Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | FR81S | | Core Size | 32-Bit Single-Core | | Speed | 80MHz | | Connectivity | CANbus, CSIO, EBI/EMI, I ² C, LINbus, SPI, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 152 | | Program Memory Size | 1.0625MB (1.0625M x 8) | | Program Memory Type | FLASH | | EEPROM Size | 64K x 8 | | RAM Size | 136K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 48x12b; D/A 2x8b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 176-LQFP | | Supplier Device Package | 176-LQFP (24x24) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb91f526lwbpmc-gsk5e2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | | | Pin | no. | | | Pin | Polarity | I/O
circuit | Function*9 | |----------|----------|-----|-----|-----|-------|--------------------|----------|----------------|---| | 64 | 80 | 100 | 120 | 144 | 176 | Name | | types*8 | | | | | | | | | P100 | - | | General-purpose I/O port | | | 48 | | | | | SCK7_0/ | _ | | Multi-function serial ch.7 clock I/O (0)/ | | - | *1 | 59 | 69 | 85 | 104 | SCL7 ^{*3} | | G | I ² C bus serial clock I/O | | | | | | | | AN12 | - | | ADC analog 12 input | | | | | | | | PPG8_0
P101 | - | | PPG ch.8 output (0) General-purpose I/O port | | | | | | | | SOT7_0/ | - | | Multi-function serial ch.7 serial data output | | _ | _ | 60 | 70 | 86 | 105 | SDA7 | - | G | (0)/l ² C bus serial data I/O | | | | | | | | AN13 | - | | ADC analog 13 input | | | | | | | | PPG9_0 | - | | PPG ch.9 output (0) | | | | | | | | P102 | - | | General-purpose I/O port | | | | | | | | SIN7_0 *2, | _ | | Multi-function serial ch.7 serial data input | | 40
*1 | 49
*1 | 61 | 71 | 87 | 106 | | | G | (0) | | ' | ' | • | | 0. | | AN14 | - | | ADC analog 14 input | | | | | | | | PPG10_0 | - | | PPG ch.10 output (0) | | | | | | | | INT10_0 | - | | INT10 External interrupt input (0) | | | | | | | | P103
SCS73_0 | - | | General-purpose I/O port | | 41
*1 | 50
*1 | 62 | 72 | 88 | 107 | *2, *3 | - | Н | Serial chip select 73 output (0) | | | | | | | | AN15 | - | | ADC analog 15 input | | | | | | | | PPG11_0 | - | | PPG ch.11 output (0) | | | | | | | | P104 | - | | General-purpose I/O port | | 42
*1 | 51
*1 | 63 | 73 | 89 | 108 | SCS72_0
*2, *3 | - | Н | Serial chip select 72 output (0) | | | · | | | | | AN16 | - | | ADC analog 16 input | | | | | | | | PPG12_0 | - | | PPG ch.12 output (0) | | | | | | | | P105 | - | | General-purpose I/O port | | 43
*1 | 52
*1 | 64 | 74 | 90 | 109 | SCS71_0
*2, *3 | - | Н | Serial chip select 71 output (0) | | | | | | | | AN17 | - | | ADC analog 17 input | | | | | | | | PPG13_0 | - | | PPG ch.13 output (0) | | | | | | | | P106 | - | | General-purpose I/O port | | | | 65 | 75 | 91 | 110 | SCS70_0 | - | Н | Serial chip select 70 I/O (0) | | - | - | 00 | 75 | 91 | 110 | AN18 | - | П | ADC analog 18 input | | | | | | | | PPG14_0 | - | | PPG ch.14 output (0) | | | | | | | | P107 | - | | General-purpose I/O port | | - | 53 | 66 | 76 | 92 | 111 | AN19 | - | В | ADC analog 19 input | | | | | | | | PPG15_0 | - | | PPG ch.15 output (0) | | _ | _ | _ | _ | _ | 112 | P193 | - | Α | General-purpose I/O port | | | | | | | · · - | PPG25_1 | - | | PPG ch.25 output (1) | | _ | _ | _ | 77 | 93 | 113 | P154 | - | В | General-purpose I/O port | | | | | | | | AN20 | - | _ | ADC analog 20 input | | _ | - | _ | 78 | 94 | 114 | P155 | - | В | General-purpose I/O port | | | | | | | | AN21 | - | | ADC analog 21 input | | A -1 -1 | | Address offset val | ue / Register name | | Disals | | | |--|----------------------------|-------------------------|-----------------------------------|-------------------------------|---|--|--| | Address | +0 | +1 | +2 | +3 | Block | | | | 000FD0 _н | XX | ХХ | | | | | | | 000FD4 _н | XX | Input
Capture 4,5 | | | | | | | 000FD8 _H | _ | _ | LSYNS1 [R/W]
B,H,W
00000000 | ICS45 [R/W] B,H,W
00000000 | 32-bit ICU | | | | 000FDC _н | XX | IPCP6
XXXXXX XXXXXXX | S [R] W
XXXXXXXX XXXXX | ΧΧ | | | | | 000FE0 _H | XX | IPCP7
XXXXXX XXXXXXX | ' [R] W
XXXXXXXX XXXXX | XXX | Input
Capture 6,7 | | | | 000FE4 _н | l | _ | _ | ICS67 [R/W] B,H,W
00000000 | 32-bit ICU | | | | 000FE8 _H | XX | IPCP8 | R] W
XXXXXXXX XXXXX | XXX | | | | | 000FEC _H | XX | IPCP9 | R] W
XXXXXXXX XXXXX | XXX | Input
Capture 8,9
32-bit ICU | | | | 000FF0 _н | ICS89 [R/W] B,H,W 00000000 | | | | 02 Bit 100 | | | | 000FF4 _н | XX | ХХ | Input
Capture 8,9 | | | | | | 000FF8 _н | xx | MSCY9
XXXXXX XXXXXXX | [R] H,W
XXXXXXXX XXXXXX | XXX | 32-bit ICU Cycle measurement data register 89 | | | | 000FFC _н | _ | _ | MSCH89 [R] B,H,W
00000000 | MSCL89 [R/W]
B,H,W
00 | Cycle and pulse width measurement control 89 | | | | 001000н | SACR [R/W] B,H,W | PICD [R/W] B,H,W0011 | _ | _ | Clock Control | | | | 001004 _H
to
00112С _H | _ | _ | _ | _ | Reserved | | | | 001130 _н | _ | _ | _ | CRCCR [R/W] B,H,W
-0000000 | | | | | 001134 _н | | CRC calculation | | | | | | | 001138 _н | | unit | | | | | | | 00113С _н | | | | | | | | | 001140 _H
to
0011FC _H | _ | _ | _ | _ | Reserved | | | | | Address offset value / Register name | | | | | | | |--|---|------------------------------|-----------------|---|------------------|--|--| | Address | +0 | +1 | +2 | +3 | Block | | | | 001D70 _H
to
001FFC _H | _ | _ | _ | | | | | | 002000н | | [R/W] B,H,W
000-0001 | | [R/W] B,H,W
00000000 | | | | | 002004н | | ГО [R] B,H,W
00 00000000 | | R/W] B,H,W
1 00000001 | | | | | 002008н | | [R] B,H,W
00 00000000 | | [R/W] B,H,W
X00000 | | | | | 00200С _н | | [R/W] B,H,W
0000 | _ | _ | | | | | 002010н | | 0 [R/W] B,H,W
00000001 | | 0 [R/W] B,H,W
00000000 | | | | | 002014 _Н | |) [R/W] B,H,W
1 11111111 | |) [R/W] B,H,W
I1 11111111 | | | | | 002018н | |) [R/W] B,H,W
00 00000000 | | 0 [R/W] B,H,W
00 00000000 | | | | | 00201С _н | | 0 [R/W] B,H,W
00 00000 | _ | _ | | | | | 002020н | |) [R/W] B,H,W
00 00000000 | | IF1DTA20 [R/W] B,H,W
00000000 00000000 | | | | | 002024н | |) [R/W] B,H,W
00 00000000 | |) [R/W] B,H,W
00 00000000 | CAN0
(128msb) | | | | 002028 _Н | _ | _ | _ | _ | | | | | 00202Сн | _ | _ | _ | _ | | | | | 002030 _н ,
002034 _н | | Reserved(I | F1 data mirror) | | | | | | 002038н | _ | _ | _ | _ | | | | | 00203Сн | _ | _ | _ | _ | | | | | 002040н | | 0 [R/W] B,H,W
00000001 | | 0 [R/W] B,H,W
00000000 | | | | | 002044н | IF2MSK20 [R/W] B,H,W
11-11111 11111111 | | | IF2MSK10 [R/W] B,H,W
11111111 11111111 | | | | | 002048н | | 0 [R/W] B,H,W
00 00000000 | | 0 [R/W] B,H,W
00 00000000 | | | | | 00204С _н | | 0 [R/W] B,H,W
00 00000 | _ | _ | | | | | 002050н | |) [R/W] B,H,W
00 00000000 | |) [R/W] B,H,W
00 00000000 | | | | | | | Address offset val | ue / Register name | | | | |--|----------------------------------|-------------------------|---------------------|-------------------------|-------|--| | Address | +0 | +1 | +2 | +3 | Block | | | 002150 _н | - | R/W] B,H,W
00000000 | | R/W] B,H,W
00000000 | | | | 002154 _н | | R/W] B,H,W
00000000 | | R/W] B,H,W
00000000 | | | | 002158н | _ | _ | _ | _ | | | | 00215Сн | | _ | _ | _ | | | | 002160 _н ,
002164 _н | | Reserved (IF | 2 data mirror) | | | | | 002168 _Н
to
00217С _Н | | - | _ | | | | | 00217Сн
002180 _Н | TREQR21
00000000 | [R] B,H,W
00000000 | | [R] B,H,W
00000000 | | | | 002184 _н | | [R] B,H,W
00000000 | | [R] B,H,W
00000000 | | | | 002188 _H | _ | _ | _ | _ | | | | 00218Сн | _ | _ | _ | _ | | | | 002190н | NEWDT21
00000000 | | NEWDT11
00000000 | CAN1
(64msb) | | | | 002194 _н | NEWDT41 | | NEWDT31 | [R] B,H,W
00000000 | | | | 002198н | _ | _ | _ | _ | | | | 00219С _н | _ | _ | _ | _ | | | | 0021A0 _н | INTPND21
00000000 | [R] B,H,W
00000000 | | [R] B,H,W
00000000 | | | | 0021A4 _Н | | [R] B,H,W
00000000 | | [R] B,H,W
00000000 | | | | 0021A8 _H | _ | _ | _ | _ | | | | 0021AС _н | _ | _ | _ | _ | | | | 0021В0н | MSGVAL2 ²
00000000 | I [R] B,H,W
00000000 | | I [R] B,H,W
00000000 | | | | 0021В4 _Н | | I [R] B,H,W
00000000 | | I [R] B,H,W
00000000 | | | | 0021B8 _Н | _ | _ | _ | _ | | | | 0021ВСн | _ | _ | _ | _ | | | | | | D I. 1 | | | | | |--|---------------------------------|---|---|-----------------------------|---------------------------|--| | Address | +0 | +1 | +2 | +3 | Block | | | 002300н | DFCTLR [R
-0 | | _ | DFSTR [RW] B,H,W | | | | 002304 _н | _ | _ | _ | _ | WorkFlash | | | 002308 _Н | FLIFCTLR [R/W]
B,H,W
0-00 | - | FLIFFER1 [R/W]
B,H,W
 | FLIFFER2 [R/W]
B,H,W
 | Flash /
WorkFlash | | | 00230С _Н
to
0023FС _Н | | _ | _ | | Reserved | | | 002400н | SEEARX
-0000000 | | | [R] B,H,W
00000000 | | | | 002404 _Н | EECSRX [R/W]
B,H,W
00 | _ | _ | R/W] B,H,W
00000000 | XBS RAM
ECC control | | | 002408н | _ | | EFECRX [R/W] B,H,V
0 00000000 00000 | | | | | 00240С _Н
to
002FFС _Н | | - | | Reserved | | | | 003000н | | EEARA [R] B,H,W DEEARA [R] B,H,W000 000000000 | | | | | | 003004 _Н | EECSRA [R/W]
B,H,W
00 | _ | | R/W] B,H,W
00000000 | Backup RAM
ECC control | | | 003008н | _ | | EFECRA [R/W] B,H,V
0 00000000 00000 | | | | | 00300Сн | | _ | [R] B,H,W
000000 00000000 | | | | | 003010 _H | | _ | [R] B,H,W
000000 00000000 | | | | | 003014 _H | | TEAR2X[| [R] B,H,W
000000 00000000 | | | | | 003018 _H | TAEARX [R
-1111111 | | | R/W] B,H,W
00000000 | RAM/ diagnosis
XBS RAM | | | 00301С _Н | TFECRX [R/W]
B,H,W
0000 | TICRX [R/W]
B,H,W
0000 | TTCRX [R/W] B,H,W00 00001100 TKCCRX [R/W] B,H,W 0000 | | | | | 003020 _Н | TSRCRX [W]
B,H,W
0 | - | | | | | | 003024 _H
to
00302C _H | | - | _ | 1 | Reserved | | ## 10. Interrupt Vector Table This list shows the assignments of interrupt factors and interrupt vectors/interrupt control registers. # Interrupt vector 64 pins | Indown up 4 for 4 or | Interrupt | | Interrupt | Offerst | Default | DN | |--|-----------|-----------------|----------------------|------------------|-----------------------|------------------| | Interrupt factor | Decimal | Hexa
decimal | level | Offset | address for
TBR | RN | | Reset | 0 | 0 | - | 3FC _H | 000FFFFC _H | - | | System reserved | 1 | 1 | - | 3F8 _H | 000FFFF8 _H | - | | System reserved | 2 | 2 | - | 3F4 _H | 000FFFF4 _H | - | | System reserved | 3 | 3 | - | 3F0 _H | 000FFFF0 _H | - | | System reserved | 4 | 4 | - | 3EC _H | 000FFFEC _H | - | | FPU exception | 5 | 5 | - | 3E8 _H | 000FFFE8 _H | - | | Exception of instruction access protection violation | 6 | 6 | - | 3E4 _H | 000FFFE4 _H | - | | Exception of data access protection violation | 7 | 7 | - | 3E0 _H | 000FFFE0 _H | - | | Data access error interrupt | 8 | 8 | - | 3DC _H | 000FFFDC _H | - | | INTE instruction | 9 | 9 | - | 3D8 _H | 000FFFD8 _H | - | | Instruction break | 10 | 0A | - | 3D4 _H | 000FFFD4 _H | - | | System reserved | 11 | 0B | - | 3D0 _H | 000FFFD0 _H | - | | System reserved | 12 | 0C | - | 3ССн | 000FFFCC _H | - | | System reserved | 13 | 0D | - | 3C8 _H | 000FFFC8 _H | - | | Exception of invalid instruction | 14 | 0E | | 3C4 _H | 000FFFC4 _H | - | | NMI request | | | | | | | | Error generation during internal bus diagnosis | | | | | | | | XBS RAM double-bit error generation | 15 | 0F | 15 (F _H) | 3C0 _н | 000FFFC0 _н | _ | | Backup RAM double-bit error generation | | | Fixed | | | | | TPU violation | | | | | | | | External interrupt 0-7 | 16 | 10 | ICR00 | 3ВСн | 000FFFBC _H | 0 | | External interrupt 8-15 | | | | | | 7 | | External low-voltage detection interrupt | 17 | 11 | ICR01 | 3B8 _H | 000FFFB8 _н | 1* ⁷ | | Reload timer 0/1/4/5 | 18 | 12 | ICR02 | 3B4 _H | 000FFFB4 _н | 2* ² | | Reload timer 3/6/7 | 19 | 13 | ICR03 | 3B0 _H | 000FFFB0 _H | 3* ² | | Multi-function serial interface ch.0 (reception | | | | 02011 | 0002011 | | | completed) | 20 | 14 | ICR04 | 3AC _H | 000FFFAC _H | 4* ¹ | | Multi-function serial interface ch _. 0 (status) | | | | 0.1011 | | - | | Multi-function serial interface | | | | | | 1 | | ch 0 (transmission completed) | 21 | 15 | ICR05 | 3A8 _H | 000FFFA8 _H | 5* ¹ | | - | 22 | 16 | ICR06 | 3A4 _H | 000FFFA4 _H | _* ⁶ | | - | 23 | 17 | ICR07 | 3A0 _H | 000FFFA0 _H | _*6 | | _ | 24 | 18 | ICR08 | 39C _H | 000FFF9C _H | _*6 | | _ | 25 | 19 | ICR09 | 398 _H | 000FFF98 _H | _*6 | | Multi-function serial interface | | | 10.100 | 330n | 30000 | | | ch,3 (reception completed) | | | | | | 4 | | Multi-function serial interface | 26 | 1A | ICR10 | 394н | 000FFF94 _н | 10* ¹ | | ch,3 (status) | | | | | | | | Multi-function serial interface | | | | | | | | ch 3 (transmission completed) | 27 | 1B | ICR11 | 390н | 000FFF90 _н | 11 | | | Interrupt | number | Interrupt | | Default | | |-----------------------------------|----------------|-----------------|-----------|---|---|----| | Interrupt factor | Decimal | Hexa decimal | level | Offset | address for
TBR | RN | | System reserved (Used for REALOS) | 64 | 40 | - | 2FC _H | 000FFEFC _н | i | | System reserved (Used for REALOS) | 65 | 41 | - | 2F8 _H | 000FFEF8 _H | i | | Used with the INT instruction | 66

255 | 42

 FF | - | 2F4 _H

000 _H | 000FFEF4 _H

 000FFC00 _H | - | Note: It does not support a DMA transfer request caused by an interrupt generated from a peripheral to which no RN (Resource Number) is assigned. - *1: It does not support a DMA transfer by the status of the multi-function serial interface and I²C reception. - *2: Reload timer ch.4 to ch.7 do not support a DMA transfer by the interrupt. - *3: PPG ch.24 to ch.47 do not support a DMA transfer by the interrupt. - *4: The clock calibration unit does not support a DMA transfer by the interrupt. - *5: 32-bit Free-run timer ch.3, ch.4 and ch.5 do not support a DMA transfer by the interrupt. - *6: There is no resource corresponding to the interrupt level. - *7: It does not support a DMA transfer by the external low-voltage detection interrupt. | | upt number | | | Default | | | |--|------------|-------------|--------------------|------------------|-----------------------|------------------| | Interrupt factor | | Hexadecimal | Interrupt
level | Offset | address for | RN | | | Decimal | пехацесина | ievei | | TBR | | | Multi-function serial interface | 27 | 1B | ICR11 | 390 _H | 000FFF90 _н | 11 | | ch.3 (transmission completed) | 21 | 10 | 101111 | 330H | 00011130H | '' | | Multi-function serial interface | | | | | | | | ch.4 (reception completed) | 28 | 1C | ICR12 | 380 | 000FFF8C _H | 12* ¹ | | Multi-function serial interface | 20 | 10 | ICITIZ | JOCH | 0001110CH | 12 | | ch.4 (status) | | | | | | | | Multi-function serial interface | 29 | 1D | ICR13 | 388 _H | 000FFF88 _H | 13 | | ch.4 (transmission completed) | 2.9 | 10 | 101113 | 300H | 00011100H | 13 | | Multi-function serial interface | | | | | | | | ch.5 (reception completed) | 30 | 1E | ICR14 | 384 _H | 000FFF84 _H | 14* ¹ | | Multi-function serial interface | 30 | 16 | 101114 | 304 _H | 00011104 _H | 14 | | ch.5 (status) | | | | | | | | Multi-function serial interface | 31 | 1F | ICR15 | 380 _H | 000FFF80 _H | 15 | | ch.5 (transmission completed) | 31 | IF | ICK15 | 300H | OUOFFF80H | 13 | | Multi-function serial interface | | | | | | | | ch.6 (reception completed) | 22 | 20 | ICR16 | 270 | 000FFF7C _H | 16* ¹ | | Multi-function serial interface | 32 | 20 | ICKIO | 37 CH | UUUFFF/CH | 10 | | ch.6 (status) | | | | | | | | Multi-function serial interface | 22 | 24 | ICD47 | 270 | 00055570 | 17 | | ch.6 (transmission completed) | 33 | 21 | ICR17 | 378 _H | 000FFF78 _H | 17 | | CAN0 | 34 | 22 | ICR18 | 374 _H | 000FFF74 _н | - | | CAN1 | | | | | | | | RAM diagnosis end | | | | | | | | RAM initialization completion | | 23 | ICR19 | | | | | Error generation during RAM diagnosis | 35 | | | 370 _H | 000FFF70 _H | _ | | Backup RAM diagnosis end | | | | | | İ | | Backup RAM initialization completion | | | | | | | | Error generation during Backup RAM diagnosis | | | | | | | | CAN2 | | | | | | | | Up/down counter 0 | 36 | 24 | ICR20 | 36Сн | 000FFF6С _н | _ | | Up/down counter 1 | 7 | | | 00011 | | | | Real time clock | 37 | 25 | ICR21 | 368 _H | 000FFF68 _H | - | | Multi-function serial interface | 1 | | 101121 | O O O H | COOLLI COM | | | ch.7 (reception completed) | | | | | | 4 | | Multi-function serial interface | 38 | 26 | ICR22 | 364 _H | 000FFF64 _н | 22* ¹ | | ch.7 (status) | | | | | | | | 16-bit Free-run timer 0 (0 detection) / | | | | | | | | (compare clear) | | | | | | | | Multi-function serial interface | 39 | 27 | ICR23 | 360 _H | 000FFF60 _н | 23 | | ch.7 (transmission completed) | | | | | | | | PPG 0/1/10/11/20/21/30/31 | | | | | | | | 16-bit Free-run timer 1 (0 detection) / | 40 | 28 | ICR24 | 35C:: | 000FFF5С _н | 24* ³ | | (compare clear) | - | 20 | 101127 | JOOGH | 3301 1 30H | <u> </u> | | PPG 2/3/12/13/22/23/32/33/43 | 1 | | | | | | | 16-bit Free-run timer 2 (0 detection) / | 41 | 29 | ICR25 | 358 _H | 000FFF58 _H | 25* ³ | | (compare clear) | "' | 20 | 101120 | JOOH | 30011100H | -0 | | PPG 4/5/14/15/24/25/35/44 | 42 | 2A | ICR26 | 354 _H | 000FFF54 _н | 26* ³ | | | 43 | 2B | | | | 27* ³ | | PPG 6/7/16/17/26/27/37 | | | ICR27 | 350 _H | | 28* ³ | | PPG 8/9/18/19/28/29 | 44 | 2C | ICR28 | 340H | 000FFF4C _H | Z0 | | | Interr | upt number | Interrupt | | Default | | |---|---------|-------------|-----------|-------------------|------------------------|-------------------| | Interrupt factor | Decimal | Hexadecimal | level | Offset | address for
TBR | RN | | Multi-function serial interface | | | | | | | | ch.8 (reception completed) | | | | | | | | Multi-function serial interface | 45 | 2D | ICR29 | 348 _H | 000FFF48 _н | 29* ¹ | | ch.8 (status) | | | | | | | | 16-bit ICU 0 (fetching) / 16-bit ICU 1 (fetching) | | | | | | | | Main timer | | | | | | | | Sub timer | | | | | | | | PLL timer | 46 | 2E | ICR30 | 344 _H | 000FFF44 _H | 30 | | Multi-function serial interface | 70 | 2L | 101100 | Эттн | 000111 11 H | 30 | | ch.8 (transmission completed) | | | | | | | | 16-bit ICU 2 (fetching) /16-bit ICU 3 (fetching) | | | | | | | | Clock calibration unit (sub oscillation) | | | | | | | | Multi-function serial interface | | | | | | 31* ^{1,} | | ch.9 (reception completed) | 47 | 2F | ICR31 | 340 _H | 000FFF40 _H | * ⁴ | | Multi-function serial interface | | | | | | | | ch.9 (status) | | | | | | | | A/D converter | | | | | | | | 0/1/2/3/4/5/6/7/8/9/10/11/12/13/14/15/16 | 48 | 30 | ICR32 | 33C _H | 000FFF3C _н | 32 | | 17/18/19/20/21/22/23/24/25/26/27/28/29/30/31 | | | | | | | | Clock calibration unit (CR oscillation) | | | | | | | | Multi-function serial interface | 49 | 31 | ICR33 | 338н | 000FFF38 _н | 33 | | ch.9 (transmission completed) | 49 | 31 | ICKSS | 330H | 000FFF30H | 33 | | 16-bit OCU 0 (match) / 16-bit OCU 1 (match) | | | | | | | | 32-bit Free-run timer 4 | 50 | 32 | ICR34 | 334 _H | 000FFF34 _н | 34* ⁵ | | 16-bit OCU 2 (match) / 16-bit OCU 3 (match) | 30 | 32 | 101104 | 33 4 H | 00011134 _H | J 4 | | 32-bit Free-run timer 3/5 | 51 | 33 | ICR35 | 330 _H | 000FFF30 _н | 35* ⁵ | | 16-bit OCU 4 (match) / 16-bit OCU 5 (match) | 31 | 33 | ICKSS | 330H | 000FFF30H | 33 | | 32-bit ICU6 (fetching/measurement) | | | | | | | | Multi-function serial interface | | | | | | | | ch.10 (reception completed) | 52 | 34 | ICR36 | 32C _H | 000FFF2C _H | 36* ¹ | | Multi-function serial interface | | | | | | | | ch.10 (status) | | | | | | | | 32-bit ICU7 (fetching/measurement) | | | | | | | | Multi-function serial interface | 53 | 35 | ICR37 | 328 _H | 000FFF28 _н | 37 | | ch.10 (transmission completed) | | | | | | | | 32-bit ICU8 (fetching/measurement) | | | | | | | | Multi-function serial interface | | | | | | | | ch.11 (reception completed) | 54 | 36 | ICR38 | 324 _H | 000FFF24 _н | 38* ¹ | | Multi-function serial interface | | | | | | | | ch.11 (status) | | | | | | | | 32-bit ICU9 (fetching/measurement) | | | | | | | | WG dead timer underflow 0/1/2 | | 27 | ICDAO | 220 | 0005550 | 20 | | WG dead timer reload 0/1/2 | 55 | 37 | ICR39 | 320 _H | 000FFF20 _н | 39 | | WG DTTI 0 | | | | | | | | 32-bit ICU4 (fetching/measurement) | | | | | | | | Multi-function serial interface | 56 | 38 | ICR40 | 31Сн | 000FFF1С _н | 40 | | ch.11 (transmission completed) | | | | | | | - *8: It is a standard when four-layer substrate is used. - *9: Corresponding pins: General-purpose ports other than those of P103, P104, P105 and P106. - *10: Corresponding pins: General-purpose ports of P103, P104, P105 and P106. #### <WARNING> Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. #### Recommended operating conditions $(V_{SS}=AV_{SS}=0.0V)$ | Parameter | Cumbal | Va | lue | Unit | Remarks | |------------------------|---------------------------------------|-----|--------------------|------|--| | Parameter | Symbol | Min | Max | Unit | Remarks | | | .,, | 4.5 | 5.5 | V | Recommended operation guarantee range (When 5.0V is used) | | Power supply voltage | V _{CC} ,
AV _{CC} | 3.0 | 3.6 | V | Recommended operation guarantee range (When 3.3V is used) | | | | 2.7 | 5.5 | V | Operation guarantee range*1 | | Smoothing capacitor *2 | Cs | 1 | .7
vithin ±50%) | μF | Use a ceramic capacitor or a capacitor that has the similar frequency characteristics. Use a capacitor with a capacitance greater than C _S as the smoothing capacitor on the VCC pin. | | On anoting town and | _ | -40 | +105 | °C | | | Operating temperature | T _A | -40 | +125 | °C | *3 | ^{*1:} When it is used outside recommended operation guarantee range (range of the operation guarantee),contact your sales representative. The initial detection voltage of the external low voltage detection is 2.8V±8% (2.576V to 3.024V). This LVD setting and internal LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage. Below the minimum guaranteed MCU operation voltage, MCU operations are not guaranteed with the exception of LVD. - *2: See the following diagram for details on the connection of smoothing capacitor Cs. - *3: When it is used under this condition, contact your sales representative. #### <WARNING> The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions. Any use of semiconductor devices will be under their recommended operating condition. Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure. No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand. #### (3-2) [MB9152xxxE] (T_A: -40°C to +125°C, V_{SS}=0.0V) | Parameter. | | Pin | Conditions | | Value | | Unit | Domonico | |---|-------------------|-----------------|---|-------|-------|-------|-------|----------| | Parameter | Symbol | name | Conditions | Min | Тур | Max | Unit | Remarks | | Level detection voltage | _ | Vcc | - | 2.024 | 2.2 | 2.376 | V | | | Level detection hysteresis width | _ | V_{CC} | - | _ | 100 | _ | mV | | | Level detection time | - | - | _ | _ | ı | 30 | μs | *1 | | D | t _{OFF1} | V_{CC} | Vcc ≤ 0.2V | 50 | _ | _ | ms | *2 | | Power off time | t _{OFF2} | V _{CC} | Vcc ≤ 1.3V | 100 | _ | _ | μs | *4 | | | dV/dt | V _{CC} | VCC:
0.2V to 2.376V
(t _{OFF1} <50ms) | 1 | _ | 50 | mV/μs | *3 | | Power ramp rate | dV/dt | V _{CC} | VCC:
1.3V to 2.376V
(t _{OFF2} ≥ 100μs) | - | 1 | 1000 | mV/μs | *4 | | C pin voltage at
Power-on | _ | С | - | - | ı | 60 | mV | *5 | | Maximum ramp rate guaranteed to not generate power-on reset | dV/dt | Vcc | VCC:
Between 2.4V and
4.5V | - | _ | 50 | mV/μs | | - *1: The specified level detection time applies only for power ramp rate of 1000mV/µs or less. - *2: Vcc must be held below 0.2V for a minimum period of t_{OFF1}. - *3: Power-on can detect by satisfying power ramp rate when t_{OFF1} is not satisfied. - *4: Vcc must be held below 1.3V for a minimum period of t_{OFF2}. Power ramp rate must be 1000mV/µs or less from 1.3V to 2.376V. Power-on can detect by satisfying power ramp rate and power off time. - *5: C-pin voltage is below 60 mV when VCC is turned on again. - *6: This specification is specified the power supply fluctuation after power on detection. When VCC voltage is between 2.4V and 4.5V, the power supply fluctuation is below 50mV/us, the detection of power-on is suppressed. The power-on does not detect in any power fluctuation between 4.5V and 5.5V. Note: When using MB91F52xxxE, either *2 or *3 or *4 or *5 must be satisfied. When neither *2 nor *3 nor *4 nor *5 can be satisfied, assert external reset (RSTX) at power-up and at any brownout event. (11) External bus I/F (asynchronous mode) timing $(T_{A}\text{: }-40^{\circ}\text{C to } +105^{\circ}\text{C}, \ V_{CC} = \text{AV}_{CC} = 5.0 \text{V} \pm 10\% / V_{CC} = \text{AV}_{CC} = 3.3 \text{V} \pm 0.3 \text{V}, \ V_{SS} = \text{AV}_{SS} = 0.0 \text{V})$ (external load capacitance 50pF) | Parameter | Symbol | Pin name | Valu | е | l lmit | D | | |-----------------------------|-------------------|--------------------|--------------------------|-------------------------|--------|---|--| | | | | Min | Max | Unit | Remarks | | | Courts times | t _{CYC} | SYSCLK | 25 | | | V _{CC} =5.0V±10% ^{*1} | | | Cycle time | | | 31.25 | _ | ns | V _{CC} =3.3V±0.3V | | | Address setup →
RDX↑time | t _{ASRH} | RDX | 2×t _{CYC} - 12 | 2×t _{CYC} + 12 | ns | RWT=1, set RWT to 1 or more. *2 | | | RDX↑→
Address hold | t _{RHAH} | A00 to A21 | t _{CYC} - 12 | t _{CYC} + 12 | ns | Set RDCS to 1 or more. | | | Data setup→
RDX↑time | t _{DSRH} | RDX | 18 +
t _{CYC} | - | ns | RWT=1, set RWT to 1 or more. | | | RDX↑→
Data hold | t _{RHDH} | D16 to D31 | 0 | - | ns | | | | Address setup→
WRnX†time | t _{ASWH} | WR0X to | t _{CYC} - 12 | t _{CYC} + 12 | ns | WWT=0 *2 | | | WRnX↑→
Address hold | t _{WHAH} | WR1X
A00 to A21 | t _{CYC} - 12 | t _{CYC} + 12 | ns | Set WRCS to 1 or more. | | | Data setup→
WRnX†time | t _{DSWH} | WR0X to | t _{cyc} - 16 | t _{CYC} + 16 | ns | WWT=0 *2 | | | WRnX↑→
Data hold | t _{WHDH} | WR1X
D16 to D31 | t _{CYC} - 16 | t _{CYC} + 16 | ns | Set WRCS to 1 or more. | | | Address setup →
ASX†time | tmasash | | t _{CYC} -16 | t _{CYC} + 16 | ns | ASCY=0 | | | ASX↑→Address
hold | tmashah | ASX
D16 to D31 | t _{cYC} -16 | t _{CYC} + 16 | ns | In multiplex mode, set as follows: Set CSWR and CSRD to 2 or more. ASCY must satisfy the following conditions because of setting ADCY > ASCY and protocol violation prevention. ADCY +1 ≤ ACS + CSRD ADCY +1 ≤ ACS + CSWR ASCY +1 ≤ ACS + CSWR ASCY +1 ≤ ACS + CSWR See Hardware Manual for details. | | ^{*1:} Please use it with external load capacity 12pF or less for VCC=3.3V±0.3V (40MHz operation). ^{*2:} If the bus is expanded by automatic wait insertion or RDY input, add time (t_{CYC} × the number of expanded cycles) to the rated value. #### D/A converter $(T_A:-40^{\circ}C \text{ to } +125^{\circ}C, V_{CC}=AV_{CC}=5.0V\pm10\%/V_{CC}=AV_{CC}=3.3V\pm0.3V, V_{SS}=AV_{SS}=0.0V)$ | Parameter | | Pin | Condition | | Value | Unit | Remarks | | |------------------------------|--------|-------------|-----------|------|-------|-------|---------|-----------------------------| | Parameter | Symbol | name | Condition | Min | Тур | Max | Unit | Remarks | | Resolution | - | ı | _ | ı | _ | 8 | bit | | | Differential linearity error | - | - | _ | 1 | _ | ± 3.0 | LSB | | | 0 | - | - | _ | 0.47 | 0.58 | 0.69 | μs | C _L =20 | | Conversion time | | | _ | 2.37 | 2.90 | 3.43 | μs | C _L =100 | | Output impedance | Ro | DA0,
DA1 | _ | 3.1 | 3.8 | 4.5 | kΩ | | | | IA | AVCC | _ | - | 475 | 580 | μA | Each
channel | | Power supply current *1 | IAH | AVCC | _ | _ | _ | 7.5 | μА | When powerdown Each channel | ^{*1:} The power supply current described only current value on D/A converter. The total AVcc current value must be calculated the power supply current for D/A converter and A/D converter. | Part number | Sub clock | CSV Initial value | LVD Initial value | Package* ² | |----------------|-----------|-------------------|-------------------|-----------------------| | MB91F526DWBPMC | Yes | ON | ON | | | MB91F526DYBPMC | | | OFF | | | MB91F526DJBPMC | | OFF | ON | | | MB91F526DLBPMC | | | OFF | | | MB91F525DWBPMC | | ON | ON | | | MB91F525DYBPMC | | | OFF | | | MB91F525DJBPMC | | OFF | ON | | | MB91F525DLBPMC | | | OFF | | | MB91F524DWBPMC | | ON | ON | | | MB91F524DYBPMC | | | OFF | | | MB91F524DJBPMC | | OFF | ON | | | MB91F524DLBPMC | | | OFF | | | MB91F523DWBPMC | | ON | ON | | | MB91F523DYBPMC | | | OFF | | | MB91F523DJBPMC | | OFF | ON | | | MB91F523DLBPMC | | | OFF | | | MB91F522DWBPMC | | ON | ON | | | MB91F522DYBPMC | | | OFF | | | MB91F522DJBPMC | | OFF | ON | | | MB91F522DLBPMC | | | OFF | LQH · 80 pin, | | MB91F526DSBPMC | None | ON | ON | Plastic | | MB91F526DUBPMC | | | OFF | | | MB91F526DHBPMC | | OFF | ON | | | MB91F526DKBPMC | | | OFF | | | MB91F525DSBPMC | | ON | ON | | | MB91F525DUBPMC | | | OFF | | | MB91F525DHBPMC | | OFF | ON | | | MB91F525DKBPMC | | | OFF | | | MB91F524DSBPMC | | ON | ON | | | MB91F524DUBPMC | | | OFF | | | MB91F524DHBPMC | | OFF | ON | | | MB91F524DKBPMC | | | OFF | | | MB91F523DSBPMC | | ON | ON | | | MB91F523DUBPMC | | | OFF | | | MB91F523DHBPMC | | OFF | ON | | | MB91F523DKBPMC | | | OFF | | | MB91F522DSBPMC | | ON | ON | | | MB91F522DUBPMC | | | OFF | | | MB91F522DHBPMC | | OFF | ON | | | MB91F522DKBPMC | | | OFF | | | Page | Section | Change Results | | | | | | | | |------|-----------------|--|--|--|--|--|--|--|--| | | | Corrected the following description for Product lineup | | | | | | | | | | | comparison(100 pin). | | | | | | | | | | | Multi-Function 12ch | | | | | | | | | 8 | ■Product Lineup | Serial Interface | Multi-Function 12ch ¹ | | | | | | | | | | | Serial Interface | | | | | | | | | | ■Product Lineup | Added the following sentences under Product lineup comparison(100 pin) | | | | | | | | | 8 | | *1: Only channel 5, channel 6, channel 7, channel 8 and | | | | | | | | | | | channel 11 support the I^2 C (standard mode). | | | | | | | | | | | Corrected the following description for Product lineup | | | | | | | | | | | comparison(120 pin). | | | | | | | | | | | Multi-Function 42ah | | | | | | | | | 9 | ■Product Lineup | Serial Interface | Multi-Function 12ch ¹ | | | | | | | | | | | Seriai Interrace | | | | | | | | | | ■Product Lineup | Added the following sentences under Product lineup | | | | | | | | | | | comparison(120 pin) | | | | | | | | | 9 | | *1: Only channel 3 and channel 4 support the I ² C (high-speed | | | | | | | | | | | mode/standard mode). | | | | | | | | | | | Only channel 5, channel 6, channel 7, channel 8 and channel 11 support the I ² C (standard mode). | | | | | | | | | | | Corrected the following description for Product lineup | | | | | | | | | | | comparison(144 pin). | | | | | | | | | | | Multi-Function | | | | | | | | | 10 | ■Product Lineup | Serial Interface | | | | | | | | | | | <u></u> | | | | | | | | | | | Multi-Function 12ch ¹ | | | | | | | | | | | Serial Interface | | | | | | | | | | | Added the following sentences under Product lineup | | | | | | | | | | ■Product Lineup | comparison(144 pin) *1: Only channel 3 and channel 4 support the I ² C (high-speed) | | | | | | | | | 10 | | mode/standard mode). | | | | | | | | | | | Only channel 5, channel 6, channel 7, channel 8, channel | | | | | | | | | | | 10 and channel 11 support the I^2 C (standard mode). | | | | | | | | | | ■Product Lineup | Corrected the following description for Product lineup | | | | | | | | | | | comparison(176 pin). | | | | | | | | | | | Multi-Function 12ch | | | | | | | | | 11 | | Serial Interface | | | | | | | | | | | \ | | | | | | | | | | | Multi-Function 12ch ^{*1} | | | | | | | | | | | Serial Interface | | | | | | | | | | | Added the following sentences under Product lineup comparison(176 pin) | | | | | | | | | | ■Product Lineup | *1: Only channel 3 and channel 4 support the I ² C (high-speed | | | | | | | | | 11 | | mode/standard mode). | | | | | | | | | | | Only channel 5, channel 6, channel 7, channel 8, channel | | | | | | | | | | | 10 and channel 11 support the I ² C (standard mode). | | | | | | | | | Page | Section | Change Results | | | | | | | |------|------------------|---------------------------------------|------------------|-----|-----|-----|-----|--| | | | A List of "Pin Description" modified. | | | | | | | | | | (Error) | | Pin | no | | | Pin | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | P093
TX0_1
SIN11_0 | | | | 34 | 42 | 52 | 62 | 77 | 96 | AN7
ICU4_2
PPG16_1
ICU3_0 | | 29 | ■PIN Description | (Correc | <u> </u>
ct) | | | | | TOT2_1 | | | | Pin no. | | | | | Pin | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | 34*1 | 42 ^{*1} | 52 | 62 | 77 | 96 | P093 TX0_1 SIN11_0 AN7 ICU4_2 PPG16_1 ICU3_0 TOT2_1 *2,*3 | ### Sales, Solutions, and Legal Information #### **Worldwide Sales and Design Support** Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. **Products** ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Lighting & Power Control cypress.com/powerpsoc Memory cypress.com/memory PSoC cypress.com/psoc Touch Sensing cypress.com/touch USB Controllers cypress.com/usb Wireless/RF cypress.com/wireless **PSoC® Solutions** PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP **Cypress Developer Community** Community | Forums | Blogs | Video | Training | Components Technical Support cypress.com/support ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries © Cypress Semiconductor Corporation, 2014-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-04662 Rev. *D June 23, 2016 Page 289 of 289