

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	8051
Core Size	8-Bit
Speed	100MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	29
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f364-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

1.	System Overview	
	Figure 1.1. C8051F360/3 Block Diagram	20
	Figure 1.2. C8051F361/4/6/8 Block Diagram	.21
	Figure 1.3. C8051F362/5/7/9 Block Diagram	.21
	Figure 1.4. Comparison of Peak MCU Execution Speeds	.22
	Figure 1.5. On-Chip Clock and Reset	.23
	Figure 1.6. On-Board Memory Map	24
	Figure 1.7. Development/In-System Debug Diagram	25
	Figure 1.8. Digital Crossbar Diagram (Port 0 to Port 3)	.26
	Figure 1.9. PCA Block Diagram	.27
	Figure 1.10. PCA Block Diagram	.27
	Figure 1.11. 10-Bit ADC Block Diagram	.28
	Figure 1.12. Comparator0 Block Diagram	.29
	Figure 1.13. Comparator1 Block Diagram	.30
	Figure 1.14. IDA0 Functional Block Diagram	.31
2.	Absolute Maximum Ratings	
3.	Global Electrical Characteristics	
4.	Pinout and Package Definitions	
	Figure 4.1. TQFP-48 Pinout Diagram (Top View)	.39
	Figure 4.2. TQFP-48 Package Diagram	.40
	Figure 4.3. LQFP-32 Pinout Diagram (Top View)	.41
	Figure 4.4. LQFP-32 Package Diagram	.42
	Figure 4.5. QFN-28 Pinout Diagram (Top View)	.43
	Figure 4.6. QFN-28 Package Drawing	.44
	Figure 4.7. Typical QFN-28 Landing Diagram	45
_	Figure 4.8. QFN-28 Solder Paste Recommendation	.46
5.	10-Bit ADC (ADC0, C8051F360/1/2/6/7/8/9)	
	Figure 5.1. ADC0 Functional Block Diagram	.47
	Figure 5.2. Typical Temperature Sensor Transfer Function	.49
	Figure 5.3. Temperature Sensor Error with 1-Point Calibration	.50
	Figure 5.4. 10-Bit ADC Track and Conversion Example Timing	.52
	Figure 5.5. ADC0 Equivalent Input Circuits	53
	Figure 5.6. ADC Window Compare Example: Right-Justified Single-Ended Data	.60
	Figure 5.7. ADC Window Compare Example: Left-Justified Single-Ended Data	60
	Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data	61
•	Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data	61
6.	10-Bit Current Mode DAC (IDA0, C8051F360/1/2/6/7/8/9)	~~
	Figure 6.1. IDA0 Functional Block Diagram	63
_	Figure 6.2. IDA0 Data Word Mapping	64
1.	Voltage Reference (C8051F360/1/2/6///8/9)	~7
~	Figure 7.1. Voltage Reference Functional Block Diagram	67
δ.	Comparators	70
	Figure 8.1. Comparatoru Functional Block Diagram	70

OED Definition 47.40, DOMDIN, Dest0 Januar Made	405
SFR Definition 17.17. P2MDOUT: Port2 Output Mode	195
SFR Definition 17.18. P2SKIP: Port2 Skip	195
SFR Definition 17.19. P2MAT: Port2 Match	196
SFR Definition 17.20. P2MASK: Port2 Mask	196
SFR Definition 17.21. P3: Port3	196
SFR Definition 17.22. P3MDIN: Port3 Input Mode	197
SFR Definition 17.23. P3MDOUT: Port3 Output Mode	197
SFR Definition 17.24. P3SKIP: Port3 Skip	197
SFR Definition 17.25. P4: Port4	198
SFR Definition 17.26. P4MDOUT: Port4 Output Mode	198
SFR Definition 18.1. SMB0CF: SMBus Clock/Configuration	206
SFR Definition 18.2. SMB0CN: SMBus Control	. 208
SER Definition 18.3 SMB0DAT: SMBus Data	210
SER Definition 19.1 SCON0: Serial Port 0 Control	223
SER Definition 19.2 SBLIE0: Serial (LIARTO) Port Data Buffer	224
SER Definition 20.1 SPI0CEG: SPI0 Configuration	230
SER Definition 20.2 SPIOCN: SPIO Control	2/0
SER Definition 20.3. SPIOCKR: SPIO Clock Rate	2/1
SEP Definition 20.4. SPIODAT: SPIO Data	241
SER Definition 21.1. TCON: Timer Control	
SFR Definition 21.1. TOON. Timer Mode	
SFR Definition 21.2. TWOD. TIMer Wode	
SFR Definition 21.3. CKCON: Clock Control	252
SFR Definition 21.4. ILU: Timer 0 Low Byte	
SFR Definition 21.5. IL1: Timer 1 Low Byte	253
SFR Definition 21.6. THU: Timer 0 High Byte	253
SFR Definition 21.7. TH1: Timer 1 High Byte	253
SFR Definition 21.8. IMR2CN: Timer 2 Control	256
SFR Definition 21.9. TMR2RLL: Timer 2 Reload Register Low Byte	257
SFR Definition 21.10. TMR2RLH: Timer 2 Reload Register High Byte	257
SFR Definition 21.11. TMR2L: Timer 2 Low Byte	257
SFR Definition 21.12. TMR2H Timer 2 High Byte	257
SFR Definition 21.13. TMR3CN: Timer 3 Control	260
SFR Definition 21.14. TMR3RLL: Timer 3 Reload Register Low Byte	261
SFR Definition 21.15. TMR3RLH: Timer 3 Reload Register High Byte	261
SFR Definition 21.16. TMR3L: Timer 3 Low Byte	261
SFR Definition 21.17. TMR3H Timer 3 High Byte	261
SFR Definition 22.1. PCA0CN: PCA Control	274
SFR Definition 22.2. PCA0MD: PCA0 Mode	275
SFR Definition 22.3. PCA0CPMn: PCA0 Capture/Compare Mode	276
SFR Definition 22.4. PCA0L: PCA0 Counter/Timer Low Byte	277
SFR Definition 22.5. PCA0H: PCA0 Counter/Timer High Byte	277
SFR Definition 22.6. PCA0CPLn: PCA0 Capture Module Low Byte	277
SFR Definition 22.7. PCA0CPHn: PCA0 Capture Module High Byte	278
C2 Register Definition 24.1. C2ADD: C2 Address	283

C8051F360/1/2/3/4/5/6/7/8/9

Peripheral Electrical Characteristics	Page No.
ADC0 Electrical Characteristics	62
IDAC Electrical Characteristics	66
Voltage Reference Electrical Characteristics	69
Comparator Electrical Characteristics	79
Reset Electrical Characteristics	134
Flash Electrical Characteristics	144
Internal High Frequency Oscillator Electrical Characteristics	170
Internal Low Frequency Oscillator Electrical Characteristics	171
PLL Frequency Characteristics	181
Port I/O DC Electrical Characteristics	200

Table 3.2. Index to Electrical Characteristics Tables

C8051F360/1/2/3/4/5/6/7/8/9

5.4.2. Window Detector In Differential Mode

Figure 5.8 shows two example window comparisons for right-justified, differential data, with ADC0LTH:ADC0LTL = 0x0040 (+64d) and ADC0GTH:ADC0GTH = 0xFFFF (-1d). In differential mode, the measurable voltage between the input pins is between -VREF and VREF*(511/512). Output codes are represented as 10-bit 2's complement signed integers. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0xFFFF (-1d) < ADC0H:ADC0L < 0x0040 (64d)). In the right example, an AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0xFFFF (-1d) or ADC0H:ADC0L > 0x0040 (+64d)). Figure 5.9 shows an example using left-justified data with the same comparison values.

Figure 5.8. ADC Window Compare Example: Right-Justified Differential Data

Figure 5.9. ADC Window Compare Example: Left-Justified Differential Data

Figure 8.3. Comparator Hysteresis Plot

The Comparator hysteresis is software-programmable via the Comparator Control registers CPT0CN and CPT1CN. The user can program both the amount of hysteresis voltage (referred to the input voltage) and the positive and negative-going symmetry of this hysteresis around the threshold voltage.

The Comparator hysteresis is programmed using Bits3–0 in the Comparator Control registers CPT0CN and CPT1CN (shown in SFR Definition 8.1 and SFR Definition 8.4). The amount of negative hysteresis voltage is determined by the settings of the CP0HYN and CP1HYN bits. As shown in Figure 8.3, settings of 20, 10 or 5 mV of negative hysteresis can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hysteresis is determined by the setting the CP0HYP and CP1HYP bits.

Comparator interrupts can be generated on both rising-edge and falling-edge output transitions. (For Interrupt enable and priority control, see Section "10. Interrupt Handler" on page 107). The CP0FIF or CP1FIF flag is set to logic '1' upon a Comparator falling-edge occurrence, and the CP0RIF or CP1RIF flag is set to logic '1' upon the Comparator rising-edge occurrence. Once set, these bits remain set until cleared by software. The Comparator rising-edge interrupt mask is enabled by setting CP0RIE or CP1RIE to a logic '1'. The Comparator falling-edge interrupt mask is enabled by setting CP0FIE or CP1FIE to a logic '1'.

The output state of the Comparator can be obtained at any time by reading the CP0OUT or CP1OUT bit. The Comparator is enabled by setting the CP0EN or CP1EN bit to logic '1', and is disabled by clearing this bit to logic '0'.

Note that false rising edges and falling edges can be detected when the comparator is first powered on or if changes are made to the hysteresis or response time control bits. Therefore, it is recommended that the rising-edge and falling-edge flags be explicitly cleared to logic '0' a short time after the comparator is enabled or its mode bits have been changed. This Power Up Time is specified in Table 8.1 on page 79.

9.4.6.3. SFR Page Stack Example

The following is an example that shows the operation of the SFR Page Stack during interrupts.

In this example, the SFR Page Control is left in the default enabled state (i.e., SFRPGEN = 1), and the CIP-51 is executing in-line code that is writing values to OSCICN (SFR "OSCICN", located at address 0xB6 on SFR Page 0x0F). The device is also using the Programmable Counter Array (PCA) and the 10-bit ADC (ADC0) window comparator to monitor a voltage. The PCA is timing a critical control function in its interrupt service routine (ISR), so its interrupt is enabled and is set to *high* priority. The ADC0 is monitoring a voltage that is less important, but to minimize the software overhead its window comparator is being used with an associated ISR that is set to *low* priority. At this point, the SFR page is set to access the OSCICN SFR (SFRPAGE = 0x0F). See Figure 9.4 below.

Figure 9.4. SFR Page Stack While Using SFR Page 0x0F To Access OSCICN

While CIP-51 executes in-line code (writing values to OSCICN in this example), ADC0 Window Comparator Interrupt occurs. The CIP-51 vectors to the ADC0 Window Comparator ISR and pushes the current SFR Page value (SFR Page 0x0F) into SFRNEXT in the SFR Page Stack. SFR page 0x00 is then automatically placed in the SFRPAGE register. SFRPAGE is considered the "top" of the SFR Page Stack. Software can now access the ADC0 SFR's. Software may switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the ADC0 ISR to access SFR's that are not on SFR Page 0x00. See Figure 9.5 below.

9.4.7. Register Descriptions

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic '1'. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic '0', selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the data sheet associated with their corresponding system function.

SFR Definition 9.7. DPH: Data Pointer High Byte

Table 13.2. Flash Electrical Characteristics

 V_{DD} = 2.7 to 3.6 V; –40 to +85 °C.

Parameter	Conditions	Min	Тур	Max	Units		
Flash Size	C8051F360/1/2/3/4/5/6/7	32768* 16384			Bytes		
	C8051F368/9						
Endurance		20 k	250 k		Erase/Write		
Erase Cycle Time		8	10	12	ms		
Write Cycle Time		37	47	57	μs		
*Note: 1024 Bytes at location 0x7C00 to 0x7FFF are reserved.							

15. External Data Memory Interface and On-Chip XRAM

For C8051F36x devices, 1k Bytes of RAM are included on-chip and mapped into the external data memory space (XRAM). Additionally, an External Memory Interface (EMIF) is available on the C8051F360/3 devices, which can be used to access off-chip data memories and memory-mapped devices connected to the GPIO ports. The external memory space may be accessed using the external move instruction (MOVX) and the data pointer (DPTR), or using the MOVX indirect addressing mode using R0 or R1. If the MOVX instruction is used with an 8-bit address operand (such as @R1), then the high byte of the 16-bit address is provided by the External Memory Interface Control Register (EMIOCN, shown in SFR Definition 15.1). Note: the MOVX instruction can also be used for writing to the FLASH memory. See Section "13. Flash Memory" on page 135 for details. The MOVX instruction accesses XRAM by default.

15.1. Accessing XRAM

The XRAM memory space is accessed using the MOVX instruction. The MOVX instruction has two forms, both of which use an indirect addressing method. The first method uses the Data Pointer, DPTR, a 16-bit register which contains the effective address of the XRAM location to be read from or written to. The second method uses R0 or R1 in combination with the EMI0CN register to generate the effective XRAM address. Examples of both of these methods are given below.

15.1.1. 16-Bit MOVX Example

The 16-bit form of the MOVX instruction accesses the memory location pointed to by the contents of the DPTR register. The following series of instructions reads the value of the byte at address 0x1234 into the accumulator A:

MOVDPTR, #1234h; load DPTR with 16-bit address to read (0x1234)MOVXA, @DPTR; load contents of 0x1234 into accumulator A

The above example uses the 16-bit immediate MOV instruction to set the contents of DPTR. Alternately, the DPTR can be accessed through the SFR registers DPH, which contains the upper 8-bits of DPTR, and DPL, which contains the lower 8-bits of DPTR.

15.1.2. 8-Bit MOVX Example

The 8-bit form of the MOVX instruction uses the contents of the EMI0CN SFR to determine the upper 8-bits of the effective address to be accessed and the contents of R0 or R1 to determine the lower 8-bits of the effective address to be accessed. The following series of instructions read the contents of the byte at address 0x1234 into the accumulator A.

MOV	EMIOCN, #12h	; load high byte of address into EMIOCN
MOV	R0, #34h	; load low byte of address into R0 (or R1)
MOVX	a, @R0	; load contents of 0x1234 into accumulator A

15.5. Memory Mode Selection

The external data memory space can be configured in one of four modes, shown in Figure 15.3, based on the EMIF Mode bits in the EMI0CF register (SFR Definition 15.2). These modes are summarized below. More information about the different modes can be found in Section "15.6. Timing" on page 159.

Figure 15.3. EMIF Operating Modes

15.5.1. Internal XRAM Only

When EMI0CF.[3:2] are set to '00', all MOVX instructions will target the internal XRAM space on the device. Memory accesses to addresses beyond the populated space will wrap on 1k boundaries. As an example, the addresses 0x0400 and 0x1000 both evaluate to address 0x0000 in on-chip XRAM space.

- 8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address and R0 or R1 to determine the low-byte of the effective address.
- 16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.

15.5.2. Split Mode without Bank Select

When EMI0CF.[3:2] are set to '01', the XRAM memory map is split into two areas, on-chip space and off-chip space.

- Effective addresses below the internal XRAM size boundary will access on-chip XRAM space.
- Effective addresses above the internal XRAM size boundary will access off-chip space.
- 8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-chip or off-chip. However, in the "No Bank Select" mode, an 8-bit MOVX operation will not drive the upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate the upper address bits at will by setting the Port state directly via the port latches. This behavior is in contrast with "Split Mode with Bank Select" described below. The lower 8-bits of the Address Bus A[7:0] are driven, determined by R0 or R1.
- 16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.

16. Oscillators

The C8051F36x devices include a programmable internal high-frequency oscillator, a programmable internal low-frequency oscillator, and an external oscillator drive circuit. The internal high-frequency oscillator can be enabled, disabled, and calibrated using the OSCICN and OSCICL registers, as shown in Figure 16.1. The internal low-frequency oscillator can be enabled/disabled and calibrated using the OSCLCN register, as shown in SFR Definition 16.3. Both internal oscillators offer a selectable post-scaling feature. The system clock can be sourced by the external oscillator circuit, either internal oscillator, or the on-chip phase-locked loop (PLL). The internal oscillator's electrical specifications are given in Table 16.1 on page 170 and Table 16.2 on page 171.

Figure 16.1. Oscillator Diagram

16.1. Programmable Internal High-Frequency (H-F) Oscillator

All devices include a calibrated internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 16.1. OSCICL is factory calibrated to obtain a 24.5 MHz frequency.

Electrical specifications for the precision internal oscillator are given in Table 16.1 on page 170 and Table 16.2 on page 171. Note that the system clock may be derived from the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN. The divide value defaults to 8 following a reset.

16.3. External Oscillator Drive Circuit

The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/ resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 16.1. A 10 M Ω resistor also must be wired across the XTAL1 and XTAL2 pins for the crystal/resonator configuration. In RC, capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 pin as shown in Option 2, 3, or 4 of Figure 16.1. The type of external oscillator must be selected in the OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Definition 16.5).

Important Note on External Oscillator Usage: Port pins must be configured when using the external oscillator circuit. When the external oscillator drive circuit is enabled in crystal/resonator mode, Port pins P0.5 and P0.6 (C8051F360/3) or P0.2 and P0.3 (C8051F361/2/4/5/6/7/8/9) are used as XTAL1 and XTAL2 respectively. When the external oscillator drive circuit is enabled in capacitor, RC, or CMOS clock mode, Port pin P0.6 (C8051F360/3) or P0.3 (C8051F361/2/4/5/6/7/8/9) is used as XTAL2. The Port I/O Crossbar should be configured to skip the Port pins used by the oscillator circuit; see Section "17.1. Priority Crossbar Decoder" on page 184 for Crossbar configuration. Additionally, when using the external oscillator circuit in crystal/resonator, capacitor, or RC mode, the associated Port pins should be configured as **analog inputs**. In CMOS clock mode, the associated pin should be configured as a **digital input**. See Section "17.2. Port I/O Initialization" on page 186 for details on Port input mode selection.

16.4. System Clock Selection

The internal oscillator requires little start-up time, and may be enabled and selected as the system clock in the same write to OSCICN. External crystals and ceramic resonators typically require a start-up time before they are settled and ready for use as the system clock. The Crystal Valid Flag (XTLVLD in register OSCXCN) is set to '1' by hardware when the external oscillator is settled. To avoid reading a false XTLVLD, in crystal mode software should delay at least 1 ms between enabling the external oscillator and checking XTLVLD. RC and C modes typically require no startup time. The PLL also requires time to lock onto the desired frequency, and the PLL Lock Flag (PLLLCK in register PLLOCN) is set to '1' by hardware once the PLL is locked on the correct frequency.

The CLKSL1-0 bits in register CLKSEL select which oscillator source generates the system clock. CLK-SL1-0 must be set to '01' for the system clock to run from the external oscillator; however the external oscillator may still clock certain peripherals, such as the timers and PCA, when the internal oscillator or the PLL is selected as the system clock. The system clock may be switched on-the-fly between the internal and external oscillators or the PLL, so long as the selected oscillator source is enabled and settled.

16.8.3. Powering on and Initializing the PLL

To set up and use the PLL as the system clock after power-up of the device, the following procedure should be implemented:

- Step 1. Ensure that the reference clock to be used (internal or external) is running and stable.
- Step 2. Set the PLLSRC bit (PLL0CN.2) to select the desired clock source for the PLL.
- Step 3. Program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "13. Flash Memory" on page 135).
- Step 4. Enable power to the PLL by setting PLLPWR (PLL0CN.0) to '1'.
- Step 5. Program the PLL0DIV register to produce the divided reference frequency to the PLL.
- Step 6. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided reference frequency.
- Step 7. Program the PLLICO1–0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output frequency.
- Step 8. Program the PLL0MUL register to the desired clock multiplication factor.
- Step 9. Wait at least 5 µs, to provide a fast frequency lock.
- Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to '1'.
- Step 11. Poll PLLLCK (PLL0CN.4) until it changes from '0' to '1'.
- Step 12. Switch the System Clock source to the PLL using the CLKSEL register.

If the PLL characteristics need to be changed when the PLL is already running, the following procedure should be implemented:

- Step 1. The system clock should first be switched to either the internal oscillator or an external clock source that is running and stable, using the CLKSEL register.
- Step 2. Ensure that the reference clock to be used for the new PLL setting (internal or external) is running and stable.
- Step 3. Set the PLLSRC bit (PLL0CN.2) to select the new clock source for the PLL.
- Step 4. If moving to a faster frequency, program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "13. Flash Memory" on page 135).
- Step 5. Disable the PLL by setting PLLEN (PLL0CN.1) to '0'.
- Step 6. Program the PLL0DIV register to produce the divided reference frequency to the PLL.
- Step 7. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided reference frequency.
- Step 8. Program the PLLICO1-0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output frequency.
- Step 9. Program the PLLOMUL register to the desired clock multiplication factor.
- Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to '1'.
- Step 11. Poll PLLLCK (PLL0CN.4) until it changes from '0' to '1'.
- Step 12. Switch the System Clock source to the PLL using the CLKSEL register.
- Step 13. If moving to a slower frequency, program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "13. Flash Memory" on page 135). Important Note: Cache reads, cache writes, and the prefetch engine should be disabled whenever the FLRT bits are changed to a lower setting.

SFR Page: all pages SFR Address: 0xC1								
R/W	R/W	R	R/W	R/W	R/W	R/W	R/W	Reset Value
ENSME	3 INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS1	SMBCS0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
Bit 7:	ENSMB: SM	1Bus Enable						
	This bit enab	oles/disables	s the SMBu	s interface.	When enal	bled, the int	erface const	antly mon-
	itors the SD	A and SCL p	pins.					
	0: SMBus in	terface disal	bled.					
	1: SMBus in	terface enat	bled.					
BIL 0.	When this hi	s Slave Innib	II. nio '1' tho S	MPue deer	not gonor	ata an intarr	unt whon old	
		ffectively re	moves the	SMRue ela	o from the	hue Maeto	r Mode inter	
	not affected	enectively re		SiviDus sia		bus. Maste	i mode inter	
	0: SMBus S	ave Mode e	nabled.					
	1: SMBus S	lave Mode ir	hibited.					
Bit 5:	BUSY: SMB	us Busy Ind	icator.					
	This bit is se	et to logic '1'	by hardwar	e when a t	ransfer is in	progress. I	t is cleared	to logic '0'
	when a STC	P or free-tin	neout is ser	ised.				
Bit 4:	EXTHOLD:	SMBus Setu	ip and Hold	Time Exte	nsion Enab	le.		
	This bit cont	rols the SDA	A setup and	hold times	according	to:		
	0: SDA Exte	nded Setup	and Hold T	imes disab	led.			
D:4 0.	1: SDA Exte	nded Setup	and Hold I	imes enabl	ed.			
BIT 3:	SMBIUE: S		I Imeout De	tection Ena	IDIE.	1, the CME	un farana T	imor 2 to
	reload while			Timer 3 to	count when		low If Time	
	figured to Sr	lit Mode on	ly the High	Ryte of the	timer is he	Id in reload	while SCL i	s high
	Timer 3 sho	uld be progra	ammed to c	enerate int	errupts at 2	25 ms. and t	he Timer 3 i	nterrupt
	service routi	ne should re	eset SMBus	communic	ation.			
Bit 2:	SMBFTE: S	MBus Free T	Timeout Det	tection Ena	ble.			
	When this b	it is set to log	gic '1', the b	ous will be o	considered	free if SCL	and SDA re	main high
	for more tha	n 10 SMBus	clock sour	ce periods.				
Bits 1–0:	SMBCS1-S	MBCS0: SM	Bus Clock	Source Sel	ection.			
	These two b	its select the	e SMBus clo	ock source	which is us	sed to gene	rate the SM	Bus bit
	rate. The se	lected devic	e should be	configured	according	to Equation	18.1.	
	SMBCS1	SMBCSO	SWE		Source			
		0	T	imer 0 Ove				
	0	1	, ' Т	imer 1 Ove	rflow			
	1	0	Timer	2 High Byte	e Overflow			
	1	1	Timer	2 Low Bvte	Overflow			
		-	1]		

SFR Definition 18.1. SMB0CF: SMBus Clock/Configuration

18.5. SMBus Transfer Modes

The SMBus interface may be configured to operate as master and/or slave. At any particular time, it will be operating in one of the following four modes: Master Transmitter, Master Receiver, Slave Transmitter, or Slave Receiver. The SMBus interface enters Master Mode any time a START is generated, and remains in Master Mode until it loses an arbitration or generates a STOP. An SMBus interrupt is generated at the end of all SMBus byte frames; however, note that the interrupt is generated before the ACK cycle when operating as a receiver, and after the ACK cycle when operating as a transmitter.

18.5.1. Master Transmitter Mode

Serial data is transmitted on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic '0' (WRITE). The master then transmits one or more bytes of serial data. After each byte is transmitted, an acknowledge bit is generated by the slave. The transfer is ended when the STO bit is set and a STOP is generated. Note that the interface will switch to Master Receiver Mode if SMB0DAT is not written following a Master Transmitter interrupt. Figure 18.5 shows a typical Master Transmitter sequence. Two transmit data bytes are shown, though any number of bytes may be transmitted. Notice that the 'data byte transferred' interrupts occur **after** the ACK cycle in this mode.

Figure 18.5. Typical Master Transmitter Sequence

20.5. Serial Clock Timing

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 20.5. For slave mode, the clock and data relationships are shown in Figure 20.6 and Figure 20.7. Note that CKPHA must be set to '0' on both the master and slave SPI when communicating between two of the following devices: C8051F04x, C8051F06x, C8051F12x, C8051F31x, C8051F32x, C8051F33x, and C8051F36x.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 20.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

Figure 20.5. Master Mode Data/Clock Timing

SFR Definition	21.2.	TMOD:	Timer	Mode
----------------	-------	-------	-------	------

SFR Page: all pages SFR Address: 0x89										
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
GATE1	C/T1	T1M1	T1M0	GATE0	C/T0	T0M1	T0M0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-		
Bit 7:	GATE1: Ti	mer 1 Gate	e Control.							
	0: Timer 1	enabled w	/hen TR1 = 1 i	rrespective	of /INT1 log	jic level.				
	1: Timer 1 enabled only when TR1 = 1 AND /INT1 is active as defined by bit IN1PL in regis-									
D // 0	ter IT01CF	F (see SFR	Definition 10.	7).						
Bit 6:	C/T1: COU	nter/ I imer	1 Select.		ala ala£a a al la					
	0: Timer F		mer 1 increme	ented by clo	CK defined b	by I 1 IVI DIt (CKCON.4)	innerst nin		
	(T1)	Function:	Timer Tincrei	nented by r	lign-to-low t	ransitions c	on external	input pin		
Bite 5_1.	(11). T1M1_T1N	10. Timor	1 Mode Select							
Dit3 J-4.	These bits	select the	Timer 1 opera	ation mode						
	T1M1	T1M0		Mod	е					
	0	0	Мос	le 0: 13-bit o	counter/time	er				
	0	1	Мос	le 1: 16-bit o	counter/time	er				
	1	0	Mode 2: 8-b	it counter/ti	mer with au	to-reload				
	1	1	M	ode 3: Time	r 1 inactive					
Bit 3:	GATE0: II	mer 0 Gate	e Control.			·				
	0: Timer 0	enabled w		rrespective	OT /IN I U IOC	IC IEVEI.				
		enabled o	Definition 10	= 1 AND /II 7)	NTU IS active	e as denned	a by bit line	PL in regis-		
Bit 2.		nter/Timer	Select	7).						
Dit 2.	0. Timer F	unction: Ti	mer () increme	nted by clo	ck defined h	w TOM bit (
	1. Counter	· Function	Timer 0 increi	mented by clo	high-to-low t	ransitions of	on external	input pin		
	(T0).	r anotion.		nontou by i			in oxtornal	input pin		
Bits 1–0:	TOM1-TOM	M0: Timer (0 Mode Select							
	These bits	select the	Timer 0 opera	ation mode.						
	T0M1	ТОМО		Mode	9					
0 0 Mode 0: 13-bit counter/timer										
0 1 Mode 1: 16-bit counter/timer										
	1 0 Mode 2: 8-bit counter/timer with auto-reload									
	1	1	Mode 3	3: Two 8-bit	counter/time	ers				

SFR Page: SFR Addres	all pages s: 0xC8	(bit addr	essable)								
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value			
TF2H	TF2L	TF2LEN	TF2CEN	T2SPLIT	TR2	_	T2XCLK	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	1			
Bit 7:	TF2H: Time	r 2 High Byt	e Overflow	Flag.							
	Set by hard	ware when t	he Timer 2	high byte ov	/erflows fro	m 0xFF to	0x00. In 16	bit mode,			
	this will occu	ir when Tim	er 2 overflo	ws from 0xF	FFF to 0x0	000. When	the Timer 2	interrupt is			
	enabled, set	ting this bit	causes the	CPU to vec	tor to the I	imer 2 inter	rrupt service	e routine.			
D:4 C.	TF2H IS NOT	automatical	ly cleared t	by nardware	and must r	be cleared	by software				
BIL 0:	Set by bord	2 LOW Byte	bo Timor 2	-lag.	orflowe from			thia hit ia			
	set an inter	unt will be a	ne ninei z Ionoratod if	TF2LEN is	eniows iton	nor 2 interri	ints are ena	hlad TF2			
	will set when	the low by	te overflow	s regardless	of the Time	er 2 mode	This hit is n	ot automat-			
	ically cleared	d by hardwa	ire.	brogaraiooo				or automat			
Bit 5:	TF2LEN: Tir	ner 2 Low E	syte Interru	ot Enable.							
	This bit enal	oles/disable	s Timer 2 L	ow Byte inte	errupts. If T	F2LEN is s	et and Time	r 2 inter-			
	rupts are en	abled, an in	terrupt will	be generate	d when the	low byte o	f Timer 2 ov	erflows.			
	0: Timer 2 L	ow Byte inte	errupts disa	bled.							
	1: Timer 2 L	ow Byte inte	errupts enal	oled.							
Bit 4:	TF2CEN: Ti	mer 2 Low-I	Frequency	Oscillator Ca	apture Enat	ole.					
	This bit enab	oles/disable	s Timer 2 Lo	ow-Frequen	cy Oscillato	or Capture I	Mode. If TF2	2CEN is set			
	and Timer 2	interrupts a	re enabled	, an interrup	t will be gei	nerated on	a falling ed	ge of the			
	low-frequence		output, and	the curren		er value in	IMR2H: IMI				
	Copied to Th	/IKZKLH: I IV	IRZRLL. SE	e Section	licabled	ors on pag	je 168 lor m	ore details.			
	1: Timer 2 L	ow-Frequer	cy Oscillat	or Capture c	nabled						
Bit 3		mer 2 Solit I	Mode Enabl		ilabieu.						
Dit 0.	When this bi	it is set. Tim	er 2 operat	es as two 8	bit timers v	vith auto-re	load.				
	0: Timer 2 o	perates in 1	6-bit auto-r	eload mode							
	1: Timer 2 o	, perates as t	wo 8-bit au	to-reload tin	ners.						
Bit 2:	TR2: Timer 2	2 Run Conti	ol.								
	This bit enab	oles/disable	s Timer 2. I	n 8-bit mode	e, this bit er	nables/disa	bles TMR2H	l only;			
	TMR2L is al	ways enabl	ed in this m	ode.							
	0: Timer 2 d	isabled.									
	1: Timer 2 e	nabled.	1.20. 1								
BIT 1:		ead = UD. V	vrite = don'i	t care.							
DIL U.	TZAGLA. III	cts the exten	rnal clock s	elect.	mor 2 If Tir	nor 2 is in 9	R-hit mode	thic hit			
	selects the e	external osc	illator clock	source for h	oth timer h	Ntes Howe	over the Tim	ner 2 Clock			
	Select bits (T2MH and T	2MI in rea	ister CKCO	N) may still	be used to	select betw	veen the			
	external cloc	k and the s	vstem cloci	k for either t	mer.						
	0: Timer 2 e	xternal cloc	k selection	is the syster	n clock divi	ded by 12.					
	1: Timer 2 e	xternal cloc	k selection	is the exterr	al clock div	/ided by 8.	Note that th	e external			
	oscillator s	source divid	ed by 8 is s	ynchronized	d with the s	ystem clocl	k.				

SFR Definition 21.8. TMR2CN: Timer 2 Control

SFR Definition 21.9. TMR2RLL: Timer 2 Reload Register Low Byte

SFR Definition 21.10. TMR2RLH: Timer 2 Reload Register High Byte

SFR Definition 21.11. TMR2L: Timer 2 Low Byte

SFR Definition 21.12. TMR2H Timer 2 High Byte

