Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | FR81S | | Core Size | 32-Bit Single-Core | | Speed | 80MHz | | Connectivity | CANbus, CSIO, EBI/EMI, I ² C, LINbus, SPI, UART/USART | | Peripherals | DMA, LVD, POR, PWM, WDT | | Number of I/O | 152 | | Program Memory Size | 1.0625MB (1.0625M x 8) | | Program Memory Type | FLASH | | EEPROM Size | 64K x 8 | | RAM Size | 136K x 8 | | Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V | | Data Converters | A/D 48x12b; D/A 2x8b | | Oscillator Type | External | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 176-LQFP | | Supplier Device Package | 176-LQFP (24x24) | | Purchase URL | https://www.e-xfl.com/product-detail/infineon-technologies/mb91f526lwcpmc-gsk5e2 | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong Product lineup comparison 120 pins | | MB91F522J | MB91F523J | MB91F524J | MB91F525J | MB91F526J | | |--|--|------------|------------------|------------|-------------|--| | System Clock | | On chip I | PLL Clock multip | ple method | | | | Minimum instruction execution time | | • | 12.5ns (80MHz | | | | | Flash Capacity (Program) | (256+64)KB | (384+64)KB | (512+64)KB | (768+64)KB | (1024+64)KB | | | Flash Capacity (Data) | | , | 64KB | | , | | | RAM Capacity | (48+ | 8)KB | (64+8)KB | (96+8)KB | (128+8)KB | | | External BUS I/F | | • | None | | | | | (22address/16data/4cs) DMA Transfer | | | 10ab | | | | | | | | 16ch | | | | | 16-bit Base Timer | | 10 | 2ch | O a la | | | | Free-run Timer | | | Sbit×3ch, 32bit× | | | | | Input capture | | | Sbit×4ch, 32bit× | | | | | Output Compare | | 16 | Sbit×6ch, 32bit× | 6ch | | | | 16-bit Reload Timer | | | 8ch | | | | | PPG | | | 16bit×38ch | | | | | Up/down Counter | | | 2ch | | | | | Clock Supervisor | Yes | | | | | | | External Interrupt | 8ch×2units | | | | | | | A/D converter | 12bit×26ch (1unit), 12bit×16ch (1unit) | | | | | | | D/A converter (8bit) | 2ch | | | | | | | Multi-Function Serial Interface | 12ch*1 | | | | | | | CAN | 64msg×2ch/128msg×1ch | | | | | | | Hardware Watchdog Timer | | | Yes | | | | | CRC Formation | | | Yes | | | | | Low-voltage detection reset | | | Yes | | | | | Flash Security | | | Yes | | | | | ECC Flash/WorkFlash | | | Yes | | | | | ECC RAM | | | Yes | | | | | Memory Protection Function (MPU) | | | Yes | | | | | Floating point arithmetic (FPU) | | | Yes | | | | | Real Time Clock (RTC) | | | Yes | | | | | General-purpose port (#GPIOs) | | | 96 ports | | | | | SSCG | | | Yes | | | | | Sub clock | | | Yes | | | | | CR oscillator | | | Yes | | | | | NMI request function | Yes | | | | | | | OCD (On Chip Debug) | | | Yes | | | | | TPU (Timing Protection Unit) | | | Yes | | | | | Key code register | | | Yes | | | | | Waveform generator | | | 6ch | | | | | Operation guaranteed temperature (T _A) | | | -40°C to +125° | | | | | Power supply | | | 2.7V to 5.5V *2 | <u>-</u> | | | | Package | LQM120 | | | | | | ^{*1:} Only channel 3 and channel 4 support the I²C (fast mode/standard mode). Only channel 5, channel 6, channel 7, channel 8 and channel 11 support the I²C (standard mode). ^{*2:} The initial detection voltage of the external low voltage detection is 2.8V±8% (2.576V to 3.024V). This LVD setting and internal LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage. Below the minimum guaranteed MCU operation voltage, MCU operations are not guaranteed with the exception of LVD. | | Pin no. | | Pin
Name | Polarity | I/O
circuit | Function* ⁹ | | | | |----|---------|-------|-------------|----------|----------------|------------------------|---|---------|--| | 64 | 80 | 100 | 120 | 144 | 176 | Name | | types*8 | | | | | | | | | P057 | - | | General-purpose I/O port | | | | | | | | RDY *2, *3,
*4, *5 | - | | External bus/Ready input (0) | | | | | | | | SCK10_1 | - | | Multi-function serial ch.10 clock I/O (1) | | 19 | 24 | *4 | *4 | | | AN42 | - | _ | ADC analog 42 input | | *1 | *1 | 29 *1 | 35 *1 | 41 | 51 | ICU8_0 | - | G | Input capture ch.8 input (0) | | | | | | | | TRG0_2 | - | | PPG trigger 0 input (2) | | | | | | | | PPG1_1 | - | | PPG ch.1 output (1) | | | | | | | | ICU1_1 | - | | Input capture ch.1 input (1) | | | | | | | | TIN6_1 | - | | Reload timer ch.6 event input (1) | | | | | | | | P142 | - | | General-purpose I/O port | | | | | | | | SCK10_0 | | | Multi-function serial ch.10 clock I/O (0)/ | | - | - | - | - | 44 | 54 | /
SCL10 | - | F | I ² C bus serial clock I/O | | | | | | | | PPG38_0 | - | | PPG ch.38 output (0) | | | | | | | | TIN7_1 | - | | Reload timer ch.7 event input (1) | | | | | | | | P143 | - | | General-purpose I/O port | | | | | | | | SOT10_0 | | | Multi-function serial ch.10 serial data output | | - | - | - | - | 45 | 55 | /SDA10 | - | F | (0)/ I ² C bus serial data I/O | | | | | | | | PPG39_0 | - | | PPG ch.39 output (0) | | | | | | | | TOT4_1 | - | | Reload timer ch.4 output (1) | | | | _ | | _ | 56 | P182 | - | Α | General-purpose I/O port | | | | | | _ | 30 | PPG42_0 | - | | PPG ch.42 output (0) | | | | | | | | P060 | - | | General-purpose I/O port | | | | | | | | SCS10_0 | - | | Serial chip select 10 I/O (0) | | | | 32 | 38 | 46 | 57 | PPG2_1 | - | Α | PPG ch.2 output (1) | | - | _ | 32 | 30 | 40 | 31 | ICU2_1 | - | ^ | Input capture ch.2 input (1) | | | | | | | | TOT5_1 | - | | Reload timer ch.5 output (1) | | | | | | | | INT13_0 | - | | INT13 External interrupt input (0) | | | | | | | | P061 | - | | General-purpose I/O port | | | | | | | | SOT10 1 | _ | | Multi-function serial ch.10 | | | | | | | | _ | | В | serial data output (1) | | | | | | | | AN41 | - | | ADC analog 41 input | | 22 | 27 | 33 | 39 | 47 | 58 | ICU6_0 | - | | Input capture ch.6 input (0) | | | | | | | | PPG3_1 | - | | PPG ch.3 output (1) | | | | | | | | ICU3_1 | - | | Input capture ch.3 input (1) | | | | | | | | TOT6_1 | - | | Reload timer ch.6 output (1) | | | | | | | | INT13_1 | - | | INT13 External interrupt input (1) | | | | Pin | no. | | | Pin | Polarity | I/O
circuit | Function* ⁹ | |----|----------|------|-----|------------|-----|------------------------|----------|----------------|--| | 64 | 80 | 100 | 120 | 144 | 176 | Name | | types*8 | | | | | 40 | 40 | 5 4 | 00 | P070 | - | ^ | General-purpose I/O port | | - | - | 40 | 46 | 54 | 68 | ICU0_2 | - | Α | Input capture ch.0 input (2) | | | | | | | | P071 | - | | General-purpose I/O port | | | | | | | | SCK4_2 | _ | | Multi-function serial ch.4 | | 26 | 33 | 41 | 47 | 55 | 69 | | _ | G | clock I/O (2) | | 20 | 55 | 71 | 71 | 33 | 03 | AN35 | - | J | ADC analog 35 input | | | | | | | | ICU1_2 | - | | Input capture ch.1 input (2) | | | | | | | | MONCLK | - | | Clock monitor output pin | | | | | | | | P072 | - | | General-purpose I/O port | | | | | | | | SIN4_0 | - | _ | Multi-function serial ch.4 serial data input (0) | | 27 | 34 | 42 | 48 | 56 | 70 | AN34 | - | G | ADC analog 34 input | | | | | | | | ICU2_2 | - | | Input capture ch.2 input (2) | | | | | | | | INT5_0 | - | | INT5 External interrupt input (0) | | | | | | | | P073 | - | | General-purpose I/O port | | _ | 35
*3 | 43*4 | 49 | 57 | 71 | SOT4_0/
SDA4 *3, *4 | - | D | Multi-function serial ch.4 serial data output (0)/1 ² C bus serial data I/O | | | 3 | | .0 | 0, | | AN33 | - | | ADC analog 33 input | | | | | | | | ICU3 2 | - | | Input capture ch.3 input (2) | | | | | | | | P186 | - | | General-purpose I/O port | | - | - | - | - | - | 72 | PPG46 0 | - | Α | PPG ch.46 output (0) | | | | | | | | P187 | - | | General-purpose I/O port | | - | - | - | - | - | 73 | PPG47 0 | - | Α | PPG ch.47 output (0) | | | | | | | | P074 | - | | General-purpose I/O port | | - | - | - | 50 | 58 | 74 | SCK4_0/ | | Е | Multi-function serial ch.4 clock I/O (0)/ | | | | | | | | SCL4 | - | | I ² C bus serial clock I/O | | | | | | | | P075 | - | | General-purpose I/O port | | _ | _ | _ | 51 | 59 | 75 | SIN3 0 | - | F | Multi-function serial ch.3 serial data input | | | | | | | | _ | | | (0) | | | | | | | | INT4_0 | - | | INT4 External interrupt input (0) | | | | | 52 | 60 | 76 | P076 | - | E | General-purpose I/O port | | _ | - | _ | 52 | 00 | 70 | SOT3_0/
SDA3 | - | _ | Multi-function serial ch.3 serial data output (0)/1 ² C bus serial data I/O | | | | | | | | P077 | - | | General-purpose I/O port | | _ | - | _ | 53 | 61 | 77 | SCK3_0/ | | Е | Multi-function serial ch.3 clock I/O (0)/ | | | | | | | | SCL3 | - | | I ² C bus serial clock I/O | | | | 4.4 | E4 | 60 | 70 | P152 | - | ۸ | General-purpose I/O port | | - | _ | 44 | 54 | 62 | 78 | SCS53_0 | - | Α | Serial chip select 53 output (0) | | | | | | | | P153 | - | | General-purpose I/O port | | | | | | | | SCK5_0/ | _ | | Multi-function serial ch.5 clock I/O (0)/ | | 28 | 36 | 45 | 55 | 63 | 79 | SCL5 | _ | G | I ² C bus serial clock I/O | | 20 | 50 | 75 | 55 | 00 | 19 | AN32 | - | 3 | ADC analog 32 input | | | | | | | | FRCK1_1 | - | | Free-run timer 1 clock input (1) | | | | | | | | INT4_1 | - | | INT4 External interrupt input (1) | | | | Pin | no. | | | Pin
Name | Polarity | I/O
circuit | Function* ⁹ | |----------|----------|------------------|-----------|-----|-----------|---------------------------|----------|----------------|---| | 64 | 80 | 100 | 120 | 144 | 176 | Name | _ | types*8 | | | | | | | | | P002 | - | | General-purpose I/O port | | | | | 113 | 400 | 101 | D18 ^{*5} | - | F | External bus data bit18 I/O | | - | - | - | *1 | 133 | 161 | SCK1_0 | - | F | Multi-function serial ch.1 clock I/O (0) | | | | | | | | TIOB0_1 | - | | TIOB input of Base timer ch.0 (1) | | | | | | | | P003 | - | | General-purpose I/O port | | | | | | | | D19 ^{*3, *4,} *5 | - | | External bus data bit19 I/O | | - | 76
*1 | 96 ^{*1} | 114
*1 | 134 | 162 | SIN2_0 | - | F | Multi-function serial ch.2 serial data input (0) | | | | | | | | TIOB1_1 | - | | TIOB input of Base timer ch.1 (1) | | | | | | | | INT3_0 | - | | INT3 External interrupt input (0) | | | | | | | | P004 | - | | General-purpose I/O port | | _ | _ | _ | _ | 135 | 163 | D20 | - | Α | External bus data bit20 I/O (0) | | | | | | 100 | 100 | SOT2_0 | - | | Multi-function serial ch.2 serial data output (0) | | | | | | | 404 | P164 | - | | General-purpose I/O port | | - | - | ı | ı | - | 164 | PPG32_1 | - | Α | PPG ch.32 output (1) | | | | | | | | P005 | - | | General-purpose I/O port | | | | | | | | D21 *2, *3,
*4, *5 | - | | External bus data bit21 I/O (0) | | 61
*1 | 77
*1 | 97 ^{*1} | 115 | 136 | 165
*1 | SCK2_0 | - | F | Multi-function serial ch.2 clock I/O (0) | | | · | | | | | ADTG0_1 | - | | A/D converter external trigger input 0 (1) | | | | | | | | INT7_1 | - | | INT7 External interrupt input (1) | | | | | | | | RX2(64)
*4, *5, *6, *7 | - | | CAN reception data 2 input | | | | | | | 100 | P165 | - | ^ | General-purpose I/O port | | _ | - | - | | - | 166 | PPG33_1 | - | Α | PPG ch.33 output (1) | | | | | | | | P006 | - | | General-purpose I/O port | | | | | | | | D22 *2, *3,
*4, *5 | - | | External bus data bit22 I/O (0) | | 62
*1 | 78
*1 | 98 ^{*1} | 116 | 137 | 167
*1 | SCS2_0 | - | Α | Serial chip select 2 I/O (0) | | | · | | • | | | ADTG1_1 | - | | A/D converter external trigger input 1 (1) | | | | | | | | INT2_1 | - | | INT2 External interrupt input (1) | | | | | | | | TX2(64)
*4, *5, *6, *7 | - | | CAN transmission data 2 output | | | | | 117 | 465 | 465 | P007 | - | _ | General-purpose I/O port | | - | - | - | *1 | 138 | 168 | D23 *5 | - | Α | External bus data bit23 I/O | | | | | | | 400 | P166 | - | | General-purpose I/O port | | - | - | - | - | - | 169 | PPG34_1 | - | Α | PPG ch.34 output (1) | | | | | 118 | 400 | 470 | P010 | - | ^ | General-purpose I/O port | | - | - | - | *1 | 139 | 170 | D24 *5 | - | Α | External bus data bit24 I/O | Code: DS00-00004-2Ea ### ■ Observance of Safety Regulations and Standards Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products. ## ■ Fail-Safe Design Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions. ## ■ Precautions Related to Usage of Devices Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). **CAUTION:** Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval. # 2. Precautions for Package Mounting Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative. ### ■ Lead Insertion Type Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket. Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions. If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting. ### ■ Surface Mount Type Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions. # ■ Lead-Free Packaging **CAUTION:** When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use. Document Number: 002-04662 Rev. *D Page 42 of 289 | A 1.1 | | Address offset val | ue / Register name | | | | | | |--|--|-------------------------|------------------------------|---------|---------------|--|--|--| | Address | +0 | +1 | +2 | +3 | Block | | | | | 00059C _H
to
0005BC _H | _ | _ | _ | _ | Reserved | | | | | 0005C0 _H
to
0005FC _H | _ | _ | Reserved | | | | | | | 000600н | | | | | | | | | | 000604н | | | External Bus | | | | | | | 000608н | | | Interface [S] | | | | | | | 00060Сн | | | | | | | | | | 000610 _H
to
00063C _H | | | | | | | | | | 000640н | | | | | | | | | | 000644н | ACR1 [R/W] W
XXXX | | | | | | | | | 000648н | ACR2 [R/W] W
XXXX | | | | | | | | | 00064Сн | | ACR3 [| R/W] W
XXXX | | | | | | | 000650 _H
to
00067C _H | _ | _ | _ | _ | Reserved [S] | | | | | 000680н | | | [R/W] W
11110000 00000-0- | | External Bus | | | | | 000684н | | AWR1
XXXX XXXXXXXX | [R/W] W
XXXXXXXX XXXXX-X | (- | Interface [S] | | | | | 000688н | | AWR2
XXXX XXXXXXXX | [R/W] W
XXXXXXXX XXXXX-X | <u></u> | External Bus | | | | | 00068Сн | AWR3 [RW] WXXXX XXXXXXXX XXXXXXX XXXXXX-X- | | | | | | | | | 000690 _Н
to
0006FC _Н | _ | _ | _ | _ | Reserved [S] | | | | | 000700 _H
to
00070C _H | _ | | | | | | | | | A al al as a s | | Address offset value | ue / Register name | | Disale | | | | |--|---|------------------------------|---------------------------------|-----------------------------------|--|--|--|--| | Address | +0 | +1 | +2 | +3 | Block | | | | | 000F70 _Н | RCRH0 [W] H,W
XXXXXXX | RCRL0 [W] B,H,W
XXXXXXXX | UDCRH0 [R] H,W
00000000 | UDCRL0 [R] B,H,W
00000000 | Up/Down | | | | | 000F74 _H | | R/W] B,H
-0001000 | _ | CSR0 [R/W] B
00000000 | Counter 0 | | | | | 000F78 _H
to
000F7C _H | - | _ | _ | _ | Reserved | | | | | 000F80н | RCRH1 [W] H,W
XXXXXXXX | RCRL1 [W] B,H,W
XXXXXXXX | UDCRH1 [R] H,W
00000000 | UDCRL1 [R] B,H,W
00000000 | Up/Down | | | | | 000F84 _н | | R/W] B,H
) -0001000 | _ | CSR1 [R/W] B
00000000 | Counter 1 | | | | | 000F88 _н | _ | _ | MSCH45 [R]
B,H,W
00000000 | MSCL45 [R/W]
B,H,W
00 | Input Capture 4,5
32-bit ICU
Cycle and pulse
width
measurement
control 45 | | | | | 000F8С _н | Сн — — | | MSCH67 [R]
B,H,W
00000000 | MSCL67 [R/W]
B,H,W
00 | Input Capture 6,7
32-bit ICU
Cycle and pulse
width
measurement
control 67 | | | | | 000F90 _н | | OCCP10
00000000 00000000 | | | Output Compare | | | | | 000F94 _н | | OCCP11
00000000 00000000 | | | 32-bit OCU | | | | | 000F98 _н | _ | _ | OCSH1011 [R/W]
B,H,W
000 | OCSL1011 [R/W]
B,H,W
000000 | Output Compare
10,11
32-bit OCU | | | | | 000F9Сн | _ | _ | _ | OCLS1011 [R/W]
B,H,W
0000 | OCU1011 Output level control register | | | | | 000FA0 _н | | CPCLR5
111111111 11111111 | | | | | | | | 000FA4 _Н | TCDT5 [R/W] W 00000000 00000000 000000000 | | | | | | | | | 000FA8н | TCCSH5
[R/W]B,H,W
000 | | | _ | _ 32-bit FRT | | | | | 000FAC _H
to
000FCC _H | _ | _ | _ | _ | Reserved | | | | | A dalas s | | Disale | | | | | | |---------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|--------------------|--|--| | Address | +0 | +1 | +2 | +3 | Block | | | | 001434н | ADRCCS24[R/W]
B,H,W
00000000 | ADRCCS25[R/W]
B,H,W
00000000 | ADRCCS26[R/W]
B,H,W
00000000 | ADRCCS27[R/W]
B,H,W
00000000 | | | | | 001438 _н | ADRCCS28[R/W]
B,H,W
00000000 | ADRCCS29[R/W]
B,H,W
00000000 | ADRCCS30[R/W]
B,H,W
00000000 | ADRCCS31[R/W]
B,H,W
00000000 | | | | | 00143Сн | | | | | | | | | 001440 _н | | | | | | | | | 001444 _н | ADSCANS0[R/W]
B,H,W
000 | _ | _ | _ | | | | | 001448 _н | ADNCS0[R/W]
B,H,W
0-000-00 | ADNCS1[R/W]
B,H,W
0-000-00 | ADNCS2[R/W]
B,H,W
0-000-00 | ADNCS3[R/W]
B,H,W
0-000-00 | 12-bit A/D | | | | 00144Сн | ADNCS4[R/W]
B,H,W
0-000-00 | ADNCS5[R/W]
B,H,W
0-000-00 | ADNCS6[R/W]
B,H,W
0-000-00 | ADNCS7[R/W]
B,H,W
0-000-00 | | | | | 001450н | ADNCS8[R/W]
B,H,W
0-000-00 | ADNCS9[R/W]
B,H,W
0-000-00 | ADNCS10[R/W]
B,H,W
0-000-00 | ADNCS11[R/W]
B,H,W
0-000-00 | Converter 1/2 unit | | | | 001454 _н | ADNCS12[R/W]
B,H,W
0-000-00 | ADNCS13[R/W]
B,H,W
0-000-00 | ADNCS14[R/W]
B,H,W
0-000-00 | ADNCS15[R/W]
B,H,W
0-000-00 | | | | | 001458н | | ADPRTF0
00000000 00000000 | [R] B,H,W
00000000 00000000 | | | | | | 00145Сн | | ADEOCF0
111111111 11111111 | = = | | | | | | 001460 _н | ADCS0[i
0 | - | ADCH0[R] B,H,W
00000 | ADMD0[R/W] B,H,W
00000 | | | | | 001464 _н | ADSTPCS0[R/W]
B,H,W
00000000 | ADSTPCS1[R/W]
B,H,W
00000000 | ADSTPCS2[R/W]
B,H,W
00000000 | ADSTPCS3[R/W]
B,H,W
00000000 | | | | | 001468н | ADSTPCS4[R/W]
B,H,W
00000000 | ADSTPCS5[R/W]
B,H,W
00000000 | ADSTPCS6[R/W]
B,H,W
00000000 | ADSTPCS7[R/W]
B,H,W
00000000 | | | | | 00146C _H | | _ | _ | | | | | | 001470н | ADTSS1[R/W]
B,H,W
0 | _ | _ | _ | 12-bit A/D | | | | 001474 _H | | = | X/W] B,H,W
00000 00000000 | | converter 2/2 unit | | | | 001478 _H | ADCOMP32/ADC0
00000000 | | | OMPB33[R/W] H,W
00000000 | | | | | | Interrupt | number | Interrupt | | Default | | |-------------------------------|-----------|-----------------|-----------|------------------|-----------------------|----| | Interrupt factor | Decimal | Hexa
decimal | level. | Offset | address for
TBR | RN | | | 66 | 42 | - | 2F4 _H | 000FFEF4 _H | - | | Used with the INT instruction | 1 | | | | 1 | | | | 255 | FF | | 000н | 000FFC00 _H | | **Note:** It does not support a DMA transfer request caused by an interrupt generated from a peripheral to which no RN (Resource Number) is assigned. - *1: It does not support a DMA transfer by the status of the multi-function serial interface and I²C reception. - *2: Reload timer ch.4 to ch.7 do not support a DMA transfer by the interrupt. - *3: PPG ch.24 to ch.47 do not support a DMA transfer by the interrupt. - *4: The clock calibration unit does not support a DMA transfer by the interrupt. - *5: 32-bit Free-run timer ch.3, ch.4 and ch.5 do not support a DMA transfer by the interrupt. - *6: There is no resource corresponding to the interrupt level. - *7: It does not support a DMA transfer by the external low-voltage detection interrupt. - *8: REALOS is a trademark of Cypress. 100 pins | 100 pins | Interr | upt number | Indo | | Default | | |--|---------|-------------|----------------------|------------------|-----------------------|------------------| | Interrupt factor | Decimal | Hexadecimal | Interrupt
level | Offset | address for | RN | | | Decimal | пехацесппа | ievei | | TBR | | | Reset | 0 | 0 | - | | 000FFFFC _H | - | | System reserved | 1 | 1 | - | 3F8 _H | | - | | System reserved | 2 | 2 | - | 3F4 _H | 000FFFF4 _H | - | | System reserved | 3 | 3 | - | 3F0 _H | 000FFFF0 _H | - | | System reserved | 4 | 4 | - | 3ЕСн | 000FFFEC _H | - | | FPU exception | 5 | 5 | - | 3E8 _H | 000FFFE8 _H | - | | Exception of instruction access protection | 6 | 6 | _ | 3Е4н | 000FFFE4 _H | _ | | violation | 0 | 0 | - | 3L4H | 000FFFE4H | - | | Exception of data access protection violation | 7 | 7 | - | 3E0 _H | 000FFFE0 _H | - | | Data access error interrupt | 8 | 8 | - | 3DC _H | 000FFFDC _H | - | | INTE instruction | 9 | 9 | - | 3D8 _H | 000FFFD8 _H | - | | Instruction break | 10 | 0A | - | 3D4 _H | 000FFFD4 _н | - | | System reserved | 11 | 0B | - | 3D0 _H | 000FFFD0 _H | - | | System reserved | 12 | 0C | - | 3ССн | 000FFFCC _н | - | | System reserved | 13 | 0D | - | 3С8н | 000FFFC8 _H | - | | Exception of invalid instruction | 14 | 0E | - | 3C4 _H | 000FFFC4 _H | - | | NMI request | | | | | | | | Error generation during internal bus diagnosis | | | | | | | | XBS RAM double-bit error generation | 15 | 0F | 15 (F _H) | 3С0н | 000FFFC0 _H | - | | Backup RAM double-bit error generation | | | Fixed | | | | | TPU violation | | | | | | | | External interrupt 0-7 | 16 | 10 | ICR00 | 3BC⊔ | 000FFFBC _H | 0 | | External interrupt 8-15 | 1 | | | | | | | External low-voltage detection interrupt | 17 | 11 | ICR01 | 3B8 _H | 000FFFB8 _н | 1* ⁷ | | Reload timer 0/1/4/5 | 18 | 12 | ICR02 | 3B4 _H | 000FFFB4 _H | 2* ² | | Reload timer 2/3/6/7 | 19 | 13 | ICR03 | 3B0 _H | 000FFFB0 _H | 3* ² | | Multi-function serial interface | 10 | 10 | 101100 | OBOR | OCCITI DON | 0 | | ch.0 (reception completed) | | | | | | | | Multi-function serial interface | 20 | 14 | ICR04 | 3АСн | 000FFFAC _н | 4* ¹ | | ch.0 (status) | | | | | | | | Multi-function serial interface | | | | | | | | ch.0 (transmission completed) | 21 | 15 | ICR05 | 3A8 _H | 000FFFA8 _н | 5* ¹ | | Multi-function serial interface | | | | | | | | ch.1 (reception completed) | | | | | | | | Multi-function serial interface | 22 | 16 | ICR06 | 3A4 _H | 000FFFA4 _н | 6* ¹ | | ch.1 (status) | | | | | | | | Multi-function serial interface | | | | | | | | ch.1 (transmission completed) | 23 | 17 | ICR07 | 3A0 _H | 000FFFA0 _н | 7* ¹ | | Multi-function serial interface | | | | | | | | ch.2 (reception completed) | | | | | | | | Multi-function serial interface | 24 | 18 | ICR08 | 39Сн | 000FFF9С _н | 8* ¹ | | ch.2 (status) | | | | | | | | Multi-function serial interface | | | | | | | | ch.2 (transmission completed) | 25 | 19 | ICR09 | 398н | 000FFF98 _н | 9* ¹ | | Multi-function serial interface | | | | | | | | ch.3 (reception completed) | 1 | | | | | | | Multi-function serial interface | 26 | 1A | ICR10 | 394 _H | 000FFF94 _н | 10* ¹ | | ch.3 (status) | | | | | | | | un.u (status) | | | l | | | | | | Interr | upt number | Interrupt | | Default | | |--|---------|-------------|--------------------|-------------------|-----------------------|-------------------| | Interrupt factor | Decimal | Hexadecimal | Interrupt
level | Offset | address for | RN | | Marildi farmation popular interfero | | | | | TBR | | | Multi-function serial interface ch.8 (reception completed) | | | | | | | | Multi-function serial interface | 45 | 2D | ICR29 | 348н | 000FFF48 _н | 20*1 | | ch.8 (status) | 45 | 20 | ICRZ9 | 340H | 000FFF40H | 29 | | 16-bit ICU 0 (fetching) / 16-bit ICU 1 (fetching) | 1 | | | | | | | Main timer | | | | | | | | Sub timer | _ | | | | | | | PLL timer | 1 | | | | | | | Multi-function serial interface | 46 | 2E | ICR30 | 344 _H | 000FFF44 _н | 30 | | ch.8 (transmission completed) | | | | | | | | 16-bit ICU 2 (fetching) /16-bit ICU 3 (fetching) | 1 | | | | | | | Clock calibration unit (sub oscillation) | | | | | | | | Multi-function serial interface | 1 | | | | | | | ch.9 (reception completed) | 47 | 2F | ICR31 | 340 _H | 000FFF40 _H | 31* ^{1,} | | Multi-function serial interface | ' | 21 | 10131 | 3 4 0H | 00011140H | *4 | | ch.9 (status) | | | | | | | | A/D converter | | | | | | | | 0/1/7/9/10/11/12/13/14/15/16 | 48 | 30 | ICR32 | 33Сн | 000FFF3С _н | 32 | | 17/18/19/22/23/26/27/28/29/31 | 10 | 00 | 101102 | OOO _H | 00011100H | 02 | | Clock calibration unit (CR oscillation) | | | | | | | | Multi-function serial interface | | | | | | | | ch.9 (transmission completed) | 49 | 31 | ICR33 | 338н | 000FFF38 _н | 33 | | 16-bit OCU 0 (match) / 16-bit OCU 1 (match) | | | | | | | | 32-bit Free-run timer 4 | _ | | | | | 5 | | 16-bit OCU 2 (match) / 16-bit OCU 3 (match) | 50 | 32 | ICR34 | 334 _H | 000FFF34 _H | 34* ⁵ | | 32-bit Free-run timer 3/5 | | | | | | 5 | | 16-bit OCU 4 (match) / 16-bit OCU 5 (match) | 51 | 33 | ICR35 | 330 _H | 000FFF30 _н | 35* ⁵ | | 32-bit ICU6 (fetching/measurement) | | | | | | | | Multi-function serial interface | | | | | | | | ch.10 (reception completed) | 52 | 34 | ICR36 | 32C _H | 000FFF2C _H | 36* ¹ | | Multi-function serial interface | | | | | | | | ch.10 (status) | | | | | | | | 32-bit ICU7 (fetching/measurement) | | | | | | | | Multi-function serial interface | 53 | 35 | ICR37 | 328 _H | 000FFF28 _н | 37 | | ch.10 (transmission completed) | | | | | | | | 32-bit ICU8 (fetching/measurement) | | | | | | | | Multi-function serial interface | | | | | | | | ch.11 (reception completed) | 54 | 36 | ICR38 | 324 _H | 000FFF24 _н | 38* ¹ | | Multi-function serial interface | | | | | | | | ch.11 (status) | | | | | | | | 32-bit ICU9 (fetching/measurement) | | | | | | | | WG dead timer underflow 0/1/2 | 55 | 37 | ICR39 | 320 _H | 000FFF20 _H | 39 | | WG dead timer reload 0/1/2 | | 01 | 101100 | 020H | 2001 1 1 20H | | | WG DTTI 0 | | | | | | | | 32-bit ICU4 (fetching/measurement) | | | | | | | | Multi-function serial interface | 56 | 38 | ICR40 | 31C _H | 000FFF1C _H | 40 | | ch.11 (transmission completed) | | | | | | | - *8: It is a standard when four-layer substrate is used. - *9: Corresponding pins: General-purpose ports other than those of P103, P104, P105 and P106. - *10: Corresponding pins: General-purpose ports of P103, P104, P105 and P106. ### <WARNING> Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings. Do not exceed any of these ratings. ### Recommended operating conditions $(V_{SS}=AV_{SS}=0.0V)$ | Parameter | Cumbal | Va | lue | Unit | Remarks | | |------------------------|---------------------------------------|-----------------------------|------|------|--|--| | Parameter | Symbol | Min | Max | Unit | Remarks | | | | .,, | 4.5 | 5.5 | V | Recommended operation guarantee range (When 5.0V is used) | | | Power supply voltage | V _{CC} ,
AV _{CC} | 3.0 | 3.6 | V | Recommended operation guarantee range (When 3.3V is used) | | | | | 2.7 | 5.5 | V | Operation guarantee range*1 | | | Smoothing capacitor *2 | Cs | 4.7 (tolerance within ±50%) | | μF | Use a ceramic capacitor or a capacitor that has the similar frequency characteristics. Use a capacitor with a capacitance greater than C _S as the smoothing capacitor on the VCC pin. | | | On anoting town and | _ | -40 | +105 | °C | | | | Operating temperature | T _A | -40 | +125 | °C | *3 | | ^{*1:} When it is used outside recommended operation guarantee range (range of the operation guarantee),contact your sales representative. The initial detection voltage of the external low voltage detection is 2.8V±8% (2.576V to 3.024V). This LVD setting and internal LVD cannot be used to reliably generate a reset before voltage dips below minimum guaranteed operation voltage, as these detection levels are below the minimum guaranteed MCU operation voltage. Below the | | | B: | 0 | Va | lue | | Domondo | | |-----------------------------------|-------------------|---|------------|------------------------|-----------------------|------|--|--| | Parameter | Symbol | Pin name | Conditions | Min | Max | Unit | Remarks | | | SCS↓→SCK↓
setup time | t _{CSSE} | SCK1 to SCK11
SCS1 to SCS3,
SCS40 to SCS43, | | 3t _{CPP} +30 | - | ns | | | | SCK↑→SCS↑
hold time | t _{CSHE} | SCS50 to SCS53,
SCS60 to SCS63,
SCS70 to SCS73,
SCS8 to SCS11 | | +0 | - | ns | | | | SCS
deselect time | tcsde | SCS1 to SCS3,
SCS40 to SCS43,
SCS50 to SCS53,
SCS60 to SCS63,
SCS70 to SCS73,
SCS8 to SCS11 | - | 3t _{CPP} +30 | - | ns | External shift clock mode output pin: | | | SCS↓→SOT
delay time | t _{DSE} | SCS1 , SCS2,
SCS50 to SCS53,
SCS60 to SCS63,
SCS70 to SCS73,
SCS8 to SCS11
SOT1 , SOT2 ,
SOT5 to SOT11 | | - | 40 | ns | C _L =50pF | | | | | SCS3,
SCS40 to SCS43
SOT3 , SOT4 | | - | 300 | ns | | | | SCS↑→SOT
delay time | t _{DEE} | SCS1 to SCS3,
SCS40 to SCS43,
SCS50 to SCS53,
SCS60 to SCS63,
SCS70 to SCS73,
SCS8 to SCS11
SOT1 to SOT11 | - | +0 | - | ns | External shift clock mode output pin: C _L =50pF | | | SCK↓→SCS↓
clock switch
time | tscc | SCK1, SCK2,
SCK5 to SCK11
SCS1, SCS2,
SCS50 to SCS53,
SCS60 to SCS63,
SCS70 to SCS73,
SCS8 to SCS11 | - | 3t _{CPP} -10 | 3t _{CPP} +50 | ns | Internal shift clock mode Round operation output pin: | | | | | SCK3 , SCK4
SCS3 ,
SCS40 to SCS43 | | 3t _{CPP} -300 | 3t _{CPP} +50 | ns | OL 00P1 | | ^{*1:} t_{CSSU} =SCSTR:CSSU7-0×Serial chip select timing operating clock Please see the hardware manual for details of above-mentioned *1,*2, and *3. ^{*2:} t_{CSHD}=SCSTR:CSHD7-0×Serial chip select timing operating clock ^{*3:} t_{CSDS}=SCSTR:CSDS15-0×Serial chip select timing operating clock Regardless of the deselect time setting, once after the serial chip select pin becomes inactive, it will take at least five peripheral bus clock cycles to be active again # 15. Ordering Information MB91F52xxxD | Part number | Sub clock | CSV Initial value | LVD Initial value | Package* | | | | |----------------|----------------|-------------------|-------------------|--------------------------------------|--|--|--| | MB91F526LWDPMC | Yes | ON | ON | | | | | | MB91F526LJDPMC | | OFF | ON | | | | | | MB91F525LWDPMC | | ON | ON | | | | | | MB91F525LJDPMC | | OFF | ON | | | | | | MB91F524LWDPMC | | ON | ON | | | | | | MB91F524LJDPMC | MB91F524LJDPMC | | ON | | | | | | MB91F523LWDPMC | | ON | ON | | | | | | MB91F523LJDPMC | | OFF | ON | | | | | | MB91F522LWDPMC | | ON | ON | | | | | | MB91F522LJDPMC | | OFF | ON | LQP · 176 pin, | | | | | MB91F526LSDPMC | None | ON | ON | Plastic | | | | | MB91F526LHDPMC | | OFF | ON | | | | | | MB91F525LSDPMC | | ON | ON | | | | | | MB91F525LHDPMC | | OFF | ON | | | | | | MB91F524LSDPMC | | ON | ON | | | | | | MB91F524LHDPMC | | OFF | ON | | | | | | MB91F523LSDPMC | | ON | ON | | | | | | MB91F523LHDPMC | | OFF | ON | | | | | | MB91F522LSDPMC | | ON | ON | | | | | | MB91F522LHDPMC | | OFF | ON | | | | | | MB91F526KWDPMC | Yes | ON | ON | | | | | | MB91F526KJDPMC | | OFF | ON | | | | | | MB91F525KWDPMC | | ON | ON | | | | | | MB91F525KJDPMC | | OFF | ON | | | | | | MB91F524KWDPMC | | ON | ON | | | | | | MB91F524KJDPMC | | OFF | ON | | | | | | MB91F523KWDPMC | | ON | ON | | | | | | MB91F523KJDPMC | | OFF | ON | | | | | | MB91F522KWDPMC | | ON | ON | | | | | | MB91F522KJDPMC | | OFF | ON | LQS • 144 pin,
(Lead pitch 0.5mm) | | | | | MB91F526KSDPMC | None | ON | ON | Plastic | | | | | MB91F526KHDPMC | | OFF | ON | | | | | | MB91F525KSDPMC | | ON | ON | | | | | | MB91F525KHDPMC | | OFF | ON | | | | | | MB91F524KSDPMC | | ON | ON | | | | | | MB91F524KHDPMC | | OFF | ON | | | | | | MB91F523KSDPMC | | ON | ON | | | | | | MB91F523KHDPMC | | OFF | ON | | | | | | MB91F522KSDPMC | | ON | ON | | | | | | MB91F522KHDPMC | | OFF | ON | | | | | ### ■ Scope of Impact For the affected parts, when the Power-On Reset and Internal Low Voltage Detection are not generated, the MCU may set invalid package and sub clock option information. Therefore, the MCU may operate with an invalid pin configuration. #### ■ Workaround For the affected parts, it is necessary to satisfy at least one of the Power-On Reset requirements for any Power-On event as given below: - (1) The VCC voltage is less than 200 mV for 50 ms or longer (t_{OFF}) - (2) VCC Power ramp rate is less than 4 mV/µs (dV/dt) until a voltage level for a safe Power-On detection is reached - (3) C-pin voltage is below 60 mV when VCC is turned on again If the customer system does not satisfy the condition above-mentioned, Cypress will releases new version D, so Cypress recommends the version D for MB91F52x. The new version prevents the limitation when an external reset signal is asserted at pin RSTX anytime the supply voltage (VCC) is turned on. ### ■ Fix Status Will be fixed in production silicon version D, E ## 2. Limitation for Watch mode (power off) ### ■ Problem Definition If the below all trigger conditions (1) to (3) are satisfied, the below registers will be initialized after MCU recovers from watch mode (power off). # **■ Trigger Conditions** - (1) Using the watch mode (power off) - (2) Interrupt levels that are used as sources for recovering from the watch mode (power off) are '16' to '30', or using NMIX pin as source for recovering from the watch mode (power off) - (3) The sources for recovering from the watch mode (power off) are generated between PCLK 1 cycle and PMUCLK 3 cycles (*), after CPU state changes to the watch mode (power off) (*): In case of PCLK = 0.5 MHz and PMUCLK = 32 kHz, it is approx. 2 μs to 100 μs # ■ Scope of Impact If the all trigger conditions (1) to (3) are satisfied, the below registers will be initialized after MCU recovers from watch mode (power off). WTCRH, WTCRM, WTCRL CSELR.SCEN **CMONR.SCRDY** CCRTSELR.CST CCRTSELR.CSC | Page | Section | | | | Chang | ge Res | ults | | | |------|------------------|-----------------------|-------|------|-------|--------|----------|-----------------------------------|-------------------| | | | (Continued) (Correct) | | | | | | | | | | | | | Pin | no. | | | Pin | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | | P015 | | | | | - | - | - | - | 2 | 2 | D29 | | | | | | | | | | | TRG0_0 | | | | | | | | | | | P016 | | | | | - | - | - | - | 3 | 3 | D30 | | | | | | | | | | | TRG1_0 | | | | | - | - | - | - | - | 4 | P170 | | | | | | | | | | | PPG36_1
P017 | | | | | _ | - | | _ | 1 | 5 | D31 | | | | | | | - | _ | 4 | | TRG2 0 | | | | | | | | | | P171 | | | | | | - | - | - | - | - | 6 | PPG37 1 | | | | | | | | | | 7 | P020 | | | | | 2*1 | 2*1 | 2*1 | 2*1 | 5 | | ASX *2, *3, *4, *5 | | | | | | | | | | | SIN3_1 | | | | | | | | | | ' | TRG3_0 | | | | ■PIN Description | | | | | | | TIN0_2 | | | 19 | | | | | | | | RTO5_1 | | | | | | | | | | | P021 | | | | | | | | 3 *1 | 6 | 8 | CS0X ^{*5} | | | | | - | - | - | 3 | O | ٥ | SOT3_1
TRG6_1 | | | | | | | | | | | TRG4_0 | | | | | | | | | | | P022 | | | | | | _ | _ | 4*1 | | | CS1X ^{*5} | | | | | - | | | | 7 | 9 | SCK3_1 | | | | | | | | | | | TRG7_1 | | | | | | | | | | | TRG5_0 | | | | | | | | | | | P023 | | | | | | | | | *1 | | | RDX ^{*5} | | | | - | - | - | 5*1 | 8 | 10 | SCS3_1 | | | | | | | | | | | PPG32_0 | | | | | | | | | | | TIN0_0 | | | | | | | | | | | P024
WR0X ^{*2,*3,*4,} | | | | | | . I*1 | | | 9 | 11 | *5 | | | | | 3 *1 | | 3 *1 | 6*1 | | | SIN4_1 | | | | | | 3 *1 | | | | | PPG24_0 | | | | | | | | | | | TIN1_0 | | | | | | | | | | | RTO4_1 | | | | | | | | | | | INT15_0 | | | Page | Section | Change Results | | | | | | | |--------|------------------|--------------------------|---|-------|------------------|-------|----------------|------------------------| | | | (Continued)
(Correct) | | | | | | | | | | Pin no. | | | | | | Pin | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | P175 | | | | - | - | - | - | - | 28 | TRG9_1 | | | | | | | | | | P040 | | | | | | | | | | A10 *2, *3, *4, *5 | | | | 11 *1 | 13 ^{*1} | 17 *1 | 20 *1 | 23 | 29 | PPG23_1 | | | | | | | | | | TOT7_0 | | | | | | | | | | AIN1_0 | | | | | | | | | | SIN0_1
P041 | | | | | | | | | | A11 *2, *3, *4, *5 | | | | *1 | *1 | *1 | *1 | 21 24 | | SIN9 0 | | | | 12 *1 | 14 *1 | 18 *1 | 21 ' | | 30 | ICU9 1 | | | | | | | | | | BIN1_0 | | | | | | | | | | INT12_0 | | | | | | | | | | P042 | | | | | 13 ^{*1} 15 ^{*1} 19 ^{*1} 22 | | | | | A12 *2, *3, *4, *5 | | | | 12 *1 | | 22 *1 | 20 *1 25 | 24 | SOT9_0
AN47 | | | | ■PIN Description | 13 | | 19 | 22 | 25 | 31 | ICU8_1 | | 22, 23 | | | | | | | | TRG0_1 | | | | | | | | | | ZIN1_0 | | | | | - | 20 *1 | | 26 | | P043 | | | | | | | 23 *1 | | 32 | A13 ^{*4, *5} | | | | | | | | | | ICU7_1 | | | | | | | | | | TRG1_1 | | | | | 16 ^{*1} | 21 *1 | 1 24 *1 | 27 | | P044
A14 *3, *4, *5 | | | | _ | | | | | 33 | SCS9_0 | | | | | | | | | | ICU6_1 | | | | | | | | | | TRG2_1 | | | | | | | | | | P045 | | | | | | | | | | A15 *2, *3, *4, *5 | | | | 4 4 *1 | ₄ – *1 | oo*1 | 0=*1 | | | SCK9_0 | | | | 14 *1 | 17 ^{*1} | 22 *1 | 25 ^{*1} | 28 | 34 | AN46 | | | | | | | | | | ICU5_1
TRG3_1 | | | | | | | | | | TOT1 2 | | | | | | | | | | P046 | | | | | | | 26 *1 | 20 | 35 | A16 *5 | | | | - | - | - | 26 *1 | 29 | 35 | ICU4_1 | | | | | | | | | | TRG4_1 | | | | - | - | - | - | - | 36 | P176 | | | | | | | | | | TRG10_0 | | Page | Section | Change Results | | | | | | | | | |------|------------------|------------------|--|----------|----------|----------|----------|-----------------------------------|--|--| | | | A List o | of "Pin [| Descrip | tion" mo | odified. | | | | | | | | (Error) | (Error) | | | | | | | | | | | | Pin no. | | | | | | | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | | | P057
RDY | | | | | | | | | | | | SCK10_1 | | | | | | | 0.4 | 00 | 0.5 | | -4 | AN42 | | | | | | 19 | 24 | 29 | 35 | 41 | 51 | ICU8_0
TRG0_2 | | | | | | | | | | | | PPG1_1 | | | | | | | | | | | | ICU1_1 | | | | 25 | ■PIN Description | | | | | | | TIN6_1 | | | | | | (Correc | ct) | | | | | | | | | | | | 1 | Pin | | 1 | 1 | Pin | | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | | | P057
RDY *2, *3, *4, *5 | | | | | | | | | | | | SCK10_1 | | | | | | | 19 ^{*1} 24 ^{*1} 29 ^{*1} 35 [*] | | | | AN42 | | | | | | | 19 ^{*1} | 24 *1 | 29 *1 | 35 *1 | 41 | 51 | ICU8_0 | | | | | | | | | | | | TRG0_2
PPG1_1 | | | | | | | | | | | | ICU1_1 | | | | | | | | | | | | TIN6_1 | | | | | | | (II D : | | | | | | | | | | | A List o | T "PIN L | Descrip | tion" mo | oaitiea. | | | | | | | | (Error) | | | | | | | | | | | | | Pin no. | | | | | | | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | <u> </u> | | | | P073 | | | | | | | | | | | | SOT4_0/ | | | | | | - | 35 | 43 | 49 | 57 | 71 | SDA4 | | | | | | | | | | | | AN33
ICU3_2 | | | | 27 | ■PIN Description | | | | | | | 1003_2 | | | | | | (Correct) | | | | | | | | | | | | | | Pin | | | l | Pin | | | | | | 64 | 80 | 100 | 120 | 144 | 176 | Name | | | | | | | | | | | :
 | P073 | | | | | | | | | | | | SOT4_0/
SDA4 ^{*3, *4} | | | | | | - | 35 ^{*3} | 43 *4 | 49 | 57 | 71 | | | | | | | | | | | | | AN33
ICU3_2 | | | | | | | <u> </u> | <u> </u> | <u> </u> | | <u> </u> | 1003_2 | | | | Page | Section | Change Results | | | | | | |------|-------------------------|--|--|--|--|--|--| | 131 | ■Interrupt Vector Table | "42" is deleted as shown below from the interrupt factor in Interrupt vector 120pin. (Error) PPG2/3/12/13/22 /23/32/33/42/43 16-bit free-run timer 2 (0 detection) / (compare clear) (Correct) PPG2/3/12/13/22 /23/32/33/43 16-bit free-run timer 2 (0 detection) / (compare clear) 41 29 ICR 358 H 000F FF58 H 25 H 000F FF58 H 25 | | | | | | | 133 | ■Interrupt Vector Table | The interrupt factor in Interrupt vector 120pin modified as follows: (Error) Base timer 1 IRQ0 Base timer 1 IRQ1 (Correct) Base timer 1 IRQ0 IRQ1 | | | | | | | 133 | ■Interrupt Vector Table | The following sentence deleted from Interrupt vector 120pins. (Error) *5: It does not support the DMA transfer by the interrupt because of the RAM ECC bit error. | | | | | |