

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/l²C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	25
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 17x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f367-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

nels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F360DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F36x MCUs. The kit includes software with a developer's studio and debugger, an integrated 8051 assembler, and a debug adapter. It also has a target application board with the associated MCU installed and prototyping area, plus the required cables, and wall-mount power supply. The Development Kit requires a PC running Windows98SE or later.

The Silicon Labs IDE interface is a vastly superior developing and debugging configuration, compared to standard MCU emulators that use on-board "ICE Chips" and require the MCU in the application board to be socketed. Silicon Labs' debug paradigm increases ease of use and preserves the performance of the precision analog peripherals.

Figure 1.7. Development/In-System Debug Diagram

1.4. Programmable Digital I/O and Crossbar

C8051F36x devices include up to 39 I/O pins (four byte-wide Ports and one 7-bit-wide Port). The C8051F36x Ports behave like typical 8051 Ports with a few enhancements. Each Port pin may be configured as an analog input or a digital I/O pin. Pins selected as digital I/Os may additionally be configured for push-pull or open-drain output. The "weak pullups" that are fixed on typical 8051 devices may be globally disabled, providing power savings capabilities.

2. Absolute Maximum Ratings

Table 2.1. Absolute Maximum Ratings

Parameter	Conditions	Min	Тур	Max	Units
Ambient temperature under bias		-55	—	125	°C
Storage Temperature		-65	—	150	°C
Voltage on any Port I/O Pin or RST with respect to GND		-0.3	_	5.8	V
Voltage on V_{DD} with respect to GND		-0.3	_	4.2	V
Maximum Total current through V _{DD} or GND		—	—	500	mA
Maximum output current sunk by RST or any Port pin		—	—	100	mA
Note: Stresses above those listed under "Absolute	Maximum Ratings" r	nay cause p	bermanent o	damage to t	he device.

This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Figure 5.3. Temperature Sensor Error with 1-Point Calibration

7. Voltage Reference (C8051F360/1/2/6/7/8/9)

The Voltage reference MUX on the C8051F360/1/2/6/7/8/9 devices is configurable to use an externally connected voltage reference, the internal reference voltage generator, or the V_{DD} power supply voltage (see Figure 7.1). The REFSL bit in the Reference Control register (REF0CN) selects the reference source. For an external source or the internal reference, REFSL should be set to '0'. To use V_{DD} as the reference source, REFSL should be set to '1'.

The BIASE bit enables the internal voltage bias generator, which is used by the ADC, Temperature Sensor, internal oscillators, and Current DAC. This bias is enabled when any of the aforementioned peripherals are enabled. The bias generator may be enabled manually by writing a '1' to the BIASE bit in register REF0CN; see SFR Definition 7.1 for REF0CN register details. The electrical specifications for the voltage reference circuit are given in Table 7.1.

The internal voltage reference circuit consists of a 1.2 V, temperature stable bandgap voltage reference generator and a gain-of-two output buffer amplifier. The internal voltage reference can be driven out on the VREF pin by setting the REFBE bit in register REF0CN to a '1' (see SFR Definition 7.1). The maximum load seen by the VREF pin must be less than 200 μ A to GND. When using the internal voltage reference, bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to GND. If the internal reference is not used, the REFBE bit should be cleared to '0'. Electrical specifications for the internal voltage reference are given in Table 7.1.

Important Note about the VREF Pin: Port pin P0.3 on the C8051F360 device and P0.0 on C8051F361/2/6/7/89 devices is used as the external VREF input and as an output for the internal VREF. When using either an external voltage reference or the internal reference circuitry, the port pin should be configured as an analog pin, and skipped by the Digital Crossbar. To configure the port pin as an analog pin, set the appropriate bit to '0' in register P0MDIN. To configure the Crossbar to skip the VREF port pin, set the appropriate bit to '1' in register P0SKIP. Refer to Section "17. Port Input/Output" on page 182 for

Figure 7.1. Voltage Reference Functional Block Diagram

SFR Page: SFR Address	all pages :: 0x9C										
R	R	R/W R/W R R R/W R/W Reset Va									
-	-	CP1RIE	RIE CP1FIE – – CP1MD1 CP1MD0 0000001								
Bit7	Bit6	Bit5 Bit4 Bit3 Bit2 Bit1 Bit0									
Bits 7–6: Bit 5: Bit 4:	 ts 7–6: UNUSED. Read = 00b, Write = don't care. t 5: CP1RIE: Comparator1 Rising-Edge Interrupt Enable. 0: Comparator1 Rising-edge interrupt disabled. 1: Comparator1 Rising-edge interrupt enabled. t 4: CP1FIE: Comparator1 Falling-Edge Interrupt Enable. 0: Comparator1 Falling-edge interrupt disabled. 1: Comparator1 Falling-edge interrupt enabled. 										
Bits 1–0:	CP1MD1-C	P1MD0: Cor	nparator1 N	lode Selec	t						
2.10 . 01	These bits s	elect the res	ponse time	for Compa	rator1.						
			•	·							
	Mode	CP1MD1	CP1MD) CP1 Re	esponse Ti	me (TYP)					
	0	0	0		100 ns						
	1	0	1		175 ns						
	2 1 0 320 ns										
	3 1 1 1050 ns										

SFR Definition 8.6. CPT1MD: Comparator1 Mode Selection

Mnemonic	Description	Bytes	Clock Cycles
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
	Boolean Manipulation	l	
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3*
JNC rel	Jump if Carry is not set	2	2/3*
JB bit, rel	Jump if direct bit is set	3	3/4*
JNB bit, rel	Jump if direct bit is not set	3	3/4*
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4*
	Program Branching	·	•
ACALL addr11	Absolute subroutine call	2	3*
LCALL addr16	Long subroutine call	3	4*
RET	Return from subroutine	1	5*
RETI	Return from interrupt	1	5*
AJMP addr11	Absolute jump	2	3*
LJMP addr16	Long jump	3	4*
SJMP rel	Short jump (relative address)	2	3*
JMP @A+DPTR	Jump indirect relative to DPTR	1	3*

Table 9.1. CIP-51 Instruction Set Summary (Continued)

SFR Definition 11.7. MAC0ACC3: MAC0 Accumulator Byte 3

SFR Definition 11.8. MAC0ACC2: MAC0 Accumulator Byte 2

SFR Definition 11.9. MAC0ACC1: MAC0 Accumulator Byte 1

15.6.2. Multiplexed Mode

15.6.2.1.16-bit MOVX: EMI0CF[4:2] = '001', '010', or '011'.

Figure 15.7. Multiplexed 16-bit MOVX Timing

15.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = '001' or '011'.

Muxed 8-bit WRITE Without Bank Select

Figure 15.8. Multiplexed 8-bit MOVX without Bank Select Timing

16.8. Phase-Locked Loop (PLL)

A Phase-Locked-Loop (PLL) is included, which is used to multiply the internal oscillator or an external clock source to achieve higher CPU operating frequencies. The PLL circuitry is designed to produce an output frequency between 25 MHz and 100 MHz, from a divided reference frequency between 5 MHz and 30 MHz. A block diagram of the PLL is shown in Figure 16.3.

Figure 16.3. PLL Block Diagram

16.8.1. PLL Input Clock and Pre-divider

The PLL circuitry can derive its reference clock from either the internal oscillator or an external clock source. The PLLSRC bit (PLL0CN.2) controls which clock source is used for the reference clock (see SFR Definition 16.6). If PLLSRC is set to '0', the internal oscillator source is used. Note that the internal oscillator divide factor (as specified by bits IFCN1-0 in register OSCICN) will also apply to this clock. When PLL-SRC is set to '1', an external oscillator source will be used. The external oscillator should be active and settled before it is selected as a reference clock for the PLL circuit. The reference clock is divided down prior to the PLL circuit, according to the contents of the PLLM4-0 bits in the PLL Pre-divider Register (PLL0DIV), shown in SFR Definition 16.7.

16.8.2. PLL Multiplication and Output Clock

The PLL circuitry will multiply the divided reference clock by the multiplication factor stored in the PLL0MUL register shown in SFR Definition 16.8. To accomplish this, it uses a feedback loop consisting of a phase/frequency detector, a loop filter, and a current-controlled oscillator (ICO). It is important to configure the loop filter and the ICO for the correct frequency ranges. The PLLLP3–0 bits (PLL0FLT.3–0) should be set according to the divided reference clock frequency. Likewise, the PLLICO1–0 bits (PLL0FLT.5–4) should be set according to the desired output frequency range. SFR Definition 16.9 describes the proper settings to use for the PLLLP3–0 and PLLICO1–0 bits. When the PLL is locked and stable at the desired frequency, the PLLLCK bit (PLL0CN.5) will be set to a '1'. The resulting PLL frequency will be set according to the equation:

PLL Frequency = Reference Frequency $\times \frac{PLLN}{PLLM}$

Where "Reference Frequency" is the selected source clock frequency, PLLN is the PLL Multiplier, and PLLM is the PLL Pre-divider.

SFR Definition 16.8. PLL0MUL: PLL Clock Scaler

SFR Page: SFR Address:	F 0xB1							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PLLN7	PLLN6	PLLN5	PLLN4	PLLN3	PLLN2	PLLN1	PLLN0	00000001
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	-
Bits 7–0: F 7 2 t	PLLN7–0: P These bits s any non-zero o '00000000	LL Multiplie elect the mu o value, the 0b', the mul	r. ultiplication multiplication tiplication fa	factor of the on factor wi actor will be	e divided PL Il be equal t equal to 25	L reference o the value	∋ clock. Wł in PLLN7-(ien set to 0. When set

SFR Definition 16.9. PLL0FLT: PLL Filter

R/ VV	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value	
_	-	PLLICO1	PLLICO0	PLLLP3	PLLLP2	PLLLP1	PLLLP0	00110001	
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
Bits 7–6:	UNUSED. R	ead = 00b.	Write = don	't care.					
Bits 5-4:	PLLICO1-0:	PLL Currer	nt-Controlled	d Oscillator	Control Bits	i.			
	Selection is	based on th	ne desired o	utput freque	ency, accore	ding to the	following ta	able:	
	PL	L Output 0	Clock		PLLIC	D1-0			
		65–100 MI	Ηz		00				
		45–80 MH	lz		01				
		30–60 MF	lz		10				
	25–50 MHz 11								
		25-50 MF	12		11				
Bits 3–0:	PLLLP3-0: P	25–50 MF	Iz	Bits.	11				
Bits 3–0:	PLLLP3-0: F Selection is	PLL Loop Fi based on th	Iter Control ne divided P	Bits. LL referenc	e clock, acc	cording to t	he followin	g table:	
Bits 3–0:	PLLLP3-0: F Selection is Divided	25–50 MF PLL Loop Fi based on th PLL Refere	Iter Control he divided P ence Clock	Bits. LL referenc	e clock, acc PLLLF	cording to th	he followin	g table:	
Bits 3–0:	PLLLP3-0: F Selection is Divided	25–50 MF PLL Loop Fi based on th PLL Refer 19–30 MF	Iter Control ne divided P ence Clock	Bits. LL referenc	e clock, acc PLLLF 000	cording to tl ?3-0 1	he followin	g table:	
Bits 3–0:	PLLLP3-0: F Selection is Divided	25–50 MF PLL Loop Fi based on th PLL Refer 19–30 MF 12.2–19.5 M	Iter Control ne divided P ence Clock Iz //Hz	Bits. LL referenc	e clock, acc PLLLF 000 001	cording to th '3-0 1 1	he followin	g table:	
Bits 3–0:	PLLLP3-0: F Selection is Divided	25–50 MF PLL Loop Fi based on th PLL Refer 19–30 MF 12.2–19.5 M 7.8–12.5 M	Iter Control he divided P ence Clock Iz IHz Hz	Bits. LL referenc	e clock, acc PLLLF 000 001 011	cording to th 23-0 1 1	he followin	g table:	

19.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic '1'; in a data byte, the ninth bit is always set to logic '0'.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic '1' (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data bytes, thereby ignoring the data. Once the entire message is received, the addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 19.6. UART Multi-Processor Mode Interconnect Diagram

SFR Definition 19.2. SBUF0: Serial (UART0) Port Data Buffer

SFR Page: SFR Address:	all pages 0x99							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
Bits 7–0: S T c s t	SBUF0[7:0]: This SFR ac data is writte sion. Writing ents of the r	Serial Data cesses two in to SBUF(a byte to S eceive latcl	Buffer Bits registers; a), it goes to BUF0 initia n.	57–0 (MSB- transmit sh the transmi tes the trans	-LSB) ift register a t shift regis smission. A	and a receiv ter and is h read of SB	ve latch regi eld for seria UF0 return	ister. When al transmis- s the con-

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 20.9. SPI Master Timing (CKPHA = 1)

SFR Page:	all pages	(bit addı	ressable)											
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value						
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00000000						
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0							
	7: TE1: Timer 1 Overflow Eleg													
Bit 7:	7: TF1: Timer 1 Overflow Flag. Set by hardware when Timer 1 overflows. This flag can be cleared by software but is auto-													
	Set by hardware when Timer 1 overflows. This flag can be cleared by software but is auto-													
	matically cleared when the CPU vectors to the Timer 1 interrupt service routine.													
	U: NO TIMER 1 OVERFLOW DETECTED.													
Bit 6:	1: Timer 1 has overflowed. TR1: Timer 1 Run Control.													
	0: Timer 1 di	isabled.	-											
	1: Timer 1 e	nabled.												
Bit 5:	TF0: Timer (Overflow	Flag.											
	Set by hardw	vare when	Timer 0 ove	rflows. This	flag can be	e cleared by	software	but is auto-						
	matically cle	ared when	the CPU ve	ctors to the	limer 0 inte	errupt servi	ce routine	e .						
	1. Timer 0 h	o overflow	uelecieu. ed											
Bit 4:	TR0: Timer (D Run Cont	rol.											
	0: Timer 0 di	isabled.												
	1: Timer 0 e	nabled.												
Bit 3:	IE1: Externa	I Interrupt 1	l.											
	This flag is s	et by hardv	vare when a	n edge/leve	el of type de	fined by IT1	is detect	ed. It can be						
	cleared by s	oftware but	is automati	cally cleare	d when the	CPU vector	', when /I	zxternal						
	as defined b	v hit IN1PI	in register	T01CE (see	= 0, this hay SFR Defin	y is set to i	when /II	NT T IS active						
Bit 2:	IT1: Interrup	t 1 Type Se	elect.			111011 10.7).								
	This bit sele	cts whether	the configu	ired /INT1 ii	nterrupt will	be edge or	level sen	sitive. /INT1						
	is configured	d active low	or high by t	he IN1PL b	it in the IT0	1CF registe	er (see SF	R Definition						
	10.7).		_											
	0: /INT1 is le	evel triggere	ed.											
Dit 1.	1: /IN I 1 IS 6	age trigger	ed.											
DIL I.	This flag is s	et by hardw). vare when a	n edae/leve	of type det	fined by IT() is detect	ed It can be						
	cleared by s	oftware but	is automati	cally cleare	d when the	CPU vector	rs to the E	External						
	Interrupt 0 s	ervice routi	ne if IT0 = 1	. When IT0	= 0, this flag	g is set to '1	' when /I	NT0 is active						
	as defined b	y bit IN0PL	in register	T01CF (see	e SFR Defin	nition 10.7).								
Bit 0:	IT0: Interrup	t 0 Type Se	elect.											
	This bit sele	cts whether	the configu	ired /INT0 ii	nterrupt will	be edge or	level sen	sitive. /INT0						
	is configured	active low	or high by f	ine INOPL b	it in register	r 1101CF (s	ee SFR D	perinition						
	10.7). 0. /INTO is le	wel triagere	h											
	1: /INT0 is e	dae triaaer	ed.											
		3												

SFR Definition 21.1. TCON: Timer Control

21.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers operate in auto-reload mode as shown in Figure 21.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or the clock defined by the Timer 2 External Clock Select bit (T2XCLK in TMR2CN), as follows:

T2MH	T2XCLK	TMR2H Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

T2ML	T2XCLK	TMR2L Clock Source
0	0	SYSCLK/12
0	1	External Clock/8
1	Х	SYSCLK

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is generated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags are not cleared by hardware and must be manually cleared by software.

Figure 21.5. Timer 2 8-Bit Mode Block Diagram

22.2. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: Edge-triggered Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation.

Table 22.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA0 capture/compare module's operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are recognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to logic '1'. See Figure 22.3 for details on the PCA interrupt configuration.

Figure 22.3. PCA Interrupt Block Diagram

SFR Page: SFR Addres	all pages s: 0xD9											
R/W	R/W	R/	W	R/W	R/W	R/W	R/W	R/W	Reset Value			
CIDL	WDT	E WDI	LCK	_	CPS2	CPS1	CPS0	ECF	01000000			
Bit7	Bit6	Bi	t5	Bit4	Bit3	Bit2	Bit1	Bit0				
D 11 D												
Bit 7:	CIDL: PC	AU Coun	iter/lime	r Idle Co	ntrol.							
	Specifies	PCA0 be	ehavior v	vhen CP	U IS IN IDIE I	VIODE.		ta Isla Ma	- la			
		continues		andod w	hally while t	ne system o			de.			
Dit 6.	I. POAU operation is suspended while the system controller is in Idle Mode. WDTF: Watchdog Timer Enable											
DIL 0.	VVDTE. Watchdog Timer Enable											
	IT THIS DIT IS SET, PCA MODULE 5 IS USED AS THE WATCHOOD TIMER.											
		lodule 5 (anahlad	as Watel	ndoa Timer							
Bit 5		Watchdo	a Timer	Lock	luog miner.							
Dit 0.	This bit lo	ocks/unlo	cks the \	Natchdo	n Timer Ena	able. When	WDLCK is a	set, the W	/atchdog			
	Timer ma	v not be	disabled	until the	next svste	m reset.			atoriaog			
	0: Watch	dog Time	r Enable	unlocke	d.							
	1: Watch	dog Time	r Enable	locked.								
Bit 4:	UNUSED). Read =	0b, Writ	e = don'i	care.							
Bits 3–1:	CPS2-CF	PS0: PCA	0 Count	er/Timer	Pulse Sele	ct.						
	These bit	ts select t	he timeb	ase sou	rce for the I	PCA0 count	er					
	CPS2	CPS1	CPS0			Tim	ebase					
	0	0	0	Svsten	n clock divid	led by 12						
	0	0	1	Systen	n clock divid	led by 4						
	0	1	0	Timer) overflow)						
	_			High-to	-low transit	ions on EC	(max rate	= svstem	clock			
	0	1	1	divideo	by 4)		,	,				
	1	0	0	Systen	n clock							
	1	0	1	Extern	al clock divi	ded by 8 (s	ynchronized	d with syst	tem clock)			
	1	1	0	Reserv	red		, 					
	1	1	1	Reserv	red							
	Note: Ex	ternal clo	ck divided	bv 8 is s	vnchronized	with the svst	em clock.					
				- ,	,	· · · · · · · · · · · · · · · · · · ·						
Bit 0:	ECF: PC	A Counte	r/Timer	Overflow	Interrupt E	nable.						
	This bit s	ets the m	asking c	of the PC	A0 Counter	/Timer Ove	rflow (CF) ii	nterrupt.				
	0: Disable	e the CF	interrupt					-				
	1: Enable	e a PCA0	Counter	/Timer C	verflow inte	errupt reque	st when CF	(PCA0C	N.7) is set.			
Note:Whe	en the WDT	E bit is set	to '1', the	PCA0M	D register ca	nnot be mod	ified. To char	nge the cor	ntents of the			
	PCA0MD	register, th	e Watcho	log limer	must first be	disabled.						
ronomid register, the watchuog nimer must mist be disabled.												

SFR Definition 22.2. PCA0MD: PCA0 Mode

SFR Definition 22.4. PCA0L: PCA0 Counter/Timer Low Byte

SFR Definition 22.5. PCA0H: PCA0 Counter/Timer High Byte

SFR Definition 22.6. PCA0CPLn: PCA0 Capture Module Low Byte

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

- Updated specification tables with most recently available characterization data.
- Fixed an error with the SYSCLK specification in Table 3.1, "Global Electrical Characteristics," on page 33.
- Corrected the name of the PMAT bit in SFR Definition 10.2. IP: Interrupt Priority.
- Corrected the reset value for SFR Definition 22.2. PCA0MD: PCA0 Mode.

Revision 0.2 to Revision 1.0

- Updated specification tables with characterization data.
- Fixed Table 1.1, "Product Selection Guide," on page 19 to reflect the correct number of Port I/O pins for the C8051F361/2/4/5.
- Updated Section "10. Interrupt Handler" on page 107.
- Added note describing EA change behavior when followed by single cycle instruction.
- Updated SFR Definition 11.1
 - Changed the MAC0SC (MAC0CF.5) bit description to correctly refer to the MAC0SD bit.
- Updated SFR Definition 15.2.
 - Changed the EMI0CF description to properly describe the 1k XRAM boundaries.
- Added Table 16.2, "Internal Low Frequency Oscillator Electrical Characteristics," on page 171.
- Updated SFR Definition 16.9:
 - Specified that the undefined states for PLLLP3–0 are RESERVED.
- Added Table 19.7 and Table 19.8 on page 231 for UART Baud Rates when using the PLL.
- Updated Table 22.1, "PCA Timebase Input Options," on page 263:
 Specified that the undefined states of CPS2–0 are RESERVED.
- Added Revision B to "Revision Specific Behavior" on page 279.

Revision 1.0 to Revision 1.1

- Updated ordering table with Revision C part numbers.
- Updated Figure 17.2. 'Port I/O Cell Block Diagram' on page 183 to refer to VDD instead of VIO.
- Added Revision C to "Revision Specific Behavior" on page 279.
- Added Revision C to the REVID C2 register in C2 Register Definition 24.3.
- Updated "Digital Supply Current (Stop Mode, shutdown)" typical value in Table 3.1, "Global Electrical Characteristics," on page 33.
- Updated "Missing Clock Detector Timeout" typical value in Table 12.1, "Reset Electrical Characteristics," on page 134.

