E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f360-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.12. Comparator0 Block Diagram

5.1. Analog Multiplexer

AMUX0 selects the positive and negative inputs to the ADC. Any of the following may be selected as the positive input: the AMUX0 Port I/O inputs, the on-chip temperature sensor, or the positive power supply (V_{DD}). Any of the following may be selected as the negative input: the AMUX0 Port I/O inputs, VREF, or GND. When GND is selected as the negative input, ADC0 operates in Single-ended Mode; all other times, ADC0 operates in Differential Mode. The ADC0 input channels are selected in the AMX0P and AMX0N registers as described in SFR Definition 5.1 and SFR Definition 5.2.

The conversion code format differs between Single-ended and Differential modes. The registers ADC0H and ADC0L contain the high and low bytes of the output conversion code from the ADC at the completion of each conversion. Data can be right-justified or left-justified, depending on the setting of the AD0LJST bit (ADC0CN.0). When in Single-ended Mode, conversion codes are represented as 10-bit unsigned integers. Inputs are measured from '0' to VREF * 1023/1024. Example codes are shown below for both right-justified and left-justified data. Unused bits in the ADC0H and ADC0L registers are set to '0'.

Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 1023/1024	0x03FF	0xFFC0
VREF x 512/1024	0x0200	0x8000
VREF x 256/1024	0x0100	0x4000
0	0x0000	0x0000

When in Differential Mode, conversion codes are represented as 10-bit signed 2's complement numbers. Inputs are measured from -VREF to VREF * 511/512. Example codes are shown below for both right-justified and left-justified data. For right-justified data, the unused MSBs of ADC0H are a sign-extension of the data word. For left-justified data, the unused LSBs in the ADC0L register are set to '0'.

Input Voltage	Right-Justified ADC0H:ADC0L (AD0LJST = 0)	Left-Justified ADC0H:ADC0L (AD0LJST = 1)
VREF x 511/512	0x01FF	0x7FC0
VREF x 256/512	0x0100	0x4000
0	0x0000	0x0000
–VREF x 256/512	0xFF00	0xC000
–VREF	0xFE00	0x8000

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for analog input, set to '0' the corresponding bit in register PnMDIN (for n = 0,1,2,3). To force the Crossbar to skip a Port pin, set to '1' the corresponding bit in register PnSKIP (for n = 0,1,2,3). See Section "17. Port Input/ Output" on page 182 for more Port I/O configuration details.

R	R	R	R/W	R/W	R/W	R/W	R/W Reset Va	
_	-	_	AMX0N4	AMX0N3	AMX0N2	AMX0N1	AMX0N0 000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
ts 7–5: l	JNUSED. R	ead = 000	b; Write = do	on't care.				
ts 4–0: <i>F</i>	AIVIXUN4-U:	AMUXU N on GND is	egative inpu	the Negati		CO operat	os in Singlo-ondod	
r	node For al	I other Ne	native Innut	selections	ADC0 oper:	ates in Diffe	es in olingie-ended	
			gativo input	00100110110,				
Γ		AMX0N4	-0		ADC0 Neg	ative Input	t	
_		00000 ⁽¹)		P1.	.0 ⁽¹⁾		
-		00001 ⁽¹)		P1.	.1 ⁽¹⁾		
-		00010 ⁽¹)		P1.	.2 ⁽¹⁾		
F		00011 ⁽¹)		P1.	.3 ⁽¹⁾		
F		00100			P'	1.4		
F		00101			P	1.5		
		00110			P1.6 P1.7			
		00111						
_		01000			P	2.0		
_		01001			P2.1			
-		01010			P2.2 P2.3 P2.4			
-		01100						
-		01101			P	2.5		
-		01110			P2.6			
-		01111			P2.7			
_		10000	10000 P3.0 10001 ⁽²⁾ P3.1 ⁽²⁾ 10010 ⁽²⁾ P3.2 ⁽²⁾					
		10001 ⁽²						
		10010 ⁽²						
F		10011 ⁽²)		P3.	.3 ⁽²⁾		
F		10100 ⁽²)		P3.	.4 ⁽²⁾		
F		10101-11	101		RESE	RVED		
F		11110			VF	REF		
		11111			G	ND		
	Notes: 1. Only a	applies to C	8051F361/2/6	6/7/8/9 (32-pi 8-pin) device	n and 28-pin)); selection		
	2. Only a	applies to C	8051F360/1/6 9 (28-pin) dev	6/8 (48-pin ar vices.	nd 32-pin); se	election RES	ERVED	

5.4. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to user-programmed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 5.7. ADC0GTH: ADC0 Greater-Than Data High Byte

SFR Definition 5.8. ADC0GTL: ADC0 Greater-Than Data Low Byte

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

SFR Definition 6.3. IDA0L: IDA0 Data Word LSB

Table 6.1. IDAC Electrical Characteristics

-40 to +85 °C, V_{DD} = 3.0 V Full-scale output current set to 2 mA unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units					
Static Performance										
Resolution			10		bits					
Integral Nonlinearity			±0.5	±2	LSB					
Differential Nonlinearity	Guaranteed Monotonic		±0.5	±1	LSB					
Output Compliance Range		_	_	V _{DD} – 1.2	V					
Offset Error		_	0	—	LSB					
Full Scale Error	2 mA Full Scale Output Current	-15	0	15	LSB					
Full Scale Error Tempco		_	30	—	ppm/°C					
V _{DD} Power Supply Rejection Ratio			6.5	—	µA/V					
	Dynamic Performance									
Output Settling Time to 1/2 LSB	IDA0H:L = 0x3FF to 0x000	_	5	—	μs					
Startup Time		—	5	—	μs					
Gain Variation	1 mA Full Scale Output Current 0.5 mA Full Scale Output Current	_	±1 ±1	_	% %					
	Power Consumption									
Power Supply Current (V _{DD} supplied to IDAC)	2 mA Full Scale Output Current 1 mA Full Scale Output Current 0.5 mA Full Scale Output Current		2140 1140 640		μΑ μΑ μΑ					

Figure 9.3. SFR Page Stack

Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFR0CN). This function defaults to 'enabled' upon reset. In this way, the autoswitching function will be enabled unless disabled in software.

A summary of the SFR locations (address and SFR page) is provided in Table 9.2. in the form of an SFR memory map. Each memory location in the map has an SFR page row, denoting the page in which that SFR resides. Note that certain SFR's are accessible from ALL SFR pages, and are denoted by the background shading in the table. For example, the Port I/O registers P0, P1, P2, and P3 all have a shaded background, indicating these SFR's are accessible from all SFR pages regardless of the SFRPAGE register value.

On the execution of the RETI instruction in the ADC0 Window Comparator ISR, the value in SFRPAGE register is overwritten with the contents of SFRNEXT. The CIP-51 may now access the OSCICN SFR bits as it did prior to the interrupts occurring. See Figure 9.8 below.

Figure 9.8. SFR Page Stack Upon Return From ADC2 Window Interrupt

Note that in the above example, all three bytes in the SFR Page Stack are accessible via the SFRPAGE, SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct access to the SFR Page stack can be useful to enable real-time operating systems to control and manage context switching between multiple tasks.

Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFR0CN). See SFR Definition 9.1.

10. Interrupt Handler

The C8051F36x family includes an extended interrupt system supporting a total of 16 interrupt sources with two priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic '1'.

If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic '1' regard-less of the interrupt's enable/disable state.)

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic '1' before the individual interrupt enables are recognized. Setting the EA bit to logic '0' disables all interrupt sources regardless of the individual interrupt-enable settings. Note that interrupts which occur when the EA bit is set to logic '0' will be held in a pending state, and will not be serviced until the EA bit is set back to logic '1'.

Note: Any instruction that clears a bit to disable an interrupt should be immediately followed by an instruction that has two or more opcode bytes. Using EA (global interrupt enable) as an example:

```
// in 'C':
EA = 0; // clear EA bit.
EA = 0; // this is a dummy instruction with two-byte opcode.
; in assembly:
CLR EA ; clear EA bit.
CLR EA ; this is a dummy instruction with two-byte opcode.
```

For example, if an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears a bit to disable an interrupt source), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. However, a read of the enable bit will return a '0' inside the interrupt service routine. When the bit-clearing opcode is followed by a multi-cycle instruction, the interrupt will not be taken.

Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

10.1. MCU Interrupt Sources and Vectors

The C8051F36x MCUs support 16 interrupt sources. Software can simulate an interrupt by setting any interrupt-pending flag to logic '1'. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources, associated vector addresses, priority order, and control bits are summarized in Table 10.1 on page 108. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 11.13. MACORNDL: MAC0 Rounding Register Low Byte

SFR Page: SFR Addres	all pages s: 0xFF							
R/W	R	R	R	R	R	R	R	Reset Value
VDMEN	VDDSTAT	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Variable
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7: Bit 6: Bits 5–0:	VDMEN: V_{DE} This bit turns until it is also Monitor must V_{DD} Monitor 0: V_{DD} Monit 1: V_{DD} Monit 1: V_{DD} Monit V_{DD} STAT: V This bit indica 0: V_{DD} is at c 1: V_{DD} is abc RESERVED.	Monitor En the V_{DD} Mo selected as to be allowed as a reset or Disabled or Enabled. DD Status. ates the cur or below the ove the V_{DD} Read = Va	nable. onitor circuit s a reset sou l to stabilize source be rent power V _{DD} Monitor Monitor thr riable. Write	on/off. The urce in regis before it is fore it has supply state or threshold eshold. e = don't ca	e V _{DD} Monite ster RSTSR selected as stabilized i us (V _{DD} Mo I. re.	or cannot ge C (SFR Def s a reset so may genera nitor output	enerate syst inition 12.2) urce. Selec t ate a syster).	em resets . The V _{DD} .ing the n reset.

SFR Definition 12.1. VDM0CN: V_{DD} Monitor Control

12.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Table 12.1 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

12.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than 100 μ s, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read '1', signifying the MCD as the reset source; otherwise, this bit reads '0'. Writing a '1' to the MCDRSF bit enables the Missing Clock Detector; writing a '0' disables it. The state of the RST pin is unaffected by this reset.

12.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a '1' to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0-), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read '1' signifying Comparator0 as the reset source; otherwise, this bit reads '0'. The state of the RST pin is unaffected by this reset.

12.6. PCA Watchdog Timer Reset

The programmable Watchdog Timer (WDT) function of the Programmable Counter Array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
_	-	-	-	-	-	PSEE	PSWE	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–2:	UNUSED. R	ead = 0000	00b. Write :	= don't care).			
Sit 1:	PSEE: Progr	ram Store E	rase Enable	e.				
	Setting this b	oit allows ar	entire pag	e of the Fla	sh program	memory to	be erased	h provided
		it in alan an	t Aftor cotti	na thia hit				
						asn memor	v usina me	> I\/I()\/ X
	instruction w	ill is also se ill oraco the	. Aller Selli	ng that contr	a write to Fi	asn memor	y using the	
	instruction w	ill erase the	e entire page	e that conta	a write to Fi	tion addres	sed by the	e MOVX e MOVX
	instruction w	ill erase the The value o	entire page f the data by	that contains bit, the that contains of the that contains of the	tins the loca	ash memor ition addres itter. Note:	sed by the The Flash	e MOVX e MOVX i page cor
	instruction w instruction. T taining the l	ill erase the The value of Read Lock	entire page f the data by Byte and V	e that conta /te written o Vrite/Erase	tins the loca does not ma Lock Byte	ash memor ition addres itter. Note: cannot be	sed by the The Flash erased b	e MOVX e MOVX a page cor ey softwar
	instruction w instruction. T taining the I 0: Flash prog	ill erase the The value of Read Lock gram memo	e entire page f the data by Byte and V ory erasure	e that conta yte written o Vrite/Erase disabled.	a write to Fi iins the loca does not ma e Lock Byte	ash memor ition addres itter. Note: cannot be	sed by the The Flash e erased b	e MOVX MOVX a page cor by softwar
	instruction w instruction. T taining the I 0: Flash prog 1: Flash prog	ill erase the The value of Read Lock gram memo gram memo	e entire page f the data by Byte and V ory erasure o ory erasure o	that conta that conta yte written o Vrite/Erase disabled. enabled.	a write to Fi nins the loca does not ma b Lock Byte	ash memor ition addres itter. Note: e cannot be	y using the sed by the The Flash e erased b	MOVX MOVX n page cor ny softwar
it 0:	instruction w instruction. T taining the I 0: Flash prog 1: Flash prog PSWE: Prog	ill erase the The value of Read Lock gram memo gram memo gram Store V	e entire page f the data by Byte and V ory erasure Write Enable	e that conta yte written o Vrite/Erase disabled. enabled. e.	tins the loca does not ma	ash memor ition addres itter. Note: e cannot be	y using the sed by the The Flash e erased b	MOVX MOVX n page cor ny softwar
it 0:	instruction w instruction. T taining the I 0: Flash prog 1: Flash prog PSWE: Prog Setting this b	ill erase the The value of Read Lock gram memo gram memo gram Store Notit allows w	e entire page f the data by Byte and V bry erasure Vry erasure Write Enable	e that conta yte written o Vrite/Erase disabled. enabled. e. of data to t	the Flash pr	ash memor ition addres itter. Note: e cannot be	y using the sed by the The Flash erased b	MOVX MOVX page cor y softwar
it 0:	instruction w instruction. T taining the I 0: Flash prog 1: Flash prog PSWE: Prog Setting this b write instruct	ill erase the The value of Read Lock gram memo gram memo gram Store N bit allows w	e entire page f the data by Byte and V bry erasure Vrite Enable riting a byte	e that conta yte written o Vrite/Erase disabled. enabled. e. of data to t	the Flash pr	ash memor ition addres itter. Note: e cannot be	sed by the The Flash erased b	MOVX MOVX a page con by softwar
iit O:	instruction w instruction. T taining the I 0: Flash prog 1: Flash prog PSWE: Prog Setting this k write instruct	ill erase the The value of Read Lock gram memo gram memo gram Store N bit allows w tion. The loo	e entire page f the data by Byte and V ory erasure of Write Enable riting a byte cation must	e that conta yte written o Vrite/Erase disabled. enabled. e. of data to t be erased	the Flash pr	ogram men ng data.	nory using the	the MOVX
Bit O:	instruction w instruction. T taining the I 0: Flash prog 1: Flash prog PSWE: Prog Setting this k write instruct 0: Write to F	ill erase the The value of Read Lock gram memo gram memo gram Store N bit allows w tion. The loc	e entire page f the data by Byte and V ory erasure Write Enable riting a byte cation must m memory	e that conta yte written of Vrite/Erase disabled. enabled. e. of data to t be erased disabled. W	the Flash pr prior to write	ogram men ng data.	nory using the sarget Exte	MOVX MOVX page coupy softwar the MOV

SFR Definition 13.1. PSCTL: Program Store Read/Write Control

SFR Definition 13.2. FLKEY: Flash Lock and Key

SFR Definition 17.24. P3SKIP: Port3 Skip

SFR Definition 18.2. SMB0CN: SMBus

SFR Page: SFR Addres	all pages s: 0xC0	(bit addı	ressable)						
R	R	R/W	R/W	R	R	R/W		R/W	Reset Value
MASTE	R TXMODE	STA	STO	ACKRQ	ARBLOST	ACK		SI	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1		Bit0	
Bit 7:	MASTER: SN	//Bus Mast	er/Slave Ind	dicator.					
	I his read-oni	ly bit indica	ates when the	ne SIVIBUS I	s operating a	s a maste	er.		
	1: SMBus op	erating in a	Slave Wode						
Bit 6 [.]		MBus Tran	smit Mode	e. Indicator					
Bit 0.	This read-onl	lv bit indica	ates when the	ne SMBus i	s operating a	s a transi	mitte	r.	
	0: SMBus in	Receiver N	/lode.		e eperanig a			•	
	1: SMBus in	Transmitte	r Mode.						
Bit 5:	STA: SMBus	Start Flag.							
	Write:	_							
	0: No Start ge	enerated.							
	1: When oper	rating as a	master, a S	START cond	lition is transr	nitted if th	ne bu	s is fre	ee (If the bus
	is not free,	the STAR	T is transmi	tted after a	STOP is rece	eived or a	time	out is	detected). If
	STA is set	by software	e as an acti	ve Master,	a repeated S	TART WII	be g	genera	ited after the
	Pood:	cycle.							
	0. No Start or	reneated	Start detect	bed					
	1: Start or rec	peated Sta	rt detected.	.00.					
Bit 4:	STO: SMBus	Stop Flag							
	Write:	1 0							
	0: No STOP	condition is	s transmitte	d.					
	1: Setting ST	O to logic	'1' causes a	a STOP cor	ndition to be to	ransmitte	d afte	er the	next ACK
	cycle. Whe	n the STO	P condition	is generate	ed, hardware	clears ST	O to	logic	'0'. If both
	STA and S	TO are set	, a STOP c	ondition is t	ransmitted fo	ollowed by	/ a S	TART	condition.
	Read:	andition do	tootod						
	1: Stop condi	tion detect	ad (if in Sla	ve Mode) o	n pending (if	in Master	Mod	<u>ام</u> ا	
Bit 3	ACKRO: SMI	Rus Ackno	wledge Reg	nuest	n pending (ii	in master	woo	<i>ic)</i> .	
Bit 0.	This read-onl	v bit is set	to logic '1'	when the S	MBus has rec	eived a b	vte a	ind ne	eds the ACK
	bit to be writt	en with the	e correct AC	K response	e value.		<i>,</i>		
Bit 2:	ARBLOST: S	MBus Arbi	tration Lost	Indicator.					
	This read-onl	ly bit is set	to logic '1'	when the S	MBus loses a	arbitration	ı whi	e ope	rating as a
	transmitter. A	lost arbitr	ation while	a slave ind	cates a bus e	error conc	lition	•	
Bit 1:	ACK: SMBus	Acknowle	dge Flag.						
	This bit define	es the out-	going ACK	level and r	ecords incom	Ing ACK	level	s. It sh	ould be writ-
	ten each time	e a byte is	received (w	nen ACKR	Q=1), or read	i aπer eac	n by	te is tr	ansmitted.
		r Mode)	nas been n			woue) C		ii be ti	ansmitted (ii
	1. An "acknow	wledge" ha	as been rece	eived (if in ⁻	Fransmitter M	lode) OR	will ł	oe tran	smitted (if in
	Receiver M	lode).						, s a an	
Bit 0:	SI: SMBus In	terrupt Fla	g.						
	This bit is set	by hardwa	are under th	ne conditior	ns listed in Tal	ble 18.3.	SI m	ust be	cleared by
	software. Wh	ile SI is se	t, SCL is he	eld low and	the SMBus is	s stalled.			

18.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic '1' (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, ACKRQ is set to '1' and an interrupt is generated. Software must write the ACK bit (SMB0CN.1) to define the outgoing acknowledge value (Note: writing a '1' to the ACK bit generates an ACK; writing a '0' generates a NACK). Software should write a '0' to the ACK bit after the last byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0DAT is written while an active Master Receiver. Figure 18.6 shows a typical Master Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.

Figure 18.6. Typical Master Receiver Sequence

		Frequency: 24.5 MHz										
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)					
	230400	-0.32%	106	SYSCLK	XX ²	1	0xCB					
	115200	-0.32%	212	SYSCLK	XX	1	0x96					
	57600	0.15%	426	SYSCLK	XX	1	0x2B					
	28800	-0.32%	848	SYSCLK/4	01	0	0x96					
fron sc.	14400	0.15%	1704	SYSCLK/12	00	0	0xB9					
<u> </u>	9600	-0.32%	2544	SYSCLK/12	00	0	0x96					
SC	2400	-0.32%	10176	SYSCLK/48	10	0	0x96					
SY Int(1200	0.15%	20448	SYSCLK/48	10	0	0x2B					
Notes	:											

Table 19.1. Timer Settings for Standard Baud RatesUsing The Internal 24.5 MHz Oscillator

1. SCA1–SCA0 and T1M bit definitions can be found in Section 21.1.

2. X = Don't care.

ļ			Freq	uency: 22.118	4 MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
×	230400	0.00%	96	SYSCLK	XX ²	1	0xD0
Cloc	115200	0.00%	192	SYSCLK	XX	1	0xA0
ن ور	57600	0.00%	384	SYSCLK	XX	1	0x40
ы О С	28800	0.00%	768	SYSCLK/12	00	0	0xE0
and rnal	14400	0.00%	1536	SYSCLK/12	00	0	0xC0
LK a	9600	0.00%	2304	SYSCLK/12	00	0	0xA0
шCI	2400	0.00%	9216	SYSCLK/48	10	0	0xA0
SY froi	1200	0.00%	18432	SYSCLK/48	10	0	0x40
Osc.	230400	0.00%	96	EXTCLK/8	11	0	0xFA
ıl Osc ernal	115200	0.00%	192	EXTCLK/8	11	0	0xF4
n Ext	57600	0.00%	384	EXTCLK/8	11	0	0xE8
om Ir k fror	28800	0.00%	768	EXTCLK/8	11	0	0xD0
CLK fr Cloc	14400	0.00%	1536	EXTCLK/8	11	0	0xA0
SYS(Time	9600	0.00%	2304	EXTCLK/8	11	0	0x70
Notes:							

Table 19.3. Timer Settings for Standard Baud RatesUsing an External 22.1184 MHz Oscillator

1. SCA1–SCA0 and T1M bit definitions can be found in Section 21.1.

2. X = Don't care.

20.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

SFR Page: all pages SFR Address: 0xA1									
R	R/W	R/W	R/W	R	R	R	R	Reset Value	
SPIBS	Y MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
		,							
Bit 7:	SPIBSY: SPI Busy (read only). This bit is set to logic (1' when a SPI transfer is in progress (Master or alove Master)								
Bit 6.	I NIS DIT IS SE	MSTEN: Master Mode Enable							
DIL U.	0: Disable master mode. Operate in slave mode								
	1: Enable master mode. Operate as a master.								
Bit 5:	Bit 5: CKPHA: SPI0 Clock Phase. This bit controls the SPI0 clock phase.								
	0: Data centered on first edge of SCK period. *								
	1: Data centered on second edge of SCK period.*								
Bit 4:	CKPOL: SPI0 Clock Polarity.								
This bit controls the SPI0 clock polarity.									
	0: SCK line l	ow in idle s	tate.						
	1: SCK line high in idle state.								
Bit 3:	SLVSEL: SI	SLVSEL. Slave Selected Flag (read only). This bit is set to logic '1' whenever the NSS pin is low indicating SDI0 is the selected clove. It							
	is cleared to	logic '0' wh	en NSS is	high (slave	not selecter	d) This hit	does not inc	licate the	
	instantaneou	nstantaneous value at the NSS pin, but rather a de-glitched version of the pin input.							
Bit 2:	Bit 2: NSSIN: NSS Instantaneous Pin Input (read only).							F	
	This bit mimics the instantaneous value that is present on the NSS port pin at the time that								
	the register is read. This input is not de-glitched.								
Bit 1:	1: SRMT: Shift Register Empty (Valid in Slave Mode, read only). This bit will be set to logic '1' when all data has been transferred in/out of the shift reg								
								tt register,	
	and there is no new information available to read from the transmit buffer or write to the								
	the transmit buffer or by a transition on SCK							gister nom	
	NOTE: SRMT = 1 when in Master Mode.								
Bit 0:	RXBMT: Red	RXBMT: Receive Buffer Empty (Valid in Slave Mode, read only).							
	This bit will be set to logic '1' when the receive buffer has been read and contains no new								
	information. If there is new information available in the receive buffer that has not been read,								
	this bit will return to logic '0'.								
NUIE: RABINI = 1 When in Master Mode.									
*Note: In slave mode, data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is sampled one SYSCLK before the end of each data bit, to provide maximum settling time for the slave device. See Table 20.1 for timing parameters.									

SFR Definition 20.1. SPI0CFG: SPI0 Configuration

23.3. C2D Port Pin Requirements

Problem

The C2D debugging port pin (shared with P4.6 for C8051F360/3 and P3.0 for C8051F361/2/4/5/6/7/8/9) behaves differently on "REV A" devices than specified in the data sheet.

On "REV A" devices, a C2D port pin that is pulled low by the associated port pin driver will disrupt debugging capability. In order to communicate with the device through the C2 interface, the value in the port latch associated C2D port pin must be '1'.

Workaround

To workaround this problem, add a strong pull-up resistor to the C2D port pin to ensure the pin will be high unless explicitly driven low. Furthermore, the port pin should be left in open-drain mode with a '1' in the appropriate port latch (PnMDOUT bit = '0', Pn bit = '1') when not in use. This will allow the debugging software to transfer data via the C2D pin as often as possible.

Rev. 1.1

This behavior has been corrected on "REV B" of this device.

