

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 21x10b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f368-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Part Number	MIPS (Peak)	Flash Memory (kB)	RAM (bytes)	2-cycle 16 by 16 MAC	Calibrated Internal 24.5 MHz Oscillator	Internal 80 kHz Oscillator	External Memory Interface	SMBus/I ² C	Enhanced SPI	UART	Timers (16-bit)	Programmable Counter Array	Digital Port I/Os	10-bit 200ksps ADC	10-bit Current Output DAC	Internal Voltage Reference	Temperature Sensor	Analog Comparators	Lead-free (RoHS Compliant)	Package
C8051F360-C-GQ	100	32	1024	\checkmark	\checkmark	~	~	\checkmark	\checkmark	\checkmark	4	\checkmark	39	\checkmark	\checkmark	\checkmark	\checkmark	2	V	TQFP-48
C8051F361-C-GQ ¹	100	32	1024	~	~	~	—	~	~	~	4	~	29	~	~	~	~	2	\checkmark	LQFP-32
C8051F362-C-GM ²	100	32	1024	~	\checkmark	~	—	\checkmark	\checkmark	~	4	\checkmark	25	~	\checkmark	~	~	2	~	QFN-28
C8051F363-C-GQ	100	32	1024	~	~	~	~	\checkmark	~	~	4	~	39	_				2	~	TQFP-48
C8051F364-C-GQ ¹	100	32	1024	~	~	~	—	~	\checkmark	~	4	~	29	_	_	_	_	2	V	LQFP-32
C8051F365-C-GM ²	100	32	1024	\checkmark	\checkmark	~		\checkmark	\checkmark	\checkmark	4	\checkmark	25			_		2	~	QFN-28
C8051F366-C-GQ ¹	50	32	1024	~	\checkmark	~	—	\checkmark	~	~	4	\checkmark	29	\checkmark	~	\checkmark	~	2	~	LQFP-32
C8051F367-C-GM ²	50	32	1024	~	\checkmark	~	_	~	~	~	4	\checkmark	25	\checkmark	\checkmark	\checkmark	\checkmark	2	\checkmark	QFN-28
C8051F368-C-GQ ¹	50	16	1024	~	\checkmark	~	_	~	~	~	4	\checkmark	29	\checkmark	\checkmark	\checkmark	\checkmark	2	\checkmark	LQFP-32
C8051F369-C-GM ²	50	16	1024	~	\checkmark	~	_	~	~	~	4	\checkmark	25	\checkmark	\checkmark	\checkmark	\checkmark	2	\checkmark	QFN-28
Notes: 1. Pin compatible	e with th	ne C8	3051F3	310-0	GQ.															

Table 1.1. Product Selection Guide

2. Pin compatible with the C8051F311-GM.

real-time clock functionality, where the PCA is clocked by an external source while the internal oscillator drives the system clock.

Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture, Software Timer, High Speed Output, 8- or 16-bit Pulse Width Modulator, or Frequency Output. Additionally, Capture/Compare Module 5 offers watchdog timer (WDT) capabilities. Following a system reset, Module 5 is configured and enabled in WDT mode. The PCA Capture/Compare Module I/O and External Clock Input may be routed to Port I/O via the Digital Crossbar.

1.7. 10-Bit Analog to Digital Converter

The C8051F360/1/2/6/7/8/9 devices include an on-chip 10-bit SAR ADC with up to 21 channels for the differential input multiplexer. With a maximum throughput of 200 ksps, the ADC offers true 10-bit linearity with an INL and DNL of ±1 LSB. The ADC system includes a configurable analog multiplexer that selects both positive and negative ADC inputs. Ports1-3 are available as an ADC inputs; additionally, the on-chip Temperature Sensor output and the power supply voltage (V_{DD}) are available as ADC inputs. User firmware may shut down the ADC to save power.

Conversions can be started in six ways: a software command, an overflow of Timer 0, 1, 2, or 3, or an external convert start signal (CNVSTR). This flexibility allows the start of conversion to be triggered by software events, a periodic signal (timer overflows), or external HW signals. Conversion completions are indi-

4. Pinout and Package Definitions

Table 4.1. Pin Definitions for	or the C8051F36x
--------------------------------	------------------

Name	Pin 'F360/3 (48-pin)	Pin 'F361/4/6/8 (32-pin)	Pin 'F362/5/7/9 (28-pin)	Туре	Description
V _{DD}	19, 31, 43	4	4		Power Supply Voltage.
GND	18, 30, 42	3	3		Ground.
AGND	6	—	—		Analog Ground.
AV+	7	_	_		Analog Supply Voltage. Must be tied to +2.7 to +3.6 V.
RST/	8	5	5	D I/O	Device Reset. Open-drain output of internal POR or V_{DD} Monitor. An external source can initiate a system reset by driving this pin low for at least 10 μ s.
C2CK				D I/O	Clock signal for the C2 Debug Interface.
P4.6/	9	—	_	D I/O or A In	Port 4.6. See Section 17 for a complete description.
C2D				D I/O	Bi-directional data signal for the C2 Debug Interface.
P3.0/	_	6	6	D I/O or A In	Port 3.0. See Section 17 for a complete description.
C2D				D I/O	Bi-directional data signal for the C2 Debug Interface.
P0.0	5	2	2	D I/O or A In	Port 0.0. See Section 17 for a complete description.
P0.1	4	1	1	D I/O or A In	Port 0.1. See Section 17 for a complete description.
P0.2	3	32	28	D I/O or A In	Port 0.2. See Section 17 for a complete description.
P0.3	2	31	27	D I/O or A In	Port 0.3. See Section 17 for a complete description.
P0.4	1	30	26	D I/O or A In	Port 0.4. See Section 17 for a complete description.
P0.5	48	29	25	D I/O or A In	Port 0.5. See Section 17 for a complete description.
P0.6	47	28	24	D I/O or A In	Port 0.6. See Section 17 for a complete description.
P0.7	46	27	23	D I/O or A In	Port 0.7. See Section 17 for a complete description.

SFR Definition 5.6. ADC0CN: ADC0 Control

SFR Page: SFR Addres	all pages s: 0xE8	(bit addı	essable)					
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
AD0EN	AD0TM	AD0INT	AD0BUSY	AD0WINT	AD0CM2	AD0CM1	AD0CM0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	<u> </u>
Bit 7:	AD0EN: AD0	C0 Enable E	Bit.					
	0: ADC0 Dis	abled. ADC	0 is in low-po	ower shutdo	own.			
	1: ADC0 Ena	abled. ADC) is active an	d ready for	data conve	rsions.		
DIL D.	0. Normal Tr	ock Mode: N		is anablad	tracking is	continuous	unless a co	nversion is
	in progress			is enableu,	tracking is t	continuous		
	1: Low-powe	r Track Mo	de: Tracking	Defined by	AD0CM2-0	bits (see b	elow).	
Bit 5:	ADOINT: ADO	C0 Convers	ion Complet	e Interrupt	Flag.	,	,	
	0: ADC0 has	not comple	eted a data c	onversion s	since the las	t time AD0	INT was cle	ared.
	1: ADC0 has	completed	a data conve	ersion.				
Bit 4:	ADOBUSY: A	ADC0 Busy	Bit.					
		version is c	omplete or a	conversion	n is not curre	antly in proc		NT is set to
	logic '1' on	the falling	edge of AD0	BUSY.		sindy in prog		13 361 10
	1: ADC0 con	version is i	n progress.					
	Write:							
	0: No Effect.							
D '' 0	1: Initiates A	DC0 Conve	rsion if AD00	CM2-0 = 00	00b			
BIT 3:		DCU Windo	w Compare	Interrupt FI	ag. oot occurroo	t sinco this	flag was las	st cloared
	1. ADC0 Wir	ndow Comp	arison Data r	match has i	not occurred		llay was las	si cleareu.
Bits 2–0:	AD0CM2-0:	ADC0 Star	of Conversi	on Mode S	elect.			
	When AD0T	M = 0:						
	000: ADC0 c	onversion i	nitiated on ev	very write o	f '1' to AD0	BUSY.		
	001: ADC0 c	onversion i	nitiated on ov	verflow of T	ïmer 0.			
	010: ADC0 c	onversion i	nitiated on ov	verflow of I	imer 2.			
		onversion il	nitiated on ov	ing edge c	imer 1. If external C			
	101: ADC0 c	onversion i	nitiated on ov	verflow of T	imer 3.			
	11x: Reserve	ed.						
	When AD0T	M = 1:						
	000: Tracking	g initiated o	n write of '1'	to AD0BUS	SY and lasts	3 SAR clo	cks, followe	d by con-
	Versio	n. 				AD alaaka f	مالمين مالمي	
	001: Tracking	g initiated o	n overflow of	Timer 0 ar	10 lasts 3 SA	AR CIOCKS, I AR clocks f	followed by	conversion.
	011: Tracking	g initiated o	n overflow of	Timer 1 ar	nd lasts 3 SA	AR clocks, f	followed by	conversion.
	100: ADC0 ti	racks only v	/hen CNVST	R input is l	ogic low; co	nversion sta	arts on risin	g CNVSTR
l	101: Tracking	g initiated o	n overflow of	Timer 3 ar	nd lasts 3 SA	AR clocks, f	ollowed by	conversion.
	11x: Reserve	ed.						

Figure 8.2. Comparator1 Functional Block Diagram

A Comparator output can be polled in software, used as an interrupt source, and/or routed to a Port pin. When routed to a Port pin, the Comparator outputs are available asynchronous or synchronous to the system clock; the asynchronous outputs are available even in STOP mode (with no system clock active). When disabled, the Comparator outputs (if assigned to a Port I/O pin via the Crossbar) default to the logic low state, and their supply current falls to less than 100 nA. See Section "17.1. Priority Crossbar Decoder" on page 184 for details on configuring Comparator outputs via the digital Crossbar. Comparator inputs can be externally driven from -0.25 V to (V_{DD}) + 0.25 V without damage or upset. The complete Comparator electrical specifications are given in Table 8.1.

The Comparator response time may be configured in software via the CPT0MD and CPT1MD registers (see SFR Definition 8.3 and SFR Definition 8.6). Selecting a longer response time reduces the Comparator supply current. See Table 8.1 for complete timing and power consumption specifications.

SFR Page: SFR Addres	all pages s: 0x9A										
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value			
CP1EN	CP10UT	CP1RIF	CP1FIF	CP1HYP1	CP1HYP0	CP1HYN1	CP1HYN0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
Bit 7:	CP1EN: Comparator1 Enable Bit. 0: Comparator1 Disabled. 1: Comparator1 Enabled.										
Bit 6:	CP1OUT: Comparator 1 Enabled. CP1OUT: Comparator 1 Output State Flag. 0: Voltage on CP1+ < CP1 1: Voltage on CP1+ > CP1										
Bit 5:	 Voltage on CP1+ > CP1 CP1RIF: Comparator1 Rising-Edge Flag. Must be cleared by software. No Comparator1 Rising Edge has occurred since this flag was last cleared. Comparator1 Rising Edge has occurred. 										
Bit 4:	CP1FIF: Cor 0: No Compa 1: Comparate	nparator1 F arator1 Falli or1 Falling-	alling-Edg ng-Edge h Edge has d	e Flag. Mus as occurred	t be cleared since this fla	by software ag was last	e. cleared.				
Bits 3–2:	 Comparator1 Falling-Edge has occurred. CP1HYP1–0: Comparator1 Positive Hysteresis Control Bits. 00: Positive Hysteresis Disabled. 01: Positive Hysteresis = 5 mV. 10: Positive Hysteresis = 10 mV. 										
Bits 1–0:	CP1HYN1–0 00: Negative 01: Negative 10: Negative 11: Negative): Comparat Hysteresis Hysteresis Hysteresis Hysteresis	zor1 Negati Disabled. = 5 mV. = 10 mV. = 20 mV.	ve Hysteres	is Control Bi	ts.					

SFR Definition 8.4. CPT1CN: Comparator1 Control

SFR Definition 11.10. MAC0ACC0: MAC0 Accumulator Byte 0

SFR Definition 11.11. MAC0OVR: MAC0 Accumulator Overflow

SFR Definition 11.12. MACORNDH: MAC0 Rounding Register High Byte

13. Flash Memory

All devices include either 32 kB (C8051F360/1/2/3/4/5/6/7) or 16 kB (C8051F368/9) of on-chip, reprogrammable Flash memory for program code or non-volatile data storage. The Flash memory can be programmed in-system through the C2 interface, or by software using the MOVX write instructions. Once cleared to logic '0', a Flash bit must be erased to set it back to logic '1'. Bytes should be erased (set to 0xFF) before being reprogrammed. Flash write and erase operations are automatically timed by hardware for proper execution. During a Flash erase or write, the FLBUSY bit in the FLSTAT register is set to '1' (see SFR Definition 14.5). During this time, instructions that are located in the prefetch buffer or the branch target cache can be executed, but the processor will stall until the erase or write is completed if instruction data must be fetched from Flash memory. Interrupts that have been pre-loaded into the branch target cache can also be serviced at this time, if the current code is also executing from the prefetch engine or cache memory. Any interrupts that are not pre-loaded into cache, or that occur while the core is halted, will be held in a pending state during the Flash write/erase operation, and serviced in priority order once the Flash operation has completed. Refer to Table 13.2 for the electrical characteristics of the Flash memory.

13.1. Programming the Flash Memory

The simplest means of programming the Flash memory is through the C2 interface using programming tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initialized device. For details on the C2 commands to program Flash memory, see Section "24. C2 Interface" on page 283. For detailed guidelines on writing or erasing Flash from firmware, please see Section "13.3. Flash Write and Erase Guidelines" on page 140.

The Flash memory can be programmed from software using the MOVX write instruction with the address and data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX, Flash write operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to logic '1'. This directs the MOVX writes to Flash memory instead of to XRAM, which is the default target. The PSWE bit remains set until cleared by software. To avoid errant Flash writes, it is recommended that interrupts be disabled while the PSWE bit is logic '1'.

Flash memory is read using the MOVC instruction. MOVX reads are always directed to XRAM, regardless of the state of PSWE.

Note: To ensure the integrity of the Flash contents, the on-chip V_{DD} Monitor must be enabled in any system that includes code that writes and/or erases Flash memory from software. Furthermore, there should be no delay between enabling the V_{DD} Monitor and enabling the V_{DD} Monitor as a reset source. Any attempt to write or erase Flash memory while the V_{DD} Monitor disabled will cause a Flash Error device reset.

A write to Flash memory can clear bits but cannot set them; only an erase operation can set bits in Flash. A byte location to be programmed must be erased before a new value can be written.

Write/Erase timing is automatically controlled by hardware. Note that on the 32 k Flash devices, 1024 bytes beginning at location 0x7C00 are reserved. Flash writes and erases targeting the reserved area should be avoided.

13.1.1. Flash Lock and Key Functions

Flash writes and erases by user software are protected with a lock and key function. The Flash Lock and Key Register (FLKEY) must be written with the correct key codes, in sequence, before Flash operations may be performed. The key codes are: 0xA5, 0xF1. The timing does not matter, but the codes must be written in order. If the key codes are written out of order, or the wrong codes are written, Flash writes and

The replacement algorithm is selected with the Cache Algorithm bit, CHALGM (CCH0TN.3). When CHALGM is cleared to '0', the cache will use the rebound algorithm to replace cache locations. The rebound algorithm replaces locations in order from the beginning of cache memory to the end, and then from the end of cache memory to the beginning. When CHALGM is set to '1', the cache will use the pseudo-random algorithm to replace cache locations. The pseudo-random algorithm uses a pseudo-random number to determine which cache location to replace. The cache can be manually emptied by writing a '1' to the CHFLUSH bit (CCH0CN.4).

14.2. Cache and Prefetch Optimization

By default, the branch target cache is configured to provide code speed improvements for a broad range of circumstances. **In most applications, the cache control registers should be left in their reset states.** Sometimes it is desirable to optimize the execution time of a specific routine or critical timing loop. The branch target cache includes options to exclude caching of certain types of data, as well as the ability to pre-load and lock time-critical branch locations to optimize execution speed.

The most basic level of cache control is implemented with the Cache Miss Penalty Threshold bits, CHMSTH (CCH0TN.1–0). If the processor is stalled during a prefetch operation for more clock cycles than the number stored in CHMSTH, the requested data will be cached when it becomes available. The CHMSTH bits are set to zero by default, meaning that any time the processor is stalled, the new data will be cached. If, for example, CHMSTH is equal to 2, any cache miss causing a delay of 3 or 4 clock cycles will be cached, while a cache miss causing a delay of 1–2 clock cycles will not be cached.

15.2. Configuring the External Memory Interface

Configuring the External Memory Interface consists of five steps:

- 1. Configure the Output Modes of the associated port pins as either push-pull or open-drain (push-pull is most common), and skip the associated pins in the crossbar.
- 2. Configure Port latches to "park" the EMIF pins in a dormant state (usually by setting them to logic '1').
- 3. Select Multiplexed mode or Non-multiplexed mode.
- 4. Select the memory mode (on-chip only, split mode without bank select, split mode with bank select, or off-chip only).
- 5. Set up timing to interface with off-chip memory or peripherals.

Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition 15.2.

15.3. Port Configuration

The External Memory Interface appears on Ports 1, 2 (non-multiplexed mode only), 3, and 4 when it is used for off-chip memory access. When the EMIF is used in multiplexed mode, the Crossbar should be configured to skip over the ALE control line (P0.0) using the P0SKIP register. The other control lines, /RD (P4.4) and /WR (P4.5), are not available on the Crossbar and do not need to be skipped. For more information about configuring the Crossbar, see Section "17.3. General Purpose Port I/O" on page 189. The EMIF pinout is shown in Table 15.1 on page 154.

The External Memory Interface claims the associated Port pins for memory operations ONLY during the execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port pins reverts to the Port latches or to the Crossbar settings for those pins. See Section "17. Port Input/Output" on page 182 for more information about the Crossbar and Port operation and configuration. **The Port latches should be explicitly configured to 'park' the External Memory Interface pins in a dormant state, most commonly by setting them to a logic '1'**.

During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the drivers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases, the output modes of all EMIF pins should be configured for push-pull mode.

16.8.3. Powering on and Initializing the PLL

To set up and use the PLL as the system clock after power-up of the device, the following procedure should be implemented:

- Step 1. Ensure that the reference clock to be used (internal or external) is running and stable.
- Step 2. Set the PLLSRC bit (PLL0CN.2) to select the desired clock source for the PLL.
- Step 3. Program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "13. Flash Memory" on page 135).
- Step 4. Enable power to the PLL by setting PLLPWR (PLL0CN.0) to '1'.
- Step 5. Program the PLL0DIV register to produce the divided reference frequency to the PLL.
- Step 6. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided reference frequency.
- Step 7. Program the PLLICO1–0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output frequency.
- Step 8. Program the PLLOMUL register to the desired clock multiplication factor.
- Step 9. Wait at least 5 µs, to provide a fast frequency lock.
- Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to '1'.
- Step 11. Poll PLLLCK (PLL0CN.4) until it changes from '0' to '1'.
- Step 12. Switch the System Clock source to the PLL using the CLKSEL register.

If the PLL characteristics need to be changed when the PLL is already running, the following procedure should be implemented:

- Step 1. The system clock should first be switched to either the internal oscillator or an external clock source that is running and stable, using the CLKSEL register.
- Step 2. Ensure that the reference clock to be used for the new PLL setting (internal or external) is running and stable.
- Step 3. Set the PLLSRC bit (PLL0CN.2) to select the new clock source for the PLL.
- Step 4. If moving to a faster frequency, program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "13. Flash Memory" on page 135).
- Step 5. Disable the PLL by setting PLLEN (PLL0CN.1) to '0'.
- Step 6. Program the PLL0DIV register to produce the divided reference frequency to the PLL.
- Step 7. Program the PLLLP3–0 bits (PLL0FLT.3–0) to the appropriate range for the divided reference frequency.
- Step 8. Program the PLLICO1-0 bits (PLL0FLT.5–4) to the appropriate range for the PLL output frequency.
- Step 9. Program the PLLOMUL register to the desired clock multiplication factor.
- Step 10. Enable the PLL by setting PLLEN (PLL0CN.1) to '1'.
- Step 11. Poll PLLLCK (PLL0CN.4) until it changes from '0' to '1'.
- Step 12. Switch the System Clock source to the PLL using the CLKSEL register.
- Step 13. If moving to a slower frequency, program the Flash read timing bits, FLRT (FLSCL.5–4) to the appropriate value for the new clock rate (see Section "13. Flash Memory" on page 135). Important Note: Cache reads, cache writes, and the prefetch engine should be disabled whenever the FLRT bits are changed to a lower setting.

18.1. Supporting Documents

It is assumed the reader is familiar with or has access to the following supporting documents:

- 1. The I²C-Bus and How to Use It (including specifications), Philips Semiconductor.
- 2. The I²C-Bus Specification—Version 2.0, Philips Semiconductor.
- 3. System Management Bus Specification—Version 1.1, SBS Implementers Forum.

18.2. SMBus Configuration

Figure 18.2 shows a typical SMBus configuration. The SMBus specification allows any recessive voltage between 3.0 V and 5.0 V; different devices on the bus may operate at different voltage levels. The bi-directional SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or open-collector output for both the SCL and SDA lines, so that both are pulled high (recessive state) when the bus is free. The maximum number of devices on the bus is limited only by the requirement that the rise and fall times on the bus not exceed 300 ns and 1000 ns, respectively.

Figure 18.2. Typical SMBus Configuration

18.3. SMBus Operation

Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ). The master device initiates both types of data transfers and provides the serial clock pulses on SCL. The SMBus interface may operate as a master or a slave, and multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitration. Note that it is not necessary to specify one device as the Master in a system; any device who transmits a START and a slave address becomes the master for the duration of that transfer.

A typical SMBus transaction consists of a START condition followed by an address byte (Bits7–1: 7-bit slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see Figure 18.3). If the receiving device does not ACK, the transmitting device will read a NACK (not acknowledge), which is a high SDA during a high SCL.

Figure 18.4 shows the typical SCL generation described by Equation 18.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 18.1.

Figure 18.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 18.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time							
	T _{low} – 4 system clocks								
0	or	3 system clocks							
	1 system clock + s/w delay*								
1	11 system clocks	12 system clocks							
*Note: Setup Tir	ne for ACK bit transmissions and the	e MSB of all data transfers. The s/w							
delay occ	urs between the time SMB0DAT or A	CK is written and when SI is cleared.							
Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.									

Table 18.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "18.3.3. SCL Low Timeout" on page 202). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 18.4). When a Free Timeout is detected, the interface will respond as if a STOP was detected (an interrupt will be generated, and STO will be set).

18.4.3. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic '0', as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

SFR Page: SFR Address:	all pages : 0xC2							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	_
Bits 7–0:	SMB0DAT: S The SMB0D, face or a byte from or write logic '1'. The SI flag is not should not at	MBus Data AT register e that has juto this regi serial data set, the systempt to ac	a. contains a l ust been red ster whene in the regis stem may b ccess this re	byte of data ceived on th ver the SI so ter remains e in the pro egister.	to be trans e SMBus s erial interru stable as lo cess of shif	mitted on th erial interfac pt flag (SME ong as the S ting data in/	ne SMBus s ce. The CPI 30CN.0) is s SI flag is set /out and the	erial inter- U can read set to . When the e CPU

SFR Definition 18.3. SMB0DAT: SMBus Data

18.5.2. Master Receiver Mode

Serial data is received on SDA while the serial clock is output on SCL. The SMBus interface generates the START condition and transmits the first byte containing the address of the target slave and the data direction bit. In this case the data direction bit (R/W) will be logic '1' (READ). Serial data is then received from the slave on SDA while the SMBus outputs the serial clock. The slave transmits one or more bytes of serial data. After each byte is received, ACKRQ is set to '1' and an interrupt is generated. Software must write the ACK bit (SMB0CN.1) to define the outgoing acknowledge value (Note: writing a '1' to the ACK bit generates an ACK; writing a '0' generates a NACK). Software should write a '0' to the ACK bit after the last byte is received, to transmit a NACK. The interface exits Master Receiver Mode after the STO bit is set and a STOP is generated. The interface will switch to Master Transmitter Mode if SMB0DAT is written while an active Master Receiver. Figure 18.6 shows a typical Master Receiver sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur **before** the ACK cycle in this mode.

Figure 18.6. Typical Master Receiver Sequence

20.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

SFR Page: SFR Addres	all pages										
R	R/W	R/W	R/W	R	R	R	R	Reset Value			
SPIBS	Y MSTEN	CKPHA	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT	00000111			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
		,									
Bit 7:	SPIBSY: SP	I Busy (read	d only).					1			
Bit 6.	I NIS DIT IS SE	t to logic "1" stor Mode I	when a SF	ri transfer is	in progress	s (Master o	r slave ivioc	le).			
DIL U.	0. Disable m	aster mode	Onerate i	n slave mor	۵						
	1: Enable master mode. Operate as a master.										
Bit 5:	5: CKPHA: SPI0 Clock Phase.										
	This bit cont	rols the SPI	0 clock pha	ase.							
	0: Data cent	ered on firs	t edge of S	CK period.*							
	1: Data cente	ered on sec	cond edge of	of SCK perio	od.*						
Bit 4:	CKPOL: SPI	0 Clock Po	larity.								
	This bit cont	rols the SP	0 clock pol	arity.							
	0: SCK line l	ow in idle s	tate.								
	1: SCK line I	high in idle	state.	1							
Bit 3:	SLVSEL: SI	ave Selecte	d Flag (read	a oniy). The NSS nin	ic low india	oting SDI0	ic the coloc	tod clava It			
	is cleared to	logic '0' wh	en NSS is	high (slave	not selecter	alling SF10	does not inc	licate the			
	instantaneou	is value at t	the NSS pir	h. but rather	a de-alitche	ed version	of the pin in	put.			
Bit 2:	NSSIN: NSS	Instantane	ous Pin Inp	out (read on	ly).		o p	P			
	This bit mimi	ics the insta	Antaneous v	alue that is	present on	the NSS p	ort pin at the	e time that			
	the register i	s read. This	s input is no	ot de-glitche	d.						
Bit 1:	SRMT: Shift	Register Er	npty (Valid	in Slave Mo	de, read or	nly).					
	I his bit will t	be set to log	JIC '1' when	all data has	been trans	sterred in/ou	ut of the shi	ft register,			
	and there is	no new info	to logic '0'	allable to re	ad from the	transmit b	the chift ro	e to the			
	the transmit	huffer or hv	a transition	n on SCK	a Dyle 15 lla			gister nom			
	NOTE: SRM	T = 1 when	in Master I	Mode.							
Bit 0:	RXBMT: Red	ceive Buffer	Empty (Va	lid in Slave	Mode, read	only).					
	This bit will b	be set to log	jic '1' when	the receive	buffer has	been read	and contain	s no new			
	information.	If there is n	ew informat	ion availabl	e in the rece	eive buffer t	hat has not	been read,			
	this bit will re	eturn to logi	c '0'.								
	NOTE: RXB	V = 1 whe	en in Maste	r Wode.							
* Note: In	slave mode, da sampled one device. See T	ta on MOSI i SYSCLK bei able 20.1 for	s sampled ir fore the end timing parar	the center o of each data meters.	f each data b bit, to provid	bit. In master e maximum	⁻ mode, data settling time	on MISO is for the slave			

SFR Definition 20.1. SPI0CFG: SPI0 Configuration

SFR Definition	20.2.	SPI0CN:	SPI0	Control
----------------	-------	---------	------	---------

SFR Page: SFR Addres	all pages s: 0xF8	(bit add	ressable)							
R/W	R/W	R/W	R/W	R/W	R/W	R	R/W	Reset Value		
SPIF	WCOL	MODF	RXOVRN	NSSMD1	NSSMD0	TXBMT	SPIEN	00000110		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
Bit 7 [.]	SPIE: SPI0 I	nterrupt Fla	ne							
Bit 7.	This bit is se	t to logic '1	' by hardwa	re at the en	d of a data t	transfer. If i	nterrupts a	re enabled.		
	setting this b	it causes th	ne CPU to v	ector to the	SPI0 interr	upt service	routine. Th	nis bit is not		
	automatically	cleared by	y hardware.	It must be	cleared by s	oftware.				
Bit 6:	WCOL: Write	e Collision	Flag.		-					
	This bit is set to logic '1' by hardware (and generates a SPI0 interrupt) to indicate a write to									
	the SPI0 data register was attempted while a data transfer was in progress. It must be									
	cleared by se	oftware.								
Bit 5:	MODE: MODE	e Fault Flag	g. 'hv hardwa	ro (ond gon	arataa a SD	10 interrunt	\when e m	aatar mada		
		t to logic 1	by naruwa M. wol ai 22	e (and gen STEN – 1	and NSSML	$10 \ln (e \ln u p)$) when a m This hit is			
	matically cle	ared by ha	rdware It m	ust be clear	red by softw	are	. 1113 DIU 13	not auto-		
Bit 4:	RXOVRN: R	eceive Ove	errun Flag (S	Slave Mode	only).					
	This bit is se	t to logic '1	' by hardwa	re (and gen	erates a SP	10 interrupt) when the	receive buf-		
	fer still holds	unread da	ta from a pr	evious tran	sfer and the	last bit of t	he current	transfer is		
	shifted into the	he SPI0 sh	ift register. 7	This bit is no	ot automatic	ally cleared	l by hardwa	are. It must		
	be cleared b	y software.								
Bits 3–2:	NSSMD1-N	SSMD0: SI	ave Select I	Mode.						
	Selects betw	een the fol	lowing NSS	operation i	nodes:					
	(See Section	1 20.2 and 3	Section 20.3	3). Mada NGG		t routed to	o port pip			
	01: 4-Wire S	lave or Mu	lti-Master M	ode (Defau	lt) NSS is a	lwavs an in	a poir pin.	device		
	1x: 4-Wire S	ingle-Maste	er Mode, NS	S signal is	mapped as a	an output fr	om the dev	vice and will		
	assume	the value of	of NSSMD0.	e eignen ie						
Bit 1:	TXBMT: Trar	nsmit Buffe	r Empty.							
	This bit will b	e set to log	gic '0' when	new data h	as been writ	tten to the t	ransmit bu	ffer. When		
	data in the tr	ansmit buff	er is transfe	rred to the S	SPI shift regi	ister, this bi	t will be set	t to logic '1',		
D // 0	indicating the	at it is safe	to write a ne	ew byte to t	he transmit	buffer.				
Bit 0:	SPIEN: SPIC) Enable.								
	0. SPI disabl	les/disable	is the SPI.							
	1: SPI enable	ed								
		- 41								

Parameter	Description	Min	Max	Units						
Master Mode	Timing* (See Figure 20.8 and Figure 20.9)									
т _{мскн}	SCK High Time	1 x T _{SYSCLK}	_	ns						
T _{MCKL}	SCK Low Time	1 x T _{SYSCLK}	_	ns						
T _{MIS}	MISO Valid to SCK Shift Edge	1 x T _{SYSCLK} + 20	_	ns						
т _{мін}	SCK Shift Edge to MISO Change	0	_	ns						
Slave Mode Timing* (See Figure 20.10 and Figure 20.11)										
T _{SE}	NSS Falling to First SCK Edge	2 x T _{SYSCLK}	_	ns						
T _{SD}	Last SCK Edge to NSS Rising	2 x T _{SYSCLK}	_	ns						
T _{SEZ}	NSS Falling to MISO Valid	—	4 x T _{SYSCLK}	ns						
T _{SDZ}	NSS Rising to MISO High-Z	—	4 x T _{SYSCLK}	ns						
т _{скн}	SCK High Time	5 x T _{SYSCLK}	—	ns						
Т _{СКL}	SCK Low Time	5 x T _{SYSCLK}	—	ns						
T _{SIS}	MOSI Valid to SCK Sample Edge	2 x T _{SYSCLK}	_	ns						
T _{SIH}	SCK Sample Edge to MOSI Change	2 x T _{SYSCLK}	_	ns						
т _{ѕон}	SCK Shift Edge to MISO Change	—	4 x T _{SYSCLK}	ns						
T _{SLH}	Last SCK Edge to MISO Change (CKPHA = 1 ONLY)	6 х Т _{SYSCLK}	8 x T _{SYSCLK}	ns						
*Note: T _{SYSCL}	$\frac{1}{\zeta}$ is equal to one period of the device system clock (SY	′SCLK).								

Table 20.1. SPI Slave Timing Parameters

SFR Definition 21.4. TL0: Timer 0 Low Byte

SFR Definition 21.5. TL1: Timer 1 Low Byte

SFR Definition 21.6. TH0: Timer 0 High Byte

SFR Definition 21.7. TH1: Timer 1 High Byte

22.2.6. 16-Bit Pulse Width Modulator Mode

Each PCA0 module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module defines the number of PCA0 clocks for the low time of the PWM signal. When the PCA0 counter matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA0 CCFn match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle, CCFn should also be set to logic '1' to enable match interrupts. The duty cycle for 16-Bit PWM Mode is given by Equation 22.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/ Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to '0'; writing to PCA0CPHn sets ECOMn to '1'.

Equation 22.3. 16-Bit PWM Duty Cycle

 $DutyCycle = \frac{(65536 - PCA0CPn)}{65536}$

Using Equation 22.3, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015% (PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to '0'.

22.3. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 5. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH5) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 5 operates as a watchdog timer (WDT). The Module 5 high byte is compared to the PCA counter high byte; the Module 5 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled.

