations are not guaranteed with the exception of LVD.

MB91F52xF

* In a single clock product, pin 86 and pin 87 are the general-purpose ports.

7. Block Diagram

MB91F522B, MB91F523B, MB91F524B, MB91F525B, MB91F526B

MB91F522D, MB91F523D, MB91F524D, MB91F525D, MB91F526D

	Address offset value / Register name					
Address	+0	+1	+2 +3		Block	
000FD0 _H	xx	IPCP4 XXXXXX XXXXXXXX	R] W XXXXXXXX XXXXX	xx		
000FD4 _H	xx	IPCP5 XXXXXX XXXXXXXX	5 [R] W XXXXXXXX XXXXX	xx	Input Capture 4,5	
000FD8 _н	_	_	LSYNS1 [R/W] B,H,W 00000000	ICS45 [R/W] B,H,W 00000000	32-bit ICU	
000FDC _н	xx	IPCP6 XXXXXX XXXXXXXX	6 [R] W XXXXXXXX XXXXX	xx		
000FE0 _H	xx	IPCP7 XXXXXX XXXXXXXX	' [R] W XXXXXXXX XXXXX	xx	Input Capture 6,7	
000FE4 _H	_	_	_	ICS67 [R/W] B,H,W 00000000	32-bit ICU	
000FE8 _H	xx	IPCP8 XXXXXX XXXXXXXX	B [R] W XXXXXXXX XXXXX	xx		
000FEC _н	xx	IPCP9 XXXXXX XXXXXXXX	R] W XXXXXXXX XXXXX	xx	Input Capture 8,9 32-bit ICU	
000FF0 _H	_	_	_	ICS89 [R/W] B,H,W 00000000		
000FF4 _H	xx	MSCY8 XXXXXX XXXXXXXX	[R] H,W XXXXXXXX XXXXX	xx	Input Capture 8,9	
000FF8 _H	XX	MSCY9 XXXXXX XXXXXXX	[R] H,W XXXXXXXX XXXXXX	xx	Cycle measurement data register 89	
000FFC _н	_	_	MSCH89 [R] B,H,W 00000000	MSCL89 [R/W] B,H,W 00	Cycle and pulse width measurement control 89	
001000 _Н	SACR [R/W] B,H,W 0	PICD [R/W] B,H,W 0011	_	_	Clock Control	
001004 _Н to 00112C _Н	_	_	_	_	Reserved	
001130 _н	_	_	_	CRCCR [R/W] B,H,W -0000000		
001134 _н			CRC calculation			
001138 _н			unit			
00113C _н		CRCR [F 11111111 1111111	R] B,H,W 11111111 11111111			
001140 _н to 0011FC _н	_	_	_	_	Reserved	

	Address offset value / Register name					
Address -	+0	+1	+2	+2 +3		
001344 _н	ADCOMP28/ADC0 00000000)MPB28[R/W] H,W 00000000	ADCOMP29/ADC0 00000000	00000000 H,W		
001348 _Н	ADCOMP30/ADC0 00000000)MPB30[R/W] H,W 00000000	ADCOMP31/ADC0 00000000	00000000 H,W		
00134C _Н	ADTCS0[R 0000000	/W] B,H,W) 0010	ADTCS1[F	2/W] B,H,W 0 0010		
001350 _Н	ADTCS2[R 0000000	/W] B,H,W) 0010	ADTCS3[F 0000000	2/W] B,H,W 0 0010		
001354 _Н	ADTCS4[R 0000000	/W] B,H,W) 0010	ADTCS5[F 0000000	2/W] B,H,W 0 0010		
001358 _н	ADTCS6[R 0000000	/W] B,H,W) 0010	ADTCS7[F	2/W] B,H,W 0 0010		
00135C _Н	ADTCS8[R 0000000	/W] B,H,W) 0010	ADTCS9[R 0000000	2/W] B,H,W 0 0010		
001360 _Н	ADTCS10[F 0000000	₹/W] B,H,W) 0010	ADTCS11[F 0000000	R/W] B,H,W 0 0010	1	
001364 _Н	ADTCS12[F 0000000	₹/W] B,H,W) 0010	ADTCS13[R/W] B,H,W 00000000 0010]	
001368 _Н	ADTCS14[F 0000000	₹/W] B,H,W) 0010	ADTCS15[F 0000000	ADTCS15[R/W] B,H,W 0000000 0010		
00136C _H	ADTCS16[F 0000000	R/W] B,H,W 0 0010	ADTCS17[F 0000000	ADTCS17[R/W] B,H,W 0000000 0010		
001370 _н	ADTCS18[F 0000000	R/W] B,H,W 0 0010	ADTCS19[F 0000000	R/W] B,H,W 0 0010		
001374 _Н	ADTCS20[F 0000000	R/W] B,H,W 0 0010	ADTCS21[F 0000000	R/W] B,H,W 0 0010		
001378 _н	ADTCS22[F 0000000	R/W] B,H,W 0 0010	ADTCS23[F 0000000	R/W] B,H,W 0 0010		
00137C _H	ADTCS24[R/W] B,H,W 0000000 0010		ADTCS24[R/W] B,H,W ADTCS25[R/W] B,H,W 0000000 0010 00000000 0010		R/W] B,H,W 0 0010	
001380 _Н	ADTCS26[R/W] B,H,W 0000000 0010		/W] B,H,W ADTCS27[R/W] B,H,W 0010 00000000 0010			
001384 _Н	ADTCS28[R/W] B,H,W 0000000 0010		\$28[R/W] B,H,W ADTCS29[R/W] B,H,W 0000 0010 00000000 0010			
001388 _н	ADTCS30[F 0000000	₹/W] B,H,W 0 0010	ADTCS31[F 0000000	R/W] B,H,W 0 0010		
00138C _Н	ADTCD0 100000	R] B,H,W 00000000	ADTCD1 100000	R] B,H,W 00000000		
001390 _Н	ADTCD2 100000	R] B,H,W 0000000	ADTCD3	R] B,H,W		

Address	Address offset value / Register name				
Address	+0	+1	+2	+3	BIOCK
0018B0 _Н	FCR18[R/W] B,H,W 00100	FCR08[R/W] B,H,W -0000000	FBYTE8[F 00000000	2/W] B,H,W 00000000	Multi-UART8
0018B4 _Н	FTICR8[R 00000000	W] B,H,W 00000000	_	_	
0018В8 _Н	SCR9/(IBCR9) [R/W] B,H,W 000000	SMR9[R/W] B,H,W 000-00-0	SSR9[R/W] B,H,W 0-000011	ESCR9/(IBSR9)[R/W] B,H,W 00000000	
0018BC _н	— /(RDR19/(TDR 	219))[R/W] B,H,W ^{*3}	RDR09/(TDR0 0 00	9)[R/W] B,H,W 0000000 ^{*1}	Multi-LIART9
0018C0 _H	SACSR9[R 0000 (2/W] B,H,W 00000000	STMR9[00000000	R] B,H,W 00000000	*1: Byte access is possible only for
0018C4 _H	STMCR9[F 00000000	2/W] B,H,W 00000000	— /(SCSCR9/SF	UR9)[R/W] B,H,W ^{*3 *4}	access to lower 8 bits.
0018C8 _H	— /(SCSTR39)/ (LAMSR9) [R/W] B,H,W *3	— /(SCSTR29)/ (LAMCR9) [R/W] B,H,W *3	— /(SCSTR19)/ (SFLR19) [R/W] B,H,W ^{*3}	— /(SCSTR09)/ (SFLR09) [R/W] B,H,W *3	*2: Reserved because I ² C mode is not set immediately after
0018CC _н	—	— /(SCSFR29) [R/W] B,H,W ^{*3}	— /(SCSFR19) [R/W] B,H,W ^{*3}	— /(SCSFR09) [R/W] B,H,W ^{*3}	*3: Reserved
0018D0 _н	—/(TBYTE39)/ (LAMESR9) [R/W] B,H,W ^{*3}	—/(TBYTE29)/ (LAMERT9) [R/W] B,H,W	—/(TBYTE19)/ (LAMIER9) [R/W] B,H,W ^{*3}	TBYTE09/(LAMRID9) / (LAMTID9) [R/W] B,H,W 00000000	mode is not set immediately after reset. *4: Reserved
0018D4 _H	BGR9[R/ 00000000	W] H, W 00000000	— /(ISMK9)[R/W] B,H,W ^{*2}	— /(ISBA9)[R/W] B,H,W ^{*2}	because LIN2.1 mode is not set immediately after
0018D8 _H	FCR19[R/W] B,H,W 00100	FCR09[R/W] B,H,W -0000000	FBYTE9[F 00000000	2/W] B,H,W 00000000	reset.
0018DC _H	FTICR9[R 00000000	W] B,H,W 00000000	_	_	
0018E0 _Н	SCR10/(IBCR10) [R/W] B,H,W 000000	SMR10[R/W] B,H,W 000-00-0	SSR10[R/W] B,H,W 0-000011	ESCR10/(IBSR10) [R/W] B,H,W 00000000	Multi-UART10 *1: Byte access is
0018E4 _Н	— /(RDR110/(TDR 	*110))[R/W] B,H,W	RDR010/(TDR010)[R/W] B,H,W		possible only for access to lower 8
0018E8 _Н	SACSR10[F 0000 (R/W] B,H,W 00000000	STMR10[R] B,H,W 00000000 00000000		bits. *2: Reserved
0018EC _н	STMCR10[I 00000000	R/W] B,H,W 00000000	— /(SCSCR10/SF 	UR10)[R/W] B,H,W ^{*3 *4}	because I ² C mode is not set immediately after reset.

	Interrupt number		Interrupt		Default	
Interrupt factor	Decimal	Hexadecimal	level	Offset	address for TBR	RN
Multi-function serial interface						
ch.8 (reception completed)						
Multi-function serial interface	45	2D	ICR29	348 _H	000FFF48 _H	29* ¹
ch.8 (status)						
16-bit ICU 0 (fetching) / 16-bit ICU 1 (fetching)						
Main timer						
Sub timer						
PLL timer	40	25	10020	244	00055544	20
Multi-function serial interface	40	26	ICR30	344H	000FFF44H	30
ch.8 (transmission completed)						
16-bit ICU 2 (fetching) /16-bit ICU 3 (fetching)						
Clock calibration unit (sub oscillation)						
Multi-function serial interface						21 * ^{1,}
ch.9 (reception completed)	47	2F	ICR31	340 _H	000FFF40 _H	31 *4
Multi-function serial interface						
ch.9 (status)						
A/D converter						
0/1/7/9/10/11/12/13/14/15/16	48	30	ICR32	33C _H	000FFF3C _H	32
17/18/19/22/23/26/27/28/29/31						
Clock calibration unit (CR oscillation)						
Multi-function serial interface	49	31	ICP33	338	00055538	33
ch.9 (transmission completed)		51	101100	550H	00011130H	55
16-bit OCU 0 (match) / 16-bit OCU 1 (match)						
32-bit Free-run timer 4	50	32	ICR34	334	000FFF34.	34*5
16-bit OCU 2 (match) / 16-bit OCU 3 (match)	00	62		0018	00011101 _H	01
32-bit Free-run timer 3/5	51	33	ICR35	330⊔	000FFF30	35*5
16-bit OCU 4 (match) / 16-bit OCU 5 (match)	01	00	101100	0001	00011100H	00
32-bit ICU6 (fetching/measurement)	_					
Multi-function serial interface						1
ch.10 (reception completed)	52	34	ICR36	32C _H	000FFF2C _H	36*'
Multi-function serial interface						
ch.10 (status)						
32-bit ICU7 (fetching/measurement)						~-
Multi-function serial interface	53	35	ICR37	328 _H	000FFF28 _H	37
ch.10 (transmission completed)						
32-bit ICU8 (fetching/measurement)						
Multi-function serial interface	- 4		10000	004	00055504	00 +1
Ch.11 (reception completed)	54	36	ICR38	324 _H	000FFF24H	38"
Multi-function serial interface						
Cil. II (Status)						
32-bit ICO9 (letching/measurement)						
WG dead timer undernow 0/1/2	55	37	ICR39	320 _H	000FFF20 _H	39
	-					
WGDIIIU	+					
SZ-DILICO4 (letcring/measurement)	50	20		210	00055540	40
wull-lunction serial interface	dC	38		SICH	UUUFFFTCH	40
ch. m (transmission completed)						

11. Electrical Characteristics

Absolute Maximum Ratings

Devenueden	Cumhal	Ra	ting	11	Demerke
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage *1,*2	V _{CC}	V _{SS} -0.3	V _{SS} +6.0	V	
Analog power supply voltage * ^{1,*2}	AV _{CC}	V _{SS} -0.3	V _{SS} +6.0	V	AVRH ≤ AV _{CC} ≤ V _{CC}
Analog reference voltage *1	AVRH	V _{SS} -0.3	V _{SS} +6.0	V	AVRH ≤ AV _{CC}
Input voltage *1	VI	V _{SS} -0.3	V _{CC} +0.3	V	
Analog pin input voltage *1	V _{IA5}	V _{SS} -0.3	V _{CC} +0.3	V	
Output voltage * ¹	Vo	V _{SS} -0.3	V _{CC} +0.3	V	
Maximum clamp current	I _{CLAMP}	-	4.0	mA	*6
Total maximum clamp current	ΣII _{CLAMP}	-	20	mA	*6
"I " lovel meximum output current * ³	I _{OL1}	-	15	mA	
	I _{OL2}	-	30	mA	
"I " lovel everge output ourrest * ⁴	IOLAV1	-	4	mA	*9
	I _{OLAV2}	-	12	mA	*10
"I " lovel total output ourrest * ⁵	ΣI _{OL1}	-	100	mA	
	ΣI _{OL2}	-	120	mA	
"I-I" lovel maximum output ourrent* ³	I _{OH1}	-	-15	mA	
H level maximum output current	I _{OH2}	-	-30	mA	
	IOHAV1	-	-4	mA	*9
H level average output current	I _{OHAV2}	-	-12	mA	*10
"I-I" lovel total output ourrent * ⁵	ΣI _{OH1}	-	-100	mA	
H level total output current	ΣI _{OH2}	-	-120	mA	
Power T_A : -40°C to +105°C	D	-	882	mW	*8
consumption T _A : -40°C to +125°C	PD	_	675	mW	*8
	–	-40	+105	°C	
	IA	-40	+125	°C	*7
Storage temperature	Tstg	-55	+150	°C	

*1: These parameters are based on the condition that V_{SS} =AV_{SS}=0.0V

*2: Caution must be taken that AV_{CC}, AVRH do not exceed V_{CC} upon power-on and under other circumstances.

*3: The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.

*4: The average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 10 ms period. The average value is the operation current × the operation ratio.

*5: The total output current is defined as the maximum current value flowing through all of corresponding pins.

- *6: · Corresponding pins: all general-purpose ports except P035, 041, 093, 122.
 - · Use within recommended operating conditions.
 - · Use at DC voltage (current).
 - · The + B signal should always be applied by connecting a limiting resistor between the + B signal and the microcontroller.
 - The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed rated values at any time regardless of instantaneously or constantly when the + B signal is input.
 - Note that when the microcontroller drive current is low, such as in the low power consumption modes, the + B input potential can increase the potential at the V_{CC} pin via a protective diode, possibly affecting other devices.
 - Note that if the + B signal is input when the microcontroller is off (not fixed at 0 V), since the power is supplied through the pin, the microcontroller may operate incompletely.
 - Note that if the +B signal is input at power-on, since the power is supplied through the pin, the power-on reset may not function in the power supply voltage.
 - · Do not leave + B input pins open.

*7: When it is used under this condition, contact your sales representative.

(4-1-2) Bit setting: SMR: MD2=0, SMR: MD1=1, SMR : MD0=0, SMR: SCINV=1, SCR:SPI=0

Parameter	Symbol Bin name Conditions		Unit	Pomorko			
Farameter	Symbol	Fininame	Conditions	Min	Max	Onit	Remarks
Serial clock cycle time	t _{scyc}	SCK0 to SCK11		4t _{CPP}	-	ns	
SCK ↑ → SOT delay time	tsнovi	SCK0 to SCK2, SCK5 to SCK11 SOT0 to SOT2, SOT5 to SOT11		-30	30	ns	
		SCK3 , SCK4 SOT3 , SOT4		-300	300	ns	Internal shift clock mode
Valid SIN → SCK ↓ setup time	t _{ivsli}	SCK0 to SCK2, SCK5 to SCK11 SIN0 to SIN2, SIN5 to SIN11	-	34	-	ns	output pin : C∟=50pF
		SCK3 , SCK4 SIN3, SIN4	30	300	-	ns	
$\begin{array}{l} SCK \downarrow \rightarrow \\ Valid \ SIN \ hold \ time \end{array}$	t _{SLIXI}	SCK0 to SCK11 SIN0 to SIN11		0	-	ns	
Serial clock "H"pulse width	t _{SHSL}	SCK0 to SCK11		t _{CPP} +10	-	ns	External shift clock mode output pin: C _L =50pF
Serial clock "L" pulse width	t _{SLSH}			2t _{CPP} -1 0	-	ns	
SCK	t _{shove}	SCK0 to SCK2, SCK5 to SCK11 SOT0 to SOT2, SOT5 to SOT11		-	33	ns	
		SCK3 , SCK4 SOT3 , SOT4	-	-	300	ns	
Valid SIN → SCK ↓ setup time	t _{IVSLE}	SCK0 to SCK11		10	-	ns	
$\begin{array}{l} SCK \downarrow \rightarrow \\ Valid \ SIN \ hold \ time \end{array}$	t _{SLIXE}	SIN0 to SIN11		20	-	ns	
SCK fall time	t⊧	SCK0 to SCK11		-	5	ns	
SCK rise time	t _R	SCK0 to SCK11		-	5	ns	

$(T_{A:} -40^{\circ}C \text{ to } +125^{\circ}C, V_{CC} = AV_{CC} = 5.0V \pm 10\%/V_{CC} = AV_{CC} = 3.3V \pm 0.3V, V_{SS} = AV_{SS} = 0.0V)$

Notes:

AC characteristic in CLK synchronized mode.

 $C_{\mbox{\scriptsize L}}$ is the load capacitance applied to pins during testing.

The maximum bard rate is limited by internal operation clock used and other parameters. Please use ch.3 and ch.4 with maximum baud rate 400kbps or less.

See Hardware Manual for details.

(4-1-8) Bit setting: SMR:MD2=0, SMR:MD1=1, SMR:MD0=0, When Serial chip select is used: SCSCR:CSEN=1, Serial clock output mark level "L" : SMR,SCSFR:SCINV=1, Serial chip select Inactive level "L" : SCSCR,SCSFR:CSLVL=0 (T_A:-40°C to +125°C, V_{CC}=AV_{CC}=5.0V±10%/V_{CC}=AV_{CC}=3.3V±0.3V, V_{SS}=AV_{SS}=0.0V)

Doromotor	Sympol	Din nome	Conditions	Va	lue	l lmit	Domorko
Parameter	Symbol	Pin name Conditions	Min	Мах	Unit	Remarks	
SCS↑→SCK↑ setup time	tcssi	SCK1 , SCK2, SCK5 to SCK11 SCS1 , SCS2, SCS50 to SCS53, SCS60 to SCS63, SCS70 to SCS73, SCS8 to SCS11		t _{cssu} -50 ⁺1	t _{cssu} +0 ⁺1	ns	
		SCK3 , SCK4 SCS3 , SCS40 to SCS43		t _{CSSU} -50 *1	t _{CSSU} +300 *1	ns	
SCK↓→SCS↓ hold time	t _{сsнi}	SCK1 , SCK2, SCK5 to SCK11 SCS1 , SCS2, SCS50 to SCS53, SCS60 to SCS63, SCS70 to SCS73, SCS8 to SCS11	-	tcsн⊡-10 ⁺2	t _{CSHD} +50 *2	ns	Internal shift clock mode output pin : C∟=50pF
	-	SCK3 , SCK4 SCS3 , SCS40 to SCS43		t _{CSHD} -300 *2	t _{сsнD} +50 *2	ns	
SCS deselect time	tcspi	SCS1 to SCS3, SCS40 to SCS43, SCS50 to SCS53, SCS60 to SCS63, SCS70 to SCS73, SCS8 to SCS11		t _{csbs} -50 ⁺3	t _{CSDS} +50 ⁺3	ns	

Part number	Sub clock	CSV Initial value	LVD Initial value	Package ^{*2}
MB91F526KWCPMC1	Yes	ON	ON	
MB91F526KYCPMC1			OFF	
MB91F526KJCPMC1		OFF	ON	
MB91F526KLCPMC1			OFF	
MB91F525KWCPMC1		ON	ON	
MB91F525KYCPMC1			OFF	
MB91F525KJCPMC1		OFF	ON	
MB91F525KLCPMC1			OFF	
MB91F524KWCPMC1		ON	ON	
MB91F524KYCPMC1			OFF	
MB91F524KJCPMC1		OFF	ON	
MB91F524KLCPMC1			OFF	
MB91F523KWCPMC1		ON	ON	
MB91F523KYCPMC1			OFF	
MB91F523KJCPMC1		OFF	ON	
MB91F523KLCPMC1			OFF	
MB91F522KWCPMC1		ON	ON	
MB91F522KYCPMC1			OFF	
MB91F522KJCPMC1		OFF	ON	
MB91F522KLCPMC1			OFF	LQN • 144 pin, (Lead pitch 0 4mm)
MB91F526KSCPMC1	None	ON	ON	Plastic
MB91F526KUCPMC1			OFF	
MB91F526KHCPMC1		OFF	ON	
MB91F526KKCPMC1			OFF	
MB91F525KSCPMC1		ON	ON	
MB91F525KUCPMC1			OFF	
MB91F525KHCPMC1		OFF	ON	
MB91F525KKCPMC1			OFF	
MB91F524KSCPMC1		ON	ON	
MB91F524KUCPMC1			OFF	
MB91F524KHCPMC1		OFF	ON	
MB91F524KKCPMC1			OFF	
MB91F523KSCPMC1		ON	ON	
MB91F523KUCPMC1			OFF	
MB91F523KHCPMC1		OFF	ON	
MB91F523KKCPMC1			OFF	
MB91F522KSCPMC1		ON	ON	
MB91F522KUCPMC1			OFF	
MB91F522KHCPMC1		OFF	ON	
MB91F522KKCPMC1			OFF	

Part number	Sub clock	CSV Initial value	LVD Initial value	Package*
MB91F526BWEPMC1	Yes	ON	ON	
MB91F526BJEPMC1		OFF	ON	
MB91F525BWEPMC1		ON	ON	
MB91F525BJEPMC1		OFF	ON	
MB91F524BWEPMC1		ON	ON	
MB91F524BJEPMC1		OFF	ON	
MB91F523BWEPMC1		ON	ON	
MB91F523BJEPMC1		OFF	ON	
MB91F522BWEPMC1		ON	ON	
MB91F522BJEPMC1		OFF	ON	LQE ⋅ 64 pin,
MB91F526BSEPMC1	None	ON	ON	Plastic
MB91F526BHEPMC1		OFF	ON	
MB91F525BSEPMC1		ON	ON	
MB91F525BHEPMC1		OFF	ON	
MB91F524BSEPMC1		ON	ON	
MB91F524BHEPMC1		OFF	ON	
MB91F523BSEPMC1		ON	ON	
MB91F523BHEPMC1		OFF	ON	
MB91F522BSEPMC1		ON	ON	
MB91F522BHEPMC1		OFF	ON	

*: For details of the package, see "■ PACKAGE DIMENSIONS ".

- Right side	Page	Section	Change Results
13 •Pin Assignment MB91F52xB 13 •Pin Assignment MB91F52xB	13	■Pin Assignment MB91F52xB	- Right side 48 9122/SIN6_0/AN31/OCU8_0/INT9_1 47 9116/SCK6_0/SCL6/AN28/PPG20_0/RTO3_0/INT1_1 45 9110/TX1(64)/SC563_0/AN22 44 NMIX 42 9105/SCST3_0/AN15/PPG11_0 40 9102/SIN7_0/AN17/PPG10_0/INT10_0 33 AVCR0 34 P097/SCK11_0/SCL11/AN11/ICU5_0/PPG17_1 35 9096/RX0(128)/SOT11_0/SIDA11/AN10/INT0_0 93 VVS 4 4 4 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 4 9122/SIN6_0/AN31/OCU8_0/INT9_1 4 9097/IXC1_1/SIN11_0/AN7/ICU4_2/PPG19_0/RTO3_0/INT1_1 4 9097/IXCK11_0/SCL11/AN11/ICU5_0/PPG17_1 3 9096/RX0(128)/SOT11_0/SDA11/AN10/INT0_0 3 9097/IXCK11_0/SCL11/AN11/ICU5_0/PPG17_1 3 9096/RX0(128)/SOT11_0/SDA11/AN10/INT0_0 3 9097/IXCK11_0/SCL11/AN11/ICU5_0/PPG17_1 3 9096/RX0(128)/SOT11_0/SDA11/AN10/INT0_0 3 9097/IXCK11_0/SCL11/AN11/ICU5_0/PPG16_1/ICU3_0 3 VS

Page	Section	Change Results
15	■Pin Assignment MB91F52xF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
15	■Pin Assignment MB91F52xF	The following note added on the bottom left of Figure. * In a single clock product, pin 86 and pin 87 are the general-purpose ports.
16	■Pin Assignment MB91F52xJ	The following note added on the bottom left of Figure. * In a single clock product, pin 102 and pin 103 are the general-purpose ports.
17	■Pin Assignment MB91F52xK	The following note added on the bottom left of Figure. * In a single clock product, pin 121 and pin 122 are the general-purpose ports.
18	■Pin Assignment MB91F52xL	The following note added on the bottom left of Figure. * In a single clock product, pin 149 and pin 150 are the general-purpose ports.
19 to 35	■PIN Description	A List of "Pin Description" modified. I/O Function*2 types*1

Page	Section	Change Results
220 to 223	16. Ordering Information	Added the following description. ■ORDERING INFORMATION MB91F52xxxE
Rev *D		
1	Features	The following sentence should be modified as follows:
		Conversion time : 1µs
		(Correct)
		Conversion time : 1.4µs
		The following sentence should be modified as follows:
5,6,7,8,9 ,10	1. Product Lineup	(Error) *2: Detection voltage of the external low voltage detection reset (initial) is 2.8V±8% (2.576V to 3.024V). This detection voltage (2.576V) is below the minimum operation guarantee voltage (2.7V). Between this detection voltage and the minimum operation guarantee voltage, MCU functions are not guaranteed except for the low voltage detector. Note that although the detection level is below the minimum operation guarantee voltage, the LVD reset factor flag is set as the voltage drops below the detection level.
		(Correct) *2: The initial detection voltage of the external low voltage detection is 2.8V±8% (2.576V to 3.024V). This LVD setting and internal LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage. Below the minimum guaranteed MCU operation voltage, MCU operations are not guaranteed with the exception of LVD.

Revision	ECN	Orig. of Change	Submission Date	Description of Change
				Package ↓ Package* ² Added the following description. * ¹ : It is only supported for customers who have already adopted it now. We do not recommend adopting new products. Corrected the following description. For details of the package, see "■ PACKAGE DIMENSIONS ". ↓ * ² : For details of the package, see "■ PACKAGE DIMENSIONS ". Added the following description.
				Company name and layout design change
*A	4999456	JHMU	11/13/2015	Updated to Cypress template. Added the following note to the remarks of ""L" level average output current" and ""H" level average output current" in "Absolute Maximum Ratings" of "ELECTRICAL CHARACTERISTICS". *9: Corresponding pins: General-purpose ports other than those of P103, P104, P105 and P106. *10: Corresponding pins: General-purpose ports of P103, P104, P105 and P106. Added Errata section.
*В	5112138	KUME	01/28/2016	Fixed some clerical errors. For details, please see the chapter 18. Major Changes.
*C	5196285	KUME	04/28/2016	For details, please see the chapter 19. Major Changes.
*D	5318862	KUME	06/23/2016	For details, please see the chapter 19. Major Changes.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrolle	ers cypress.com/arm	PSoC® Solutions PSoC 1 PSoC 3 PSoC 4 PSoC 5LP	
Automotive	cypress.com/automotive		
Clocks & Buffers	cypress.com/clocks	Cypress Developer Community	
Interface	cypress.com/interface	Community Forums Blogs Video Training Components	
Lighting & Power Control	cypress.com/powerpsoc	Technical Support	
Memory	cypress.com/memory	cypress.com/support	
PSoC	cypress.com/psoc		
Touch Sensing	cypress.com/touch		
USB Controllers	cypress.com/usb		
Wireless/RF	cypress.com/wireless		

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.

© Cypress Semiconductor Corporation, 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.