

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

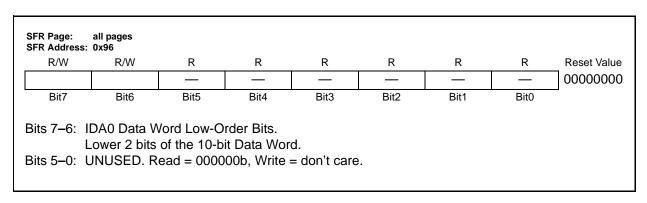
Details

Product Status	Discontinued at Digi-Key
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f362-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

SFR	Definition	11.6.	MAC0BL: MAC0 B Low Byte	124
			MAC0ACC3: MAC0 Accumulator Byte 3	
			MAC0ACC2: MAC0 Accumulator Byte 2	
SFR	Definition	11.9.	MAC0ACC1: MAC0 Accumulator Byte 1	125
SFR	Definition	11.10). MAC0ACC0: MAC0 Accumulator Byte 0	126
SFR	Definition	11.11	. MAC0OVR: MAC0 Accumulator Overflow	126
SFR	Definition	11.12	2. MAC0RNDH: MAC0 Rounding Register High Byte	126
SFR	Definition	11.13	3. MAC0RNDL: MAC0 Rounding Register Low Byte	127
SFR	Definition	12.1.	VDM0CN: VDD Monitor Control	131
			RSTSRC: Reset Source	
			PSCTL: Program Store Read/Write Control	
			FLKEY: Flash Lock and Key	
			FLSCL: Flash Memory Control	
			CCH0CN: Cache Control	
			CCH0TN: Cache Tuning	
			CCH0LC: Cache Lock Control	
			CCH0MA: Cache Miss Accumulator	
			FLSTAT: Flash Status	
			EMI0CN: External Memory Interface Control	
			EMI0CF: External Memory Configuration	
			EMI0TC: External Memory Timing Control	
			OSCICL: Internal Oscillator Calibration.	
			OSCICN: Internal Oscillator Control	
			OSCLCN: Internal L-F Oscillator Control	
SFR	Definition	16.4.	CLKSEL: System Clock Selection	173
SFR	Definition	16.5.	OSCXCN: External Oscillator Control	174
			PLL0CN: PLL Control	
			PLL0DIV: PLL Pre-divider	
			PLLOMUL: PLL Clock Scaler	
			PLLOFLT: PLL Filter	
			XBR0: Port I/O Crossbar Register 0	
			XBR1: Port I/O Crossbar Register 1	
			P0: Port0	
SFR	Definition	17.4.	P0MDIN: Port0 Input Mode	190
			P0MDOUT: Port0 Output Mode	
			P0SKIP: Port0 Skip	
			P0MAT: Port0 Match	
			P0MASK: Port0 Mask	
			P1: Port1	
). P1MDIN: Port1 Input Mode	
			P1MDOUT: Port1 Output Mode	
			2. P1SKIP: Port1 Skip	
			3. P1MAT: Port1 Match	
SFR	Definition	17.14	I. P1MASK: Port1 Mask	194
SFR	Definition	17.15	5. P2: Port2	194



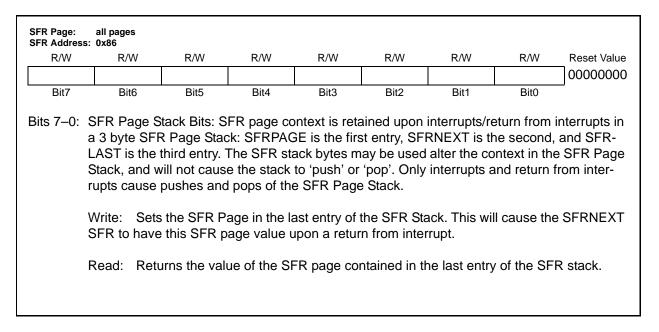
SFR Definition 5.6. ADC0CN: ADC0 Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
AD0EN	AD0TM	AD0INT	AD0BUSY	ADOWINT	AD0CM2	AD0CM1	AD0CM0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	AD0EN: AD0	C0 Enable	Bit.					
	0: ADC0 Disa	abled. ADC	C0 is in low-p	ower shutde	own.			
	1: ADC0 Ena					ersions.		
Bit 6:	AD0TM: AD0	C0 Track N	lode Bit.					
	0: Normal Tra	ack Mode:	When ADC0	is enabled,	tracking is	continuous	unless a coi	nversion is
	in progress.							
	1: Low-powe) bits (see b	elow).	
Bit 5:	AD0INT: AD0		•		-			
	0: ADC0 has				since the las	st time AD0I	NT was clea	ared.
	1: ADC0 has	•		ersion.				
Bit 4:	ADOBUSY: A	ADC0 Busy	Bit.					
	Read:							
	0: ADC0 con				i is not curre	enuy in prog	ress. ADOIN	vi is set t
	1: ADC0 con	-	edge of ADC	DU31.				
	Write:		in progress.					
	0: No Effect.							
	1: Initiates A	DC0 Conve	ersion if AD0	CM2-0 = 00	00b			
Bit 3:	ADOWINT: A							
	0: ADC0 Wir					d since this	flag was las	t cleared.
	1: ADC0 Wir						U	
Bits 2–0:	AD0CM2-0:	ADC0 Star	rt of Convers	ion Mode S	elect.			
	When AD0TI	M = 0:						
	000: ADC0 c	onversion	initiated on e	very write c	f '1' to AD0	BUSY.		
	001: ADC0 c							
	010: ADC0 c							
	011: ADC0 c							
	100: ADC0 c					NVSTR.		
	101: ADC0 c		initiated on o	vertiow of I	imer 3.			
	11x: Reserve	-						
	When AD0TI 000: Tracking		on write of '1'		SV and last		eks followo	hy con-
	versio	-						
	001: Tracking		on overflow o	f Timer 0 ar	nd lasts 3 S	AR clocks f	ollowed by a	conversio
	010: Tracking	•					•	
	011: Tracking	•						
	100: ADC0 ti edge.							
	101: Tracking			(T) 0			مالمين مالمين	
		n initiateo o	n overtiow o	t limer i ar	nd lasts X S	AR CIOCKS T	ollowen nv r	CONVERSION

SFR Definition 6.3. IDA0L: IDA0 Data Word LSB

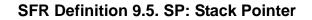
Table 6.1. IDAC Electrical Characteristics

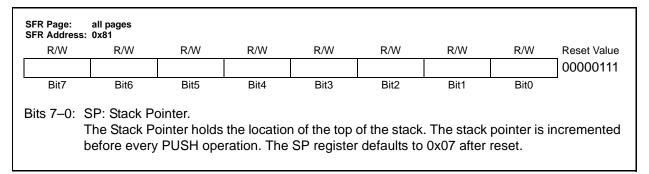
-40 to +85 °C, V_{DD} = 3.0 V Full-scale output current set to 2 mA unless otherwise specified.

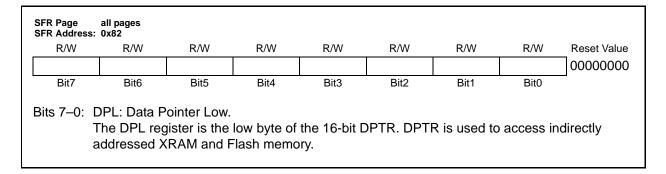

Parameter	Conditions	Min	Тур	Max	Units
	Static Performance				
Resolution			10		bits
Integral Nonlinearity		—	±0.5	±2	LSB
Differential Nonlinearity	Guaranteed Monotonic	—	±0.5	±1	LSB
Output Compliance Range		—	—	V _{DD} - 1.2	V
Offset Error		—	0	—	LSB
Full Scale Error	2 mA Full Scale Output Current	-15	0	15	LSB
Full Scale Error Tempco		—	30	—	ppm/°C
V _{DD} Power Supply Rejection Ratio		—	6.5	—	µA/V
	Dynamic Performance	•			
Output Settling Time to 1/2 LSB	IDA0H:L = 0x3FF to 0x000	—	5	_	μs
Startup Time		—	5	—	μs
Gain Variation	1 mA Full Scale Output Current 0.5 mA Full Scale Output Current	_	±1 ±1	_	% %
	Power Consumption				
Power Supply Current (V _{DD} supplied to IDAC)	2 mA Full Scale Output Current 1 mA Full Scale Output Current 0.5 mA Full Scale Output Current		2140 1140 640		μΑ μΑ μΑ

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	0000000
	a 3 byte SFI LAST is the	•		GE is the fire	st entry, SF	RNEXT is t		, and SFR-
	LAST is the Stack, and v rupts cause	third entry. vill not caus pushes and	The SFR st e the stack I pops of th	GE is the firs ack bytes m to 'push' or e SFR Page	st entry, SF ay be used 'pop'. Only e Stack.	RNEXT is the contract of the c	he second ontext in th and return	, and SFR- le SFR Page from inter-
	LAST is the Stack, and v	third entry. vill not caus pushes and s the SFR P	The SFR st e the stack d pops of th rage contair	GE is the firs ack bytes m to 'push' or e SFR Page ned in the se	st entry, SF hay be used 'pop'. Only e Stack. econd byte	RNEXT is the alter the contract interrupts a of the SFR	he second ontext in th and return Stack. Thi	, and SFR- le SFR Page from inter-

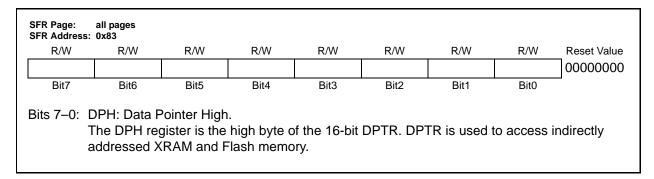
SFR Definition 9.3. SFRNEXT: SFR Next Register


SFR Definition 9.4. SFRLAST: SFR Last Register




9.4.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic '1'. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic '0', selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the data sheet associated with their corresponding system function.



SFR Definition 9.7. DPH: Data Pointer High Byte

SFR Definition 9.11. PCON: Power Control

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Reserve	d Reserved	Reserved	Reserved	Reserved	Reserved	STOP	IDLE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 0:	Writing a '1' 1: CIP-51 for IDLE: IDLE I Writing a '1' 1: CIP-51 for and all perip	rced into po Mode Selec to this bit w rced into ID	wer-down r t. ill place the LE mode. (\$	node. (Turn CIP-51 into	s off oscillat	tor). e. This bit v	vill always	read '0'.

13.2.1. Summary of Flash Security Options

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 13.1 summarizes the Flash security features of the C8051F36x devices.

Action	C2 Debug	User Firmware e	xecuting from:
	Interface	an unlocked page	a locked page
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	FEDR	Permitted
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted
Read contents of Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted
Erase page containing Lock Byte (if no pages are locked)	Permitted	FEDR	FEDR
Erase page containing Lock Byte - Unlock all pages (if any page is locked)	Only C2DE	FEDR	FEDR
Lock additional pages (change '1's to '0's in the Lock Byte)	Not Permitted	FEDR	FEDR
Unlock individual pages (change '0's to '1's in the Lock Byte)	Not Permitted	FEDR	FEDR
Read, Write or Erase Reserved Area	Not Permitted	FEDR	FEDR

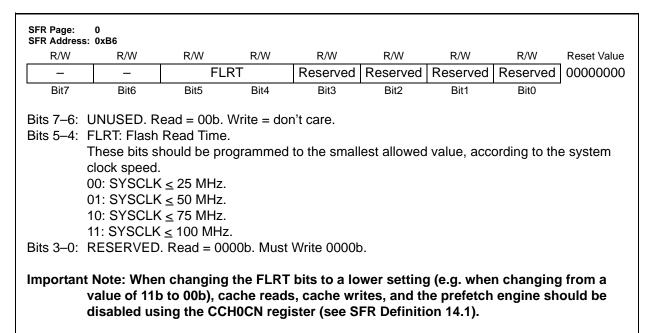
Table 13.1. Flash Sec	urity Summary
-----------------------	---------------

C2DE - C2 Device Erase (Erases all Flash pages including the page containing the Lock Byte) FEDR - Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is '1' after reset)

All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).
Locking any Flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.
- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.

13.4. Flash Read Timing


On reset, the C8051F36x Flash read timing is configured for operation with system clocks up to 25 MHz. If the system clock will not be increased above 25 MHz, then the Flash timing registers may be left at their reset value.

For every Flash read or fetch, the system provides an internal Flash read strobe to the Flash memory. The Flash read strobe lasts for one or two system clock cycles, based on the FLRT bits (FLSCL.4 and FLSCL.5). If the system clock is greater than 25 MHz, the FLRT bit must be changed to the appropriate setting. Otherwise, data read or fetched from Flash may not represent the actual contents of Flash. When the Flash read strobe is asserted, Flash memory is active. When it is de-asserted, Flash memory is in a low power state.

The recommended procedure for updating FLRT is:

- Step 1. Select SYSCLK to 25 MHz or less.
- Step 2. Disable the prefetch engine (CHPFEN = '0' in CCH0CN register).
- Step 3. Set the FLRT bits to the appropriate setting for the SYSCLK.
- Step 4. Enable the prefetch engine (CHPFEN = '1' in CCH0CN register).

SFR Definition 13.3. FLSCL: Flash Memory Control

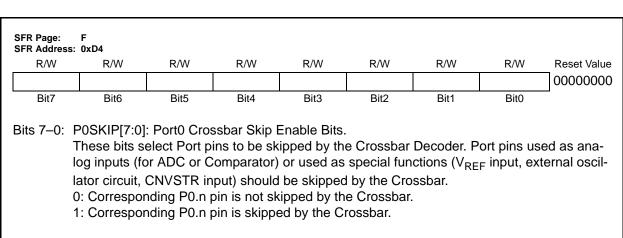
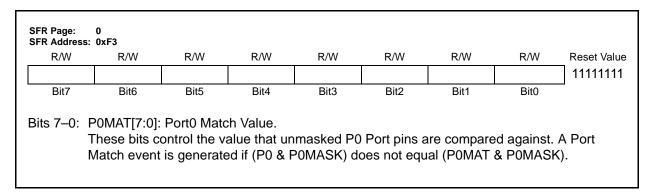
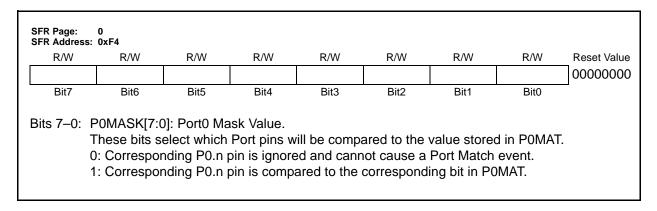

			Lock Status
	TAG 0	SLOT 0	UNLOCKED
	TAG 1	SLOT 1	UNLOCKED
Cache Push	TAG 2	SLOT 2	UNLOCKED
Operations			UNLOCKED
Decrement CHSLOT			1
	TAG 26	SLOT 26	UNLOCKED
CHSLOT = 27	TAG 27	SLOT 27	UNLOCKED
\perp	TAG 28	SLOT 28	LOCKED
Cache Pop	TAG 29	SLOT 29	LOCKED
Operations	TAG 30	SLOT 30	LOCKED
Increment	TAG 31	SLOT 31	LOCKED
CHSLOT			-

Figure 14.3. Cache Lock Operation


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
CHWRE	N CHRDEN	CHPFEN	CHFLSH	CHRETI	CHISR	CHMOVC	CHBLKW	11100110
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bit 7:	CHWREN: C	Cache Write	Enable.					
	This bit enab							
	locks.			U	except dur	ing Flash writ	tes/erasure	s or cache
	1: Writes to			wed.				
Bit 6:	CHRDEN: C							
						he cache me		
						refetch engin	e.	
	1: Instruction			cache (whe	en availabl	e).		
Bit 5:	CHPFEN: C							
	This bit enab		•	э.				
	0: Prefetch e	•						
Bit 4:	1: Prefetch e CHFLSH: Ca	•	ableu.					
Dit 4.			is hit cloars	the cache (contents]	This bit alway	e roade 'O'	
Bit 3:	CHRETI: Ca				Jointenito.	nis bit alway	316003 0.	
Dit 0.	This bit enab				ess to he	cached		
	0: Destinatio							
	1: RETI dest							
Bit 2:	CHISR: Cac	he ISR Ena	ble.					
	This bit allow	vs instructio	ns which ar	e part of an	Interrupt S	Service Routi	ne (ISR) to	be cached
	0: Instruction	ns in ISRs w	ill not be lo	aded into ca	ache mem	ory.		
	1: Instruction	ns in ISRs c	an be cach	ed.				
Bit 1:	CHMOVC: C	Cache MOV	C Enable.					
						be loaded inte	o the cache	e memory.
	0: Data requ							
				ctions will be	e loaded ir	nto cache me	mory.	
Bit 0:	CHBLKW: B							
	This bit allow							
	0: Each byte							
	1: Flash byte	es are writte	n in groups	s of four (for	code space	ce writes).		

SFR Definition 14.1. CCH0CN: Cache Control



SFR Definition 17.6. P0SKIP: Port0 Skip

SFR Definition 17.7. P0MAT: Port0 Match

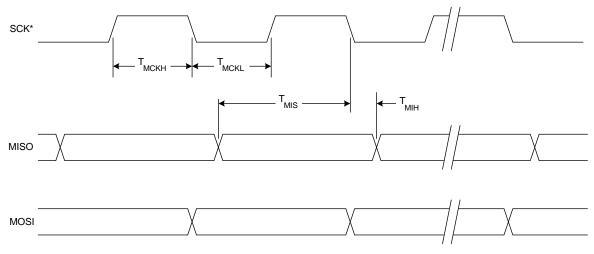
SFR Definition 17.8. P0MASK: Port0 Mask

			Freq	uency: 11.059	2 MHz		
	Target Baud Rate (bps)	Baud Rate % Error	Oscilla- tor Divide Factor	Timer Clock Source	SCA1–SCA0 (pre-scale select) ¹	T1M ¹	Timer 1 Reload Value (hex)
×	230400	0.00%	48	SYSCLK	XX 2	1	0xE8
Cloc	115200	0.00%	96	SYSCLK	XX	1	0xD0
Timer Clock Osc.	57600	0.00%	192	SYSCLK	XX	1	0xA0
Time Osc.	28800	0.00%	384	SYSCLK	XX	1	0x40
and nal	14400	0.00%	768	SYSCLK/12	00	0	0xE0
-K a xter	9600	0.00%	1152	SYSCLK/12	00	0	0xD0
SCI	2400	0.00%	4608	SYSCLK/12	00	0	0x40
SYSCLK and 7 from External (1200	0.00%	9216	SYSCLK/48	10	0	0xA0
sc.	230400	0.00%	48	EXTCLK/8	11	0	0xFD
LK from Internal Osc., Clock from External O	115200	0.00%	96	EXTCLK/8	11	0	0xFA
n Exte	57600	0.00%	192	EXTCLK/8	11	0	0xF4
om Ir k fron	28800	0.00%	384	EXTCLK/8	11	0	0xE8
Cloc	14400	0.00%	768	EXTCLK/8	11	0	0xD0
SYSCLK from Internal Osc., Timer Clock from External O	9600	0.00%	1152	EXTCLK/8	11	0	0xB8
Notes:		ad T1M bit dafin	itione con he	found in Section	01.1		

Table 19.5. Timer Settings for Standard Baud RatesUsing an External 11.0592 MHz Oscillator

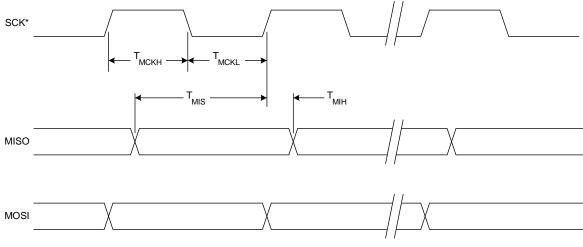
1. SCA1–SCA0 and T1M bit definitions can be found in Section 21.1.

2. X = Don't care.


20.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

R	R/W	R/W	R/W	R	R	R	R	Reset Value
SPIBSY	MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
Bit 7:	SPIBSY: SPI This bit is se			PI transfer is	in progress	s (Master o	r slave Mod	e).
Bit 6:	MSTEN: Mas 0: Disable m	aster mode	. Operate i		e.			
Bit 5:	1: Enable ma CKPHA: SPI This bit contr	0 Clock Ph rols the SPI	ase. 0 clock pha	ise.				
Bit 4:	0: Data cente 1: Data cente CKPOL: SPI This bit contr 0: SCK line I	ered on sec 0 Clock Pol rols the SPI	ond edge c arity. 0 clock pol	of SCK perio	od.*			
iit 3:	1: SCK line h SLVSEL: Sla This bit is set is cleared to	ave Selecter t to logic '1' logic '0' wh	d Flag (read whenever t en NSS is l	he NSS pin high (slave i	not selected	d). This bit o	does not ind	icate the
Bit 2:	instantaneou NSSIN: NSS This bit mimi	Instantane	ous Pin Inp Intaneous v	out (read on alue that is	ly). present on			
Bit 1:	the register is SRMT: Shift This bit will b and there is receive buffe the transmit	Register Er be set to log no new info er. It returns buffer or by	npty (Valid ic '1' when mation ava to logic '0' a transitior	in Slave Mo all data has ailable to re when a data on SCK.	de, read or been trans ad from the	sferred in/ou transmit bu	uffer or write	e to the
Bit O:	NOTE: SRM RXBMT: Rec This bit will b information. this bit will re NOTE: RXB	ceive Buffer be set to log If there is no eturn to logi	Empty (Va ic '1' when ew informat c '0'.	lid in Slave the receive ion available	buffer has	been read a		
lote: In s	lave mode, da sampled one							


SFR Definition 20.1. SPI0CFG: SPI0 Configuration

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 20.9. SPI Master Timing (CKPHA = 1)

21.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)

In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the Timer 1 interrupt.

Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0, 1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However, the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode settings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1, configure it for Mode 3.

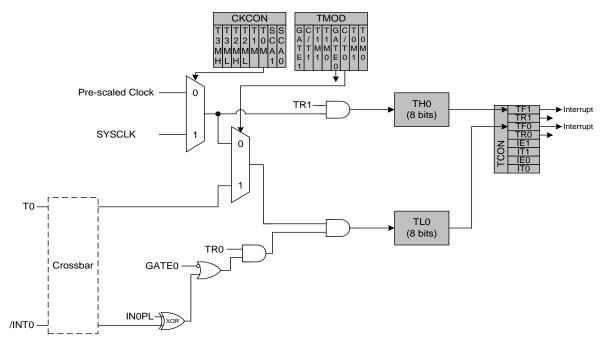


Figure 21.3. T0 Mode 3 Block Diagram

R/W	s: 0x8E R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu				
ТЗМН	T3ML	T2MH	T2ML	T1M	T0M	SCA1	SCA0	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0					
Bit 7:		· 2 Liah But	Clock So	loct								
י זוכ	T3MH: Timer 3 High Byte Clock Select. This bit selects the clock supplied to the Timer 3 high byte if Timer 3 is configured in split 8											
	bit timer mode. T3MH is ignored if Time 3 is in any other mode.											
	0: Timer 3 hig						R3CN.					
	1: Timer 3 hig											
Bit 6:	T3ML: Timer											
	This bit selec				f Timer 3 is	configured	in split 8-b	it timer				
							·					
	mode, this bit selects the clock supplied to the lower 8-bit timer. 0: Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN.											
	1: Timer 3 low byte uses the system clock.											
Bit 5:	T2MH: Timer											
	This bit selects the clock supplied to the Timer 2 high byte if Timer 2 is configured in split 8											
	bit timer mod											
	0: Timer 2 hig			•	the T2XCL	K bit in TM	R2CN.					
	1: Timer 2 hi											
Bit 4:	T2ML: Timer 2 Low Byte Clock Select.											
	This bit selects the clock supplied to Timer 2. If Timer 2 is configured in split 8-bit timer											
	mode, this bit selects the clock supplied to the lower 8-bit timer.											
	0: Timer 2 low byte uses the clock defined by the T2XCLK bit in TMR2CN.											
Bit 3:	1: Timer 2 low byte uses the system clock.											
DIL J.	T1M: Timer 1 Clock Select. This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to											
	logic '1'.											
	0: Timer 1 uses the clock defined by the prescale bits, SCA1–SCA0.											
	1: Timer 1 uses the system clock.											
Bit 2:	T0M: Timer 0 Clock Select.											
	This bit selects the clock source supplied to Timer 0. TOM is ignored when C/T0 is set to											
	logic '1'.											
	0: Counter/Timer 0 uses the clock defined by the prescale bits, SCA1–SCA0.											
	1: Counter/Timer 0 uses the system clock.											
3its 1–0:	SCA1–SCA0: Timer 0/1 Prescale Bits.											
	These bits control the division of the clock supplied to Timer 0 and/or Timer 1 if configured											
	to use presca	aled clock in	puts.									
	SCA1	SCA0		Pr	escaled Clo	ock						
	0	0	Syste	m clock div	ided by 12							
	0 1 System clock divided by 4											
	0	1 0 System clock divided by 48										
		0	Syste	m clock div	ided by 48							

SFR Definition 21.3. CKCON: Clock Control

21.3.2. 8-bit Timers with Auto-Reload

When T3SPLIT is set, Timer 3 operates as two 8-bit timers (TMR3H and TMR3L). Both 8-bit timers operate in auto-reload mode as shown in Figure 21.7. TMR3RLL holds the reload value for TMR3L; TMR3RLH holds the reload value for TMR3H. The TR3 bit in TMR3CN handles the run control for TMR3H. TMR3L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 3 Clock Select bits (T3MH and T3ML in CKCON) select either SYSCLK or the clock defined by the Timer 3 External Clock Select bit (T3XCLK in TMR3CN), as follows:

T3MH	T3XCLK	TMR3H Clock
		Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

T3ML	T3XCLK	TMR3L Clock
		Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

The TF3H bit is set when TMR3H overflows from 0xFF to 0x00; the TF3L bit is set when TMR3L overflows from 0xFF to 0x00. When Timer 3 interrupts are enabled, an interrupt is generated each time TMR3H overflows. If Timer 3 interrupts are enabled and TF3LEN (TMR3CN.5) is set, an interrupt is generated each time either TMR3L or TMR3H overflows. When TF3LEN is enabled, software must check the TF3H and TF3L flags to determine the source of the Timer 3 interrupt. The TF3H and TF3L interrupt flags are not cleared by hardware and must be manually cleared by software.

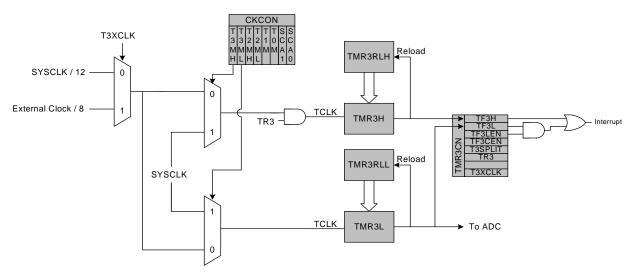


Figure 21.7. Timer 3 8-Bit Mode Block Diagram

R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value				
TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3	_	T3XCLK	0000000				
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	3				
Bit 7:	TF3H: Time	r 3 High Byt	e Overflow	Flag.								
	Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In 16 bit mode,											
	this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 interrupt is											
	enabled, set											
	TF3H is not automatically cleared by hardware and must be cleared by software.											
Bit 6:	TF3L: Timer			•		o == /	0 00 14/					
	Set by hard											
	set, an inter		-				•					
	will set wher ically cleared			s regardless		er s mode	. This bit is n	iot automa				
Bit 5:	TF3LEN: Tir	•		ot Enable								
Dit J.			•		errunts If T	F3I FN is a	set and Time	r 3 inter-				
	This bit enables/disables Timer 3 Low Byte interrupts. If TF3LEN is set and Timer 3 inter- rupts are enabled, an interrupt will be generated when the low byte of Timer 3 overflows.											
	0: Timer 3 L											
	1: Timer 3 L		•									
Bit 4:					apture Enal	ole.						
	TF3CEN: Timer 3 Low-Frequency Oscillator Capture Enable. This bit enables/disables Timer 3 Low-Frequency Oscillator Capture Mode. If TF3CEN is set											
	and Timer 3	interrupts a	are enabled	, an interrup	t will be ge	nerated or	a rising edg	ge of the				
	and Timer 3 interrupts are enabled, an interrupt will be generated on a rising edge of the low-frequency oscillator output, and the current 16-bit timer value in TMR3H:TMR3L will be											
	copied to TMR3RLH:TMR3RLL. See Section "16. Oscillators" on page 168 for more details											
	0: Timer 3 L			•								
	1: Timer 3 L	•	•	•	enabled.							
Bit 3:	T3SPLIT: Ti	•										
	When this bit is set, Timer 3 operates as two 8-bit timers with auto-reload.											
	0: Timer 3 operates in 16-bit auto-reload mode.											
D:4 O.	1: Timer 3 operates as two 8-bit auto-reload timers.											
Bit 2:	TR3: Timer 3 Run Control.											
	This bit enables/disables Timer 3. In 8-bit mode, this bit enables/disables TMR3H only; TMR3L is always enabled in this mode.											
	0: Timer 3 disabled.											
	1: Timer 3 e											
Bit 1: UNUSED. Read = 0b. Write = don't care.												
Bit 0:	T3XCLK: Timer 3 External Clock Select.											
	This bit sele	cts the exte	rnal clock s	ource for Ti	mer 3. If Tir	mer 3 is in	8-bit mode,	this bit				
	selects the external oscillator clock source for both timer bytes. However, the Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select between the											
	external clos		-									
	0: Timer 3 e	xternal cloc	k selection	is the syste	m clock divi	ded by 12						
		xternal cloc		is the exterr		•		e external				

SFR Definition 21.13. TMR3CN: Timer 3 Control

22.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 22.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA0 capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to logic '1'. See Figure 22.3 for details on the PCA interrupt configuration.

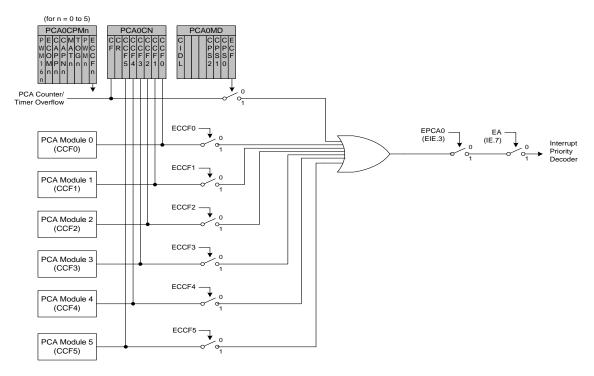


Figure 22.3. PCA Interrupt Block Diagram

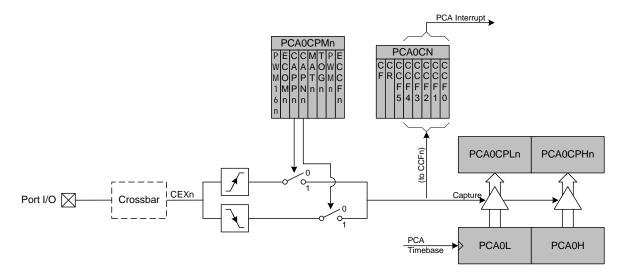

PWM16	ECOM	CAPP	CAPN	MAT	TOG	PWM	ECCF	Operation Mode	
Х	Х	1	0	0	0	0	Х	Capture triggered by positive edge on CEXn	
Х	Х	0	1	0	0	0	Х	Capture triggered by negative edge on CEXn	
Х	Х	1	1	0	0	0	Х	Capture triggered by transition on CEXn	
Х	1	0	0	1	0	0	Х	Software Timer	
Х	1	0	0	1	1	0	Х	High Speed Output	
Х	1	0	0	0	1	1	Х	Frequency Output	
0	1	0	0	0	0	1	0	8-Bit Pulse Width Modulator	
1	1	0	0	0	0	1	0	16-Bit Pulse Width Modulator	

Table 22.2. PCA0CPM Register Settings for PCA Capture/Compare Modules

X = Don't Care

22.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value of the PCA0 counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic '1' and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic '1', then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 22.4. PCA Capture Mode Diagram

Note: The signal at CEXn must be high or low for at least 2 system clock cycles to be recognized by the hardware.

