E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f363-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Figure 8.2. Comparator1 Functional Block Diagram Figure 8.3. Comparator Hysteresis Plot	. 71 . 72
9.	CIP-51 Microcontroller	
	Figure 9.1. CIP-51 Block Diagram	. 81
	Figure 9.2. Memory Map	. 86
	Figure 9.3. SFR Page Stack	. 89
	Figure 9.4. SFR Page Stack While Using SFR Page 0x0F To Access OSCICN	. 90
	Figure 9.5. SFR Page Stack After ADC0 Window Comparator Interrupt Occurs	. 91
	Figure 9.6. SFR Page Stack Upon PCA Interrupt Occurring During an ADC0 ISR	. 91
	Figure 9.7. SFR Page Stack Upon Return From PCA Interrupt	. 92
	Figure 9.8. SFR Page Stack Upon Return From ADC2 Window Interrupt	. 93
10	Interrupt Handler	
11.	Multiply And Accumulate (MAC0)	
	Figure 11.1. MAC0 Block Diagram	117
	Figure 11.2. Integer Mode Data Representation	118
	Figure 11.3. Fractional Mode Data Representation	118
	Figure 11.4. MAC0 Pipeline	119
12	Reset Sources	
	Figure 12.1. Reset Sources	128
	Figure 12.2. Power-On and VDD Monitor Reset Timing	129
13	Flash Memory	
	Figure 13.1. Flash Program Memory Map	138
14	Branch Target Cache	
	Figure 14.1. Branch Target Cache Data Flow	145
	Figure 14.2. Branch Target Cache Organization	146
	Figure 14.3. Cache Lock Operation	147
15	External Data Memory Interface and On-Chip XRAM	. = 0
	Figure 15.1. Multiplexed Configuration Example	156
	Figure 15.2. Non-multiplexed Configuration Example	157
	Figure 15.3. EMIF Operating Modes	158
	Figure 15.4. Non-multiplexed 16-bit MOVX Timing	161
	Figure 15.5. Non-multiplexed 8-bit MOVX without Bank Select Timing	162
	Figure 15.6. Non-multiplexed 8-bit MOVX with Bank Select Timing	163
	Figure 15.7. Multiplexed 16-bit MOVX TIMIng	164
	Figure 15.8. Multiplexed 8-bit MOVX without Bank Select Timing	165
40	Figure 15.9. Multiplexed 8-bit MOVX with Bank Select Timing	166
16	Uscillators	400
	Figure 16.1. Oscillator Diagram	168
	Figure 16.2. 32.768 KHZ External Crystal Example	175
47	Figure 16.3. PLL Block Diagram	1//
17.	Fort Input/Output	100
	Figure 17.2. Port I/O Coll Plack Diagram	10Z
	Figure 17.2. FULLI/O Cell DIUCK Didyldill	103
	Figure 17.3. Crossbal Filolity Decoder with Dart Disa Skipped	104 105
		100

DATA MEMORY

1.2. On-Chip Memory

The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general purpose RAM, and direct addressing accesses the 128 byte SFR address space. The lower 128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.

Program memory consists of 32/16 kB of Flash. This memory may be reprogrammed in-system in 1024 byte sectors, and requires no special off-chip programming voltage. See Figure 1.6 for the MCU system memory map.

PROGRAM MEMORY

Figure 1.6. On-Board Memory Map

1.3. On-Chip Debug Circuitry

The C8051F36x devices include on-chip Silicon Labs 2-Wire (C2) debug circuitry that provides non-intrusive, full speed, in-circuit debugging of the production part *installed in the end application*.

Silicon Labs' debugging system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, timers, or communications chan-

SFR Page: SFR Address	all pages s: 0xBC							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD0SC4	AD0SC3	AD0SC2	AD0SC1	AD0SC0	AD0LJST	-	-	11111000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
Bits 7–3:	AD0SC4–0: SAR Conver <i>AD0SC</i> refer ments are gi <i>AD0SC</i> =	ADC0 SAR rsion clock is rs to the 5-b ven in Table \underline{SYSCLK} \underline{CLK}_{SAR}	Conversion s derived fr bit value hel e 5.1. – 1	n Clock Per om system d in bits AD	iod Bits. clock by the 0SC4–0. S/	e following e AR Convers	equation, w sion clock r	rhere equire-
Bit 2:	AD0LJST: Al 0: Data in Al 1: Data in Al	DC0 Left Ju DC0H:ADC(DC0H:ADC(stify Select L registers L registers	are right-ju are left-jus	istified. tified.			
Bits 1–0:	UNUSED. R	ead = 00b;	vvrite = dor	rt care.				

SFR Definition 5.3. ADC0CF: ADC0 Configuration

SFR Definition 5.4. ADC0H: ADC0 Data Word MSB

SFR Definition 5.5. ADC0L: ADC0 Data Word LSB

SFR Definition 5.6. ADC0CN: ADC0 Control

SFR Page: SFR Addres	all pages s: 0xE8	(bit addr	ressable)						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0WINT	AD0CM2	AD0CM1	AD0CM0	00000000	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-	
Bit 7:	AD0EN: AD0	C0 Enable E	3it.						
	0: ADC0 Dis	abled. ADC	0 is in low-po	ower shutdo	own.				
	1: ADC0 Ena	abled. ADC() is active an	d ready for	data conve	rsions.			
DIL D.	0. Normal Tr	ock Mode: N		is anablad	tracking is	continuous	unless a co	nversion is	
	in progress			is enableu,	tracking is	continuous			
	1: Low-powe	r Track Mo	de: Tracking	Defined by	AD0CM2-0	bits (see b	elow).		
Bit 5:	ADOINT: ADO	C0 Convers	ion Complete	e Interrupt	Flag.	,	,		
	0: ADC0 has	not comple	eted a data c	onversion s	since the las	t time AD0	INT was cle	ared.	
	1: ADC0 has	completed	a data conve	ersion.					
Bit 4:	ADOBUSY: A	ADC0 Busy	Bit.						
		version is c	omplete or a	conversion	n is not curre	antly in proc		NT is set to	
	logic '1' on	the falling	edge of AD0	BUSY.		sindy in prog	JIE33. ADUII	11336110	
	1: ADC0 con	version is in	n progress.						
	Write:								
	0: No Effect.								
D '(0	1: Initiates A	DC0 Conve	rsion if AD00	CM2-0 = 00)0b				
BIT 3:		DCU Windo	w Compare	Interrupt FI	ag. not occurror	t sinco this	flag was las	st cloared	
	1. ADC0 Wir	ndow Comp	arison Data r	match has	not occurred		nay was las	st cleared.	
Bits 2–0:	AD0CM2-0:	ADC0 Starf	t of Conversi	on Mode S	elect.				
	When AD0T	M = 0:							
	000: ADC0 conversion initiated on every write of '1' to AD0BUSY.								
	001: ADC0 conversion initiated on overflow of Timer 0.								
	010: ADC0 c	onversion i	nitiated on ov	verflow of I	imer 2.				
		onversion il	nitiated on ov	ing edge c	imer 1. of external C				
	101: ADC0 c	onversion i	nitiated on ov	verflow of T	imer 3.				
	11x: Reserve	ed.							
	When AD0T	M = 1:							
	000: Tracking	g initiated o	n write of '1'	to AD0BUS	SY and lasts	3 SAR clo	cks, followe	d by con-	
	Versioi	n. A initiated a	n overflow of	TimerOer	d lasta 2 C	AD alaaka f		aanvaraian	
	001: Tracking	g initiated o	n overflow of	Timer 0 ar Timer 2 ar	nd lasts 3 5/	AR CIUCKS, I AR clocks f	ollowed by	conversion.	
	011: Tracking	a initiated or	n overflow of	Timer 1 ar	nd lasts 3 SA	AR clocks, f	ollowed by	conversion.	
	100: ADC0 ti edge	racks only w	vhen CNVST	R input is l	ogic low; co	nversion sta	arts on risin	g CNVSTR	
	101: Tracking	g initiated o	n overflow of	Timer 3 ar	nd lasts 3 SA	AR clocks, f	ollowed by	conversion.	
	117. 17636106	<i>.</i> u.							

SFR Definition 5.9. ADC0LTH: ADC0 Less-Than Data High Byte

SFR Definition 5.10. ADC0LTL: ADC0 Less-Than Data Low Byte

Table 9.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page No.	
SP	0x81	All Pages	Stack Pointer	page 102	
SPI0CFG	0xA1	All Pages	SPI Configuration	page 239	
SPI0CKR	0xA2	All Pages	SPI Clock Rate Control	page 241	
SPI0CN	0xF8	All Pages	SPI Control	page 240	
SPI0DAT	0xA3	All Pages	SPI Data	page 241	
TCON	0x88	All Pages	Timer/Counter Control	page 250	
TH0	0x8C	All Pages	Timer/Counter 0 High Byte	page 253	
TH1	0x8D	All Pages	Timer/Counter 1 High Byte	page 253	
TL0	0x8A	All Pages	Timer/Counter 0 Low Byte	page 253	
TL1	0x8B	All Pages	Timer/Counter 1 Low Byte	page 253	
TMOD	0x89	All Pages	Timer/Counter Mode	page 251	
TMR2CN	0xC8	All Pages	Timer/Counter 2 Control	page 256	
TMR2H	0xCD	All Pages	Timer/Counter 2 High Byte	page 257	
TMR2L	0xCC	All Pages	Timer/Counter 2 Low Byte	page 257	
TMR2RLH	0xCB	All Pages	Timer 2 Reload Register High Byte	page 257	
TMR2RLL	0xCA	All Pages	imer 2 Reload Register Low Byte page 257		
TMR3CN	0x91	All Pages	Timer 3 Control	page 260	
TMR3H	0x95	All Pages	Timer 3 High Byte	page 261	
TMR3L	0x94	All Pages	Timer 3 Low Byte	page 261	
TMR3RLH	0x93	All Pages	Timer 3 Reload Register High Byte	page 261	
TMR3RLL	0x92	All Pages	Timer 3 Reload Register Low Byte	page 261	
VDM0CN	0xFF	All Pages	V _{DD} Monitor Control	page 131	
XBR0	0xE1	F	Port I/O Crossbar Control 0	page 187	
XBR1	0xE2	F	Port I/O Crossbar Control 1	page 188	
Notes: 1. Refers t 2. Refers t	o a register in o a register in	the C8051F3 the C8051F3	360/1/2/6/7/8/9 only. 360/3 only.		

11.3. Operating in Multiply and Accumulate Mode

MAC0 operates in Multiply and Accumulate (MAC) mode when the MACOMS bit (MAC0CF.0) is cleared to '0'. When operating in MAC mode, MAC0 performs a 16-by-16 bit multiply on the contents of the MAC0A and MAC0B registers, and adds the result to the contents of the 40-bit MAC0 accumulator. Figure 11.4 shows the MAC0 pipeline. There are three stages in the pipeline, each of which takes exactly one SYSCLK cycle to complete. The MAC operation is initiated with a write to the MAC0BL register. After the MAC0BL register is written, MAC0A and MAC0B are multiplied on the first SYSCLK cycle. During the second stage of the MAC0 pipeline, the results of the multiplication are added to the current accumulator contents, and the result of the addition is stored in the MAC0 accumulator. The status flags in the MAC0STA register are set after the end of the second pipeline stage. During the second stage of the pipeline, the next multiplication are determined by writing to the MAC0BL register, if it is desired. The rounded (and optionally, saturated) result is available in the MAC0RNDH and MAC0RNDL registers at the end of the third pipeline stage. If the MAC0CA bit (MAC0CF.3) is set to '1' when the MAC operation is initiated, the accumulator and all MAC0STA flags will be cleared during the next cycle of the controller's clock (SYSCLK). The MAC0CA bit will clear itself to '0' when the clear operation is complete.

Figure 11.4. MAC0 Pipeline

11.4. Operating in Multiply Only Mode

MAC0 operates in Multiply Only mode when the MAC0MS bit (MAC0CF.0) is set to '1'. Multiply Only mode is identical to Multiply and Accumulate mode, except that the multiplication result is added with a value of zero before being stored in the MAC0 accumulator (i.e. it overwrites the current accumulator contents). The result of the multiplication is available in the MAC0 accumulator registers at the end of the second MAC0 pipeline stage (two SYSCLKs after writing to MAC0BL). As in MAC mode, the rounded result is available in the MAC0 Rounding Registers after the third pipeline stage. Note that in Multiply Only mode, the MAC0HO flag is not affected.

11.5. Accumulator Shift Operations

MAC0 contains a 1-bit arithmetic shift function which can be used to shift the contents of the 40-bit accumulator left or right by one bit. The accumulator shift is initiated by writing a '1' to the MAC0SC bit (MAC0CF.5), and takes one SYSCLK cycle (the rounded result is available in the MAC0 Rounding Registers after a second SYSCLK cycle, and MAC0SC is cleared to '0'). The direction of the arithmetic shift is controlled by the MAC0SD bit (MAC0CF.4). When this bit is cleared to '0', the MAC0 accumulator will shift left. When the MAC0SD bit is set to '1', the MAC0 accumulator will shift right. Right-shift operations are sign-extended with the current value of bit 39. Note that the status flags in the MAC0STA register are not affected by shift operations.

SFR Page: SFR Addre	0 ss: 0xCF										
R	R	R	R	R/W	R/W	R/W	R/W	Reset Value			
_	_	_	_	MAC0HO	MAC0Z	MAC0SO	MAC0N	00000100			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit Addressable			
Bits 7–4:	Bits 7–4: UNUSED: Read = 0000b, Write = don't care.										
Bit 3:	MAC0HO: Hard Overflow Flag.										
	This bit is set to '1' whenever an overflow out of the MAC0OVR register occurs during a										
	MAC operation (i.e. when MAC0OVR changes from 0x7F to 0x80 or from 0x80 to 0x7F).										
	The hard over	erflow flag r	nust be clea	ared in softw	are by dire	ectly writing i	it to '0', or l	by resetting			
	the MAC log	ic using the	MAC0CA	bit in registe	r MAC0CF	-					
Bit 2:	MAC0Z: Zero Flag.										
	This bit is se	t to '1' if a N	AC0 opera	ation results	in an Accu	mulator valu	ue of zero.	If the result			
	is non-zero,	this bit will	be cleared	to '0'.							
Bit 1:	MAC0SO: S	oft Overflov	/ Flag.	_							
	This bit is set to '1' when a MAC operation causes an overflow into the sign bit (bit 31) of the										
	MAC0 Accumulator. If the overflow condition is corrected after a subsequent MAC operation,										
54.0	this bit is cleared to '0'.										
Bit 0:	MACON: Ne	gative Flag.									
	If the MAC A	ccumulator	result is ne	egative, this	bit will be s	set to '1'. If t	he result is	positive or			
	zero, this fla	g will be cle	ared to '0'.								
Note:	The contents stages.	of this registe	er should no	t be changed	by software	during the fire	st two MAC	0 pipeline			

SFR Definition 11.2. MAC0STA: MAC0 Status

SFR Definition 11.3. MAC0AH: MAC0 A High Byte

12.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin is driven low until V_{DD} settles above V_{RST}. A delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{RST}). Figure 12.2. plots the power-on and V_{DD} Monitor reset timing. For ramp times less than 1 ms, the power-on reset delay (T_{PORDe-lav}) is typically less than 0.3 ms.

Note: The maximum V_{DD} ramp time is 1 ms; slower ramp times may cause the device to be released from reset before V_{DD} reaches the V_{RST} level.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic '1'. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000) software can read the PORSF flag to determine if a power-up was the cause of reset. The content of internal data memory should be assumed to be undefined after a power-on reset. The V_{DD} Monitor is enabled following a power-on reset.

Figure 12.2. Power-On and V_{DD} Monitor Reset Timing

erases will be disabled until the next system reset. Flash writes and erases will also be disabled if a Flash write or erase is attempted before the key codes have been written properly. The Flash lock resets after each write or erase; the key codes must be written again before a following Flash operation can be performed. The FLKEY register is detailed in SFR Definition 13.2.

13.1.2. Erasing Flash Pages From Software

The Flash memory can be programmed by software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by: (1) the PSWE and PSEE bits must be set to '1' (this directs the MOVX writes to target Flash memory); and (2) Writing the Flash key codes in sequence to the Flash Lock register (FLKEY). The PSWE bit remains set until cleared by software.

A write to Flash memory can clear bits to logic '0' but cannot set them; only an erase operation can set bits to logic '1' in Flash. A byte location to be programmed should be erased before a new value is written. The Flash memory is organized in 1024-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire 1024-byte page, perform the following steps:

- Step 1. Disable interrupts (recommended).
- Step 2. Write the first key code to FLKEY: 0xA5.
- Step 3. Write the second key code to FLKEY: 0xF1.
- Step 4. Set PSEE (PSCTL.1) to enable Flash erases.
- Step 5. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.
- Step 6. Use the MOVX instruction to write a data byte to any location within the page to be erased.
- Step 7. Clear PSEE to disable Flash erases.
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Re-enable interrupts.

13.1.3. Writing Flash Memory From Software

Bytes in Flash memory can be written one byte at a time, or in small blocks. The CHBLKW bit in register CCH0CN (SFR Definition 14.1) controls whether a single byte or a block of bytes is written to Flash during a write operation. When CHBLKW is cleared to '0', the Flash will be written one byte at a time. When CHBLKW is set to '1', the Flash will be written in blocks of four bytes for addresses in code space. Block writes are performed in the same amount of time as single byte writes, which can save time when storing large amounts of data to Flash memory.

For single-byte writes to Flash, bytes are written individually, and the Flash write is performed after each MOVX write instruction. The recommended procedure for writing Flash in single bytes is as follows:

- Step 1. Disable interrupts.
- Step 2. Clear CHBLKW (register CCH0CN) to select single-byte write mode.
- Step 3. Write the first key code to FLKEY: 0xA5.
- Step 4. Write the second key code to FLKEY: 0xF1.
- Step 5. Set PSWE (register PSCTL) to redirect MOVX commands to write to Flash.
- Step 6. Clear the PSEE bit (register PSCTL).
- Step 7. Use the MOVX instruction to write a data byte to the desired location (repeat as necessary).
- Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.
- Step 9. Re-enable interrupts.

Certain types of instruction data or certain blocks of code can also be excluded from caching. The destinations of RETI instructions are, by default, excluded from caching. To enable caching of RETI destinations, the CHRETI bit (CCH0CN.3) can be set to '1'. It is generally not beneficial to cache RETI destinations unless the same instruction is likely to be interrupted repeatedly (such as a code loop that is waiting for an interrupt to happen). Instructions that are part of an interrupt service routine (ISR) can also be excluded from caching. By default, ISR instructions are cached, but this can be disabled by clearing the CHISR bit (CCH0CN.2) to '0'. The other information that can be explicitly excluded from caching are the data returned by MOVC instructions. Clearing the CHMOV bit (CCH0CN.1) to '0' will disable caching of MOVC data. If MOVC caching is allowed, it can be restricted to only use slot 0 for the MOVC information (excluding cache push operations). The CHFIXM bit (CCH0TN.2) controls this behavior.

Further cache control can be implemented by disabling all cache writes. Cache writes can be disabled by clearing the CHWREN bit (CCH0CN.7) to '0'. Although normal cache writes (such as those after a cache miss) are disabled, data can still be written to the cache with a cache push operation. Disabling cache writes can be used to prevent a non-critical section of code from changing the cache contents. Note that regardless of the value of CHWREN, a Flash write or erase operation automatically removes the affected bytes from the cache. Cache reads and the prefetch engine can also be individually disabled. Disabling cache reads forces all instructions data to execute from Flash memory or from the prefetch engine. To disable cache reads, the CHRDEN bit (CCH0CN.6) can be cleared to '0'. Note that when cache reads are disabled, cache writes will still occur (if CHWREN is set to '1'). Disabling the prefetch engine is accomplished using the CHPFEN bit (CCH0CN.5). When this bit is cleared to '0', the prefetch engine will be disabled. If both CHPFEN and CHRDEN are '0', code will execute at a fixed rate, as instructions become available from the Flash memory.

Cache locations can also be pre-loaded and locked with time-critical branch destinations. For example, in a system with an ISR that must respond as fast as possible, the entry point for the ISR can be locked into a cache location to minimize the response latency of the ISR. Up to 30 locations can be locked into the cache at one time. Instructions are locked into cache by enabling cache push operations with the CHPUSH bit (CCH0LC.7). When CHPUSH is set to '1', a MOVC instruction will cause the four-byte segment containing the data byte to be written to the cache slot location indicated by CHSLOT (CCH0LC.4-0). CHSLOT is them decremented to point to the next lockable cache location. This process is called a cache push operation. Cache locations that are above CHSLOT are "locked", and cannot be changed by the processor core, as shown in Figure 14.3. Cache locations can be unlocked by using a cache pop operation. A cache pop is performed by writing a '1' to the CHPOP bit (CCH0LC.6). When a cache pop is initiated, the value of CHSLOT is incremented. This unlocks the most recently locked cache location, but does not remove the information from the cache. Note that a cache pop should not be initiated if CHSLOT is equal to 11110b. Doing so may have an adverse effect on cache performance. Important: Although locking cache location 1 is not explicitly disabled by hardware, the entire cache will be unlocked when CHSLOT is equal to 00000b. Therefore, cache locations 1 and 0 must remain unlocked at all times.

			Lock Status
	TAG 0	SLOT 0	UNLOCKED
	TAG 1	SLOT 1	UNLOCKED
Cache Push	TAG 2	SLOT 2	UNLOCKED
Operations			
			1
Ť	TAG 26	SLOT 26	UNLOCKED
CHSLOT = 27 —	TAG 27	SLOT 27	UNLOCKED
Ţ	TAG 28	SLOT 28	LOCKED
Cache Pop	TAG 29	SLOT 29	LOCKED
Operations	TAG 30	SLOT 30	LOCKED
Increment	TAG 31	SLOT 31	LOCKED
CHSLOT			

Figure 14.3. Cache Lock Operation

15.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '001' or '011'.

Muxed 8-bit WRITE Without Bank Select

Figure 15.8. Multiplexed 8-bit MOVX without Bank Select Timing

17.1. Priority Crossbar Decoder

The Priority Crossbar Decoder (Figure 17.3) assigns a priority to each I/O function, starting at the top with UART0. When a digital resource is selected, the least-significant unassigned Port pin is assigned to that resource (excluding UART0, which will be assigned to specific port pins (P0.1 and P0.2 in the C8051F360/3 devices, P0.4 and P0.5 in the C8051F361/2/4/5/6/7/8/9 devices). If a Port pin is assigned, the Crossbar skips that pin when assigning the next selected resource. Additionally, the Crossbar will skip Port pins whose associated bits in the PnSKIP registers are set. The PnSKIP registers allow software to skip Port pins that are to be used for analog input, dedicated functions, or GPIO.

Important Note on Crossbar Configuration: If a Port pin is claimed by a peripheral without use of the Crossbar, its corresponding PnSKIP bit should be set. This applies to the port pins associated with the external oscillator, V_{REF} , external CNVSTR signal, IDA0, and any selected ADC or comparator inputs. The Crossbar skips selected pins as if they were already assigned, and moves to the next unassigned pin. Figure 17.3 shows the Crossbar Decoder priority with no Port pins skipped (P0SKIP, P1SKIP, P2SKIP, P3SKIP = 0x00); Figure 17.4 shows the Crossbar Decoder priority with the P1.0 and P1.1 pins skipped (P1SKIP = 0x03).

Figure 17.3. Crossbar Priority Decoder with No Pins Skipped

SFR Definition 17.6. P0SKIP: Port0 Skip

SFR Definition 17.7. P0MAT: Port0 Match

SFR Definition 17.8. P0MASK: Port0 Mask

Figure 18.4 shows the typical SCL generation described by Equation 18.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 18.1.

Figure 18.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 18.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time					
	T _{low} – 4 system clocks						
0	or	3 system clocks					
	1 system clock + s/w delay*						
1	11 system clocks	12 system clocks					
*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. The s/w							
delay occurs between the time SMB0DAT or ACK is written and when SI is cleared.							
Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.							

Table 18.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "18.3.3. SCL Low Timeout" on page 202). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 18.4). When a Free Timeout is detected, the interface will respond as if a STOP was detected (an interrupt will be generated, and STO will be set).

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
ТЗМН	T3ML	T2MH	T2ML	T1M	TOM	SCA1	SCA0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_			
Bit 7:	T3MH: Time	r 3 High Byt	e Clock Se	lect.							
	This bit selec	ts the clock	supplied to	o the Timer	3 high byte	e if Timer 3 i	is configure	ed in split 8-			
	bit timer mod	le. I 3MH is	ignored if	lime 3 is in	any other n	NODE. Koltin TM					
	1. Timer 3 hi	gn byte use	s the clock	m clock			COUN.				
Sit 6 [.]	T3MI Timer	3 Low Byte	e Clock Sel	ect							
	This bit selec	cts the clock	supplied t	o Timer 3. I	f Timer 3 is	configured	in split 8-b	it timer			
	mode, this bi	t selects the	e clock sup	plied to the	lower 8-bit	timer.	op o				
	0: Timer 3 lo	w byte uses	the clock of	defined by t	he T3XCLK	bit in TMR	3CN.				
	1: Timer 3 lo	w byte uses	s the system	n clock.							
3it 5:	T2MH: Time	r 2 High Byt	e Clock Se	lect.							
	This bit seled	cts the clock	supplied to	o the Timer	2 high byte	e if Timer 2 i	is configure	ed in split 8-			
	bit timer moc	le. T2MH is	ignored if	Timer 2 is ir	any other	mode.					
	0: Timer 2 hi	gh byte use	s the clock	defined by	the I2XCL	K bit in TMI	R2CN.				
⊇it ∕I∙	T2ML · Timer	gn byte use	s the syste	m clock.							
511 4.	This hit selec	z LOW Dyie	supplied to	o Timer 2 I	f Timer 2 is	configured	in split 8-b	it timer			
	mode this bit selects the clock supplied to timer 2. If timer 2 is configured in split 8-bit timer										
	0: Timer 2 lo	w byte uses	s the clock	defined by t	he T2XCLK	bit in TMR	2CN.				
	1: Timer 2 lo	w byte uses	the system	n clock.							
Bit 3:	T1M: Timer 7	T1M: Timer 1 Clock Select.									
	This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to										
	logic '1'.										
	0: Timer 1 uses the clock defined by the prescale bits, SCA1–SCA0.										
Bit 2.	TOM: Timer (Clock Sel	eni ciock.								
זו ב.	This bit selects the clock source supplied to Timer 0. TOM is ignored when C/TO is set to										
	logic '1'.					is ignored		10 001 10			
	0: Counter/Timer 0 uses the clock defined by the prescale bits, SCA1–SCA0.										
	1: Counter/Timer 0 uses the system clock.										
Bits 1–0:	SCA1-SCA0): Timer 0/1	Prescale B	Bits.							
	These bits co	ontrol the di	vision of the	e clock sup	plied to Tim	er 0 and/or	Timer 1 if	configured			
	to use presc	aled clock i	nputs.								
	SCA1	SCAO)	Pre	escaled Clo	ock					
	0	0	Syster	m clock divi	ded by 12						
	0	1	Syster	m clock divi	ded by 4						
	1	0	Syster	m clock divi	ded by 48						

SFR Definition 21.3. CKCON: Clock Control

21.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR3CN.3) defines the Timer 3 operation mode.

Timer 3 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 3 (and/or the PCA) is clocked by an external precision oscillator. Note that the external oscillator source divided by 8 is synchronized with the system clock.

21.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 21.6, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if EIE1.7 is set), an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

Figure 21.6. Timer 3 16-Bit Mode Block Diagram

22.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 22.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA0 capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to logic '1'. See Figure 22.3 for details on the PCA interrupt configuration.

Figure 22.3. PCA Interrupt Block Diagram

