

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	XCore
Core Size	32-Bit 16-Core
Speed	800MIPS
Connectivity	Configurable
Peripherals	-
Number of I/O	90
Program Memory Size	128KB (32K x 32)
Program Memory Type	SRAM
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	0.90V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	217-LFBGA
Supplier Device Package	217-FBGA (16x16)
Purchase URL	https://www.e-xfl.com/product-detail/xmos/xs1-a16a-128-fb217-c8

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

2XSI-A16A-128-FB217 Features43Pin Configuration54Signal Description65Example Application Diagram106Product Overview11xCORE Tile Resources128Oscillator159Boot Procedure177Memory1911Analog-to-Digital Converter202Supervisor Logic2113Energy management2114JTAG2415Board Integration2516Example XS1-A16A-128-FB217 Board Designs2817Or and Switching Characteristics3218Package Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CXMOS USB Interface39EAnalogue Node Configuration70GDeep sleep memory Configuration70GDeep sleep memory Configuration77JPower control block Configuration <t< th=""><th>1</th><th>xCORE Multicore Microcontrollers</th><th>2</th></t<>	1	xCORE Multicore Microcontrollers	2
3 Pin Configuration 5 4 Signal Description 6 5 Example Application Diagram 10 6 Product Overview 11 7 XCORE Tile Resources 12 0 Scillator 15 9 Boot Procedure 17 10 Memory 19 11 Analog-to-Digital Converter 20 2 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 56 Example XS1-A16A-128-FB217 Board Designs 28 17 DC and Switching Characteristics 32 18 Package Information 37 19 Ordering Information 38 Appendices 39 A Configuring the device 39 P Analogue Node Configuration 42 C xCORE Tile Configuration 51 D Digital Node Configuration 70 C xCORE Tile Configuration 75 Real time clock Configuration 77 <td>2</td> <td>XS1-A16A-128-FB217 Features</td> <td>4</td>	2	XS1-A16A-128-FB217 Features	4
4 Signal Description 6 5 Example Application Diagram 10 6 Product Overview 11 7 xCORE Tile Resources 12 8 Oscillator 15 9 Boot Procedure 17 10 Memory 19 11 Analog-to-Digital Converter 20 12 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 15 Board Integration 25 16 Example XS1-A16A-128-FB217 Board Designs 28 17 Ordering Information 37 19 Ordering Information 37 19 Ordering Information 38 Appendices 39 A A Configuration 42 C xCORE Tile Configuration 51 D Digital Node Configuration 59 E Analogue Node Configuration 70 G Deep sleep memory Configuration 77 J Power control block Config	3	Pin Configuration	5
5 Example Application Diagram 10 6 Product Overview 11 7 XCORE Tile Resources 12 8 Oscillator 15 9 Boot Procedure 17 10 Memory 19 11 Analog-to-Digital Converter 20 2 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 15 Board Integration 25 16 Example XS1-A16A-128-FB217 Board Designs 28 17 DC and Switching Characteristics 32 18 Package Information 37 19 Ordering Information 38 Appendices 39 39 A Configuration 42 C xCORE Tile Configuration 42 C xCORE Tile Configuration 59 A nalogue Node Configuration 70 G Deep sleep memory Configuration 74 OS Collator Configuration 75 I Real time clock Configuration 77 J Digital Node Confi	4	Signal Description	6
6 Product Overview 11 7 xCORE Tile Resources 12 0 Oscillator 15 9 Boot Procedure 17 10 Memory 19 11 Analog-to-Digital Converter 20 12 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 15 Board Integration 25 16 Example XS1-A16A-128-FB217 Board Designs 28 17 DC and Switching Characteristics 32 18 Package Information 37 19 Ordering Information 37 19 Ordering Information 38 A Configuring the device 39 B Processor Status Configuration 42 C xCORE Tile Configuration 51 D Digital Node Configuration 51 D Digital Node Configuration 74 H Oscillator Configuration 75 I Real time clock Configuration 77 J <td>5</td> <td>Example Application Diagram</td> <td>10</td>	5	Example Application Diagram	10
7 xCORE Tile Resources 12 8 Oscillator 15 9 Boot Procedure 17 10 Memory 19 11 Analog-to-Digital Converter 20 12 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 15 Board Integration 25 16 Example XS1-A16A-128-FB217 Board Designs 28 17 DC and Switching Characteristics 32 18 Package Information 37 19 Ordering Information 37 19 Ordering Information 38 Appendices 39 39 A Configuration 42 C xCORE Tile Configuration 42 C xCORE Tile Configuration 59 E Analogue Node Configuration 59 E Analogue Node Configuration 70 D Digital Node Configuration 74 H Oscillator Configuration 75 I Real time	6	Product Overview	11
8 Oscillator 15 9 Boot Procedure 17 10 Memory 19 11 Analog-to-Digital Converter 20 12 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 15 Board Integration 25 16 Example XS1-A16A-128-FB217 Board Designs 28 17 D C and Switching Characteristics 32 18 Package Information 37 19 Ordering Information 38 Appendices 39 A Configuring the device 39 B Processor Status Configuration 42 C xCORE Tile Configuration 51 D Digital Node Configuration 59 E Analogue Node Configuration 70 G Deep sleep memory Configuration 74 H Oscillator Configuration 75 I Real time clock Configuration 77 J Power control block Configuration 77 J </td <td>7</td> <td>xCORE Tile Resources</td> <td>12</td>	7	xCORE Tile Resources	12
9 Boot Procedure . 17 10 Memory . 19 11 Analog-to-Digital Converter . 20 20 Supervisor Logic . 21 13 Energy management . 21 14 JTAG . 24 15 Board Integration . 25 16 Example XS1-A16A-128-FB217 Board Designs . 28 17 D C and Switching Characteristics . 32 18 Package Information . 37 19 Ordering Information . 37 19 Ordering Information . 38 Appendices . . 39 A Configuration . 42 C xCORE Tile Configuration . 42 C xCORE Tile Configuration . 51 D Digital Node Configuration . 51 D Callayoue Node Configuration . 70 G Deep sleep memory Configuration . 77 70 G Deep sleep memory Configuration . 77 17 Power control block Configuration . 77 18 Pacielime clock Configuration . 77 <td>8</td> <td>Oscillator</td> <td>15</td>	8	Oscillator	15
10Memory1911Analog-to-Digital Converter2012Supervisor Logic2113Energy management2114JTAG2415Board Integration2516Example XS1-A16A-128-FB217 Board Designs2817DC and Switching Characteristics3218Package Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration70GDeep sleep memory Configuration74HOscillator Configuration77JPower control block Configuration77JPowier control block Configuration77JProcesing Check List93OPCB Layout Design Check List95P <t< td=""><td>9</td><td>Boot Procedure</td><td>17</td></t<>	9	Boot Procedure	17
11 Analog-to-Digital Converter 20 12 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 15 Board Integration 25 16 Example XS1-A16A-128-FB217 Board Designs 28 17 DC and Switching Characteristics 32 18 Package Information 38 19 Ordering Information 38 Appendices 39 A Configuring the device 39 B Processor Status Configuration 42 C xCORE Tile Configuration 59 E Analogue Node Configuration 59 E Analogue Node Configuration 70 G Deep sleep memory Configuration 74 H Oscillator Configuration 75 I Real time clock Configuration 77 J Power control block C	10	Memory	19
12 Supervisor Logic 21 13 Energy management 21 14 JTAG 24 15 Board Integration 25 16 Example XS1-A16A-128-FB217 Board Designs 28 17 DC and Switching Characteristics 32 18 Package Information 37 19 Ordering Information 38 Appendices 39 A Configuring the device 39 B Processor Status Configuration 42 C xCORE Tile Configuration 51 D Digital Node Configuration 59 E Analogue Node Configuration 70 G Deep sleep memory Configuration 70 G Deep sleep memory Configuration 77 J Power control block Configuration 77 J Power	11	Analog-to-Digital Converter	20
13Energy management2114JTAG2415Board Integration2516Example XS1-A16A-128-FB217 Board Designs2817DC and Switching Characteristics3218Package Information3719Ordering Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration59EAnalogue Node Configuration59EAnalogue Node Configuration70GDeep sleep memory Configuration74HOscillator Configuration77JPower control block Configuration90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List95PAssociated Design Documentation96QRelated Documentation96DRelated Documentation96DRelated Docu	12	Supervisor Logic	21
14JTAG2415Board Integration2516Example XS1-A16A-128-FB217 Board Designs2817DC and Switching Characteristics3218Package Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PBevice Price95PAssociated Design Documentation96PRevice96PBevice96PRevice96PRevice96PRevice96PRevice96PRevice96PRevice96PRevice96 <tr< td=""><td>13</td><td>Energy management</td><td>21</td></tr<>	13	Energy management	21
15Board Integration2516Example XS1-A16A-128-FB217 Board Designs2817DC and Switching Characteristics3218Package Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96PRevision Microscopie Configuration96PRevision Documentation96	14	JTAG	24
16Example XS1-A16A-128-FB217 Board Designs2817DC and Switching Characteristics3218Package Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration70GDeep sleep memory Configuration70GDeep sleep memory Configuration75IReal time clock Configuration77JPower control block Configuration77JPower control block Configuration77JSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96RRealet Documentation96RReviewer96RReviewer97	15	Board Integration	25
17DC and Switching Characteristics3218Package Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PDevice Pristor97	16	Example XS1-A16A-128-FB217 Board Designs	28
18Package Information3719Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PPavision History97	17	DC and Switching Characteristics	32
19Ordering Information38Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96Related Documentation96Related Documentation96	18	Package Information	37
Appendices39AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96RRelated Documentation96RRevision Mistory97	19	Ordering Information	38
AConfiguring the device39BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96RRevision Wistory97	App	endices	39
BProcessor Status Configuration42CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PRevision Wistory97	Α	Configuring the device	39
CxCORE Tile Configuration51DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PBDevicentation96	В	Processor Status Configuration	42
DDigital Node Configuration59EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PBevision Wistory97	С	xCORE Tile Configuration	51
EAnalogue Node Configuration66FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96	D	Digital Node Configuration	59
FADC Configuration70GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96	E	Analogue Node Configuration	66
GDeep sleep memory Configuration74HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96	F	ADC Configuration	70
HOscillator Configuration75IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PBBevision Wistory	G	Deep sleep memory Configuration	74
IReal time clock Configuration77JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96	Н	Oscillator Configuration	75
JPower control block Configuration77KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PDesign Mistory97	1	Real time clock Configuration	77
KXMOS USB Interface90LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PBevision Wiston97	J	Power control block Configuration	77
LDevice Errata90MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PRevision Wiston97	ĸ	XMOS USB Interface	90
MJTAG, xSCOPE and Debugging91NSchematics Design Check List93OPCB Layout Design Check List95PAssociated Design Documentation96QRelated Documentation96PProvision Wistony97	L	Device Errata	90
N Schematics Design Check List 93 O PCB Layout Design Check List 95 P Associated Design Documentation 96 Q Related Documentation 96 P Participant Mictory 97	Μ	JTAG, xSCOPE and Debugging	91
O PCB Layout Design Check List 95 P Associated Design Documentation 96 Q Related Documentation 96 P Design Documentation 96 Q Related Documentation 96 Q Related Documentation 96 P Description 96 P Description 96	Ν	Schematics Design Check List	93
P Associated Design Documentation	0	PCB Lavout Design Check List	95
Q Related Documentation	Ρ	Associated Design Documentation	96
P Povision History	Q	Related Documentation	96
R REVISION HISTORY	R	Revision History	97

-XMOS°-

TO OUR VALUED CUSTOMERS

It is our intention to provide you with accurate and comprehensive documentation for the hardware and software components used in this product. To subscribe to receive updates, visit http://www.xmos.com/.

XMOS Ltd. is the owner or licensee of the information in this document and is providing it to you "AS IS" with no warranty of any kind, express or implied and shall have no liability in relation to its use. XMOS Ltd. makes no representation that the information, or any particular implementation thereof, is or will be free from any claims of infringement and again, shall have no liability in relation to any such claims.

XMOS and the XMOS logo are registered trademarks of XMOS Ltd in the United Kingdom and other countries, and may not be used without written permission. Company and product names mentioned in this document are the trademarks or registered trademarks of their respective owners.

-XM()S

xCORE Multicore Microcontrollers 1

The XS1-A Series is a comprehensive range of 32-bit multicore microcontrollers that brings the low latency and timing determinism of the xCORE architecture to mainstream embedded applications. Unlike conventional microcontrollers, xCORE multicore microcontrollers execute multiple real-time tasks simultaneously and communicate between tasks using a high speed network. Because xCORE multicore microcontrollers are completely deterministic, you can write software to implement functions that traditionally require dedicated hardware.

Figure 1: Series:6-16 core devices

Key features of the XS1-A16A-128-FB217 include:

- Tiles: Devices consist of one or more xCORE tiles. Each tile contains between four and eight 32-bit xCOREs with highly integrated I/O and on-chip memory.
- Logical cores Each logical core can execute tasks such as computational code. DSP code, control software (including logic decisions and executing a state machine) or software that handles I/O. Section 7.1
- xTIME scheduler The xTIME scheduler performs functions similar to an RTOS. in hardware. It services and synchronizes events in a core, so there is no requirement for interrupt handler routines. The xTIME scheduler triggers cores on events generated by hardware resources such as the I/O pins, communication channels and timers. Once triggered, a core runs independently and concurrently to other cores, until it pauses to wait for more events. Section 7.2

- Channels and channel ends Tasks running on logical cores communicate using channels formed between two channel ends. Data can be passed synchronously or asynchronously between the channel ends assigned to the communicating tasks. Section 7.5
- xCONNECT Switch and Links Between tiles, channel communications are implemented over a high performance network of xCONNECT Links and routed through a hardware xCONNECT Switch. Section 7.6
- Ports The I/O pins are connected to the processing cores by Hardware Response ports. The port logic can drive its pins high and low, or it can sample the value on its pins optionally waiting for a particular condition. Section 7.3
- Clock blocks xCORE devices include a set of programmable clock blocks that can be used to govern the rate at which ports execute. Section 7.4
- Memory Each xCORE Tile integrates a bank of SRAM for instructions and data, and a block of one-time programmable (OTP) memory that can be configured for system wide security features. Section 10
- PLL The PLL is used to create a high-speed processor clock given a low speed external oscillator. Section 8
- JTAG The JTAG module can be used for loading programs, boundary scan testing, in-circuit source-level debugging and programming the OTP memory. Section 14

1.1 Software

Devices are programmed using C, C++ or xC (C with multicore extensions). XMOS provides tested and proven software libraries, which allow you to quickly add interface and processor functionality such as USB, Ethernet, PWM, graphics driver, and audio EQ to your applications.

1.2 xTIMEcomposer Studio

The xTIMEcomposer Studio development environment provides all the tools you need to write and debug your programs, profile your application, and write images into flash memory or OTP memory on the device. Because xCORE devices operate deterministically, they can be simulated like hardware within xTIMEcomposer: uniquely in the embedded world, xTIMEcomposer Studio therefore includes a static timing analyzer, cycle-accurate simulator, and high-speed in-circuit instrumentation.

xTIMEcomposer can be driven from either a graphical development environment, or the command line. The tools are supported on Windows, Linux and MacOS X and available at no cost from xmos.com/downloads. Information on using the tools is provided in the xTIMEcomposer User Guide, X3766.

 $\cdot \mathbf{X} \wedge \Lambda(\cdot) \mathbf{S}$

2 XS1-A16A-128-FB217 Features

► Multicore Microcontroller with Advanced Multi-Core RISC Architecture

- 16 real-time logical cores on 2 xCORE tiles
- Cores share up to 1000 MIPS
- Each logical core has:
 - Guaranteed throughput of between 1/4 and 1/8 of tile MIPS
 - 16x32bit dedicated registers
- 159 high-density 16/32-bit instructions
 - All have single clock-cycle execution (except for divide)
 - 32x32 ${\rightarrow}64\text{-bit}$ MAC instructions for DSP, arithmetic and user-definable cryptographic functions
- > 12b 1MSPS 8-channel SAR Analog-to-Digital Converter
- ► 1 x LDO
- > 2 x DC-DC converters and Power Management Unit
- Watchdog Timer
- Onchip clocks/oscillators
 - Crystal oscillator
 - 20MHz/31kHz silicon oscillators
- ► Programmable I/O
 - 90 general-purpose I/O pins, configurable as input or output
 - Up to 32 x 1bit port, 12 x 4bit port, 8 x 8bit port, 4 x 16bit port
 4 xCONNECT links
 - Port sampling rates of up to 60 MHz with respect to an external clock
 - 64 channel ends for communication with other cores, on or off-chip

Memory

- 128KB internal single-cycle SRAM (max 64KB per tile) for code and data storage
- 16KB internal OTP (max 8KB per tile) for application boot code
- 128 bytes Deep Sleep Memory

Hardware resources

- 12 clock blocks (6 per tile)
- 20 timers (10 per tile)
- 8 locks (4 per tile)
- JTAG Module for On-Chip Debug
- Security Features
 - Programming lock disables debug and prevents read-back of memory contents
 - AES bootloader ensures secrecy of IP held on external flash memory

Ambient Temperature Range

- Commercial qualification: 0°C to 70°C
- Industrial qualification: -40 °C to 85 °C
- Speed Grade
 - 10: 1000 MIPS
 - 8: 800 MIPS
- Power Consumption (typical)
 - 600 mW at 500 MHz (typical)
 - Sleep Mode: 500 µW
- > 217-pin FBGA package 0.8 mm pitch

4 Signal Description

This section lists the signals and I/O pins available on the XS1-A16A-128-FB217. The device provides a combination of 1bit, 4bit, 8bit and 16bit ports, as well as wider ports that are fully or partially (gray) bonded out. All pins of a port provide either output or input, but signals in different directions cannot be mapped onto the same port.

Pins may have one or more of the following properties:

PD/PU: The IO pin a weak pull-down or pull-up resistor. On GPIO pins this resistor can be enabled.

	Power pins (10)					
Signal	Function	Туре	Properties			
AVSS	Digital ground	GND				
GND	Digital ground	GND				
PGND	Power ground	GND				
SW1	DCDC1 switched output voltage	PWR				
SW2	DCDC2 switched output voltage	PWR				
VDD1V8	1v8 voltage supply	PWR				
VDDCORE	Core voltage supply	PWR				
VDDIO	Digital I/O power	PWR				
VDDIO_OUT	Digital I/O power out	PWR				
VSUP	Power supply (3V3/5V0)	PWR				

ST: The IO pin has a Schmitt Trigger on its input.

	Analog pins (10)				
Signal	Function	Туре	Properties		
ADC0	Analog input	Input			
ADC1	Analog input	Input			
ADC2	Analog input	Input			
ADC3	Analog input	Input			
ADC4	Analog input	Input			
ADC5	Analog input	Input			
ADC6	Analog input	Input			
ADC7	Analog input	Input			
ADC_SAMPLE	Sample Analog input	I/O			
AVDD	Supply and reference voltage	PWR			

-XMOS

(continued)

7

5 Example Application Diagram

-XMOS[®]

proprietary physical layer protocol and can also be used to add additional resources to a design. The I/O pins are driven using intelligent ports that can serialize data, interpret strobe signals and wait for scheduled times or events, making the device ideal for real-time control applications.

6.2 ADC and Power Management

Each XS1-A16A-128-FB217 device includes a set of analog components, including a 12b, 8-channel ADC, power management unit, watchdog timer, real-time counter and deep sleep memory. The device reduces the number of additional external components required and allows designs to be implemented using simple 2-layer boards.

7 xCORE Tile Resources

Speed

grade

8

10

7.1 Logical cores

MIPS

800 MIPS

1000 MIPS

Frequency

400 MHz

500 MHz

Each tile has 8 active logical cores, which issue instructions down a shared fourstage pipeline. Instructions from the active cores are issued round-robin. If up to four logical cores are active, each core is allocated a quarter of the processing cycles. If more than four logical cores are active, each core is allocated at least 1/ncycles (for *n* cores). Figure 4 shows the guaranteed core performance depending on the number of cores used.

2

100

125

1

100

125

3

100

125

Minimum MIPS per core (for *n* cores)

5

80

100

6

67

83

7

57

71

8

50

63

4

100

125

Figure 4: Logical core performance

There is no way that the performance of a logical core can be reduced below these predicted levels. Because cores may be delayed on I/O, however, their unused processing cycles can be taken by other cores. This means that for more than four logical cores, the performance of each core is often higher than the predicted minimum but cannot be guaranteed.

The logical cores are triggered by events instead of interrupts and run to completion. A logical core can be paused to wait for an event.

7.2 xTIME scheduler

The xTIME scheduler handles the events generated by xCORE Tile resources, such as channel ends, timers and I/O pins. It ensures that all events are serviced and synchronized, without the need for an RTOS. Events that occur at the I/O pins are handled by the Hardware-Response ports and fed directly to the appropriate xCORE Tile. An xCORE Tile can also choose to wait for a specified time to elapse, or for data to become available on a channel.

-XM()S

Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
B(2blinkP)	2b link bandwidth (packetized) (Speed Grade 10)			103	MBit/s	А, В
	2b link bandwidth (packetized) (Speed Grade 8)			82	MBit/s	А, В
B(5blinkP)	5b link bandwidth (packetized) (Speed Grade 10)			271	MBit/s	А, В
	5b link bandwidth (packetized) (Speed Grade 8)			215	MBit/s	А, В
B(2blinkS)	2b link bandwidth (streaming) (Speed Grade 10)			125	MBit/s	В
	2b link bandwidth (streaming) (Speed Grade 8)			100	MBit/s	В
B(5blinkS)	5b link bandwidth (streaming) (Speed Grade 10)			313	MBit/s	
	5b link bandwidth (streaming) (Speed Grade 8)			250	MBit/s	В

17.13 xConnect Link Performance

Figure 36: Link performance

A Assumes 32-byte packet in 3-byte header mode. Actual performance depends on size of the header and payload.

B 7.5 ns symbol time.

The asynchronous nature of links means that the relative phasing of CLK clocks is not important in a multi-clock system, providing each meets the required stability criteria.

17.14 JTAG Timing

	Symbol	Parameter	MIN	TYP	MAX	UNITS	Notes
	f(TCK_D)	TCK frequency (debug)			TBC	MHz	
	f(TCK_B)	TCK frequency (boundary scan)			TBC	MHz	
Figure 37: JTAG timing	T(SETUP)	TDO to TCK setup time	TBC			ns	
	T(HOLD)	TDO to TCK hold time	TBC			ns	А
	T(DELAY)	TCK to output delay			TBC	ns	

-XMOS

A Timing applies to TMS and TDI inputs.

All JTAG operations are synchronous to TCK.

Bits	Perm	Init	Description
31:18	RO	-	Reserved
17:16	DRW		If the debug interrupt was caused by a hardware breakpoint or hardware watchpoint, this field contains the number of the breakpoint or watchpoint. If multiple breakpoints or watch- points trigger at once, the lowest number is taken.
15:8	DRW		If the debug interrupt was caused by a logical core, this field contains the number of that core. Otherwise this field is 0.
7:3	RO	-	Reserved
2:0	DRW	0	Indicates the cause of the debug interrupt 1: Host initiated a debug interrupt through JTAG 2: Program executed a DCALL instruction 3: Instruction breakpoint 4: Data watch point 5: Resource watch point

0x15: Debug interrupt type

B.17 Debug interrupt data: 0x16

On a data watchpoint, this register contains the effective address of the memory operation that triggered the debugger. On a resource watchpoint, it countains the resource identifier.

0x16 Debug interrupt data

ox16: ebug	Bits	Perm	Init	Description
data	31:0	DRW		Value.

B.18 Debug core control: 0x18

This register enables the debugger to temporarily disable logical cores. When returning from the debug interrupts, the cores set in this register will not execute. This enables single stepping to be implemented.

0x18: Debug core control

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7:0	DRW		1-hot vector defining which logical cores are stopped when not in debug mode. Every bit which is set prevents the respective logical core from running.

C xCORE Tile Configuration

The xCORE Tile control registers can be accessed using configuration reads and writes (use write_tile_config_reg(tileref, ...) and read_tile_config_reg(tileref, \rightarrow ...) for reads and writes).

Number	Perm	Description	
0x00	RO	Device identification	
0x01	RO	xCORE Tile description 1	
0x02	RO	xCORE Tile description 2	
0x04	CRW	Control PSwitch permissions to debug registers	
0x05	CRW	Cause debug interrupts	
0x06	RW	xCORE Tile clock divider	
0x07	RO	Security configuration	
0x10 0x13	RO	PLink status	
0x20 0x27	CRW	Debug scratch	
0x40	RO	PC of logical core 0	
0x41	RO	PC of logical core 1	
0x42	RO	PC of logical core 2	
0x43	RO	PC of logical core 3	
0x44	RO	PC of logical core 4	
0x45	RO	PC of logical core 5	
0x46	RO	PC of logical core 6	
0x47	RO	PC of logical core 7	
0x60	RO	SR of logical core 0	
0x61	RO	SR of logical core 1	
0x62	RO	SR of logical core 2	
0x63	RO	SR of logical core 3	
0x64	RO	SR of logical core 4	
0x65	RO	SR of logical core 5	
0x66	RO	SR of logical core 6	
0x67	RO	SR of logical core 7	
0x80 0x9F	RO	Chanend status	

-XMOS

Figure 42: Summary

D Digital Node Configuration

The digital node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, ...) for reads and writes).

Number	Perm	Description	
0x00	RO	Device identification	
0x01	RO	System switch description	
0x04	RW	Switch configuration	
0x05	RW	Switch node identifier	
0x06	RW	PLL settings	
0x07	RW	System switch clock divider	
0x08	RW	Reference clock	
0x0C	RW	Directions 0-7	
0x0D	RW	Directions 8-15	
0x10	RW	DEBUG_N configuration	
0x1F	RO	Debug source	
0x20 0x27	RW	Link status, direction, and network	
0x40 0x43	RW	PLink status and network	
0x80 0x87	RW	Link configuration and initialization	
0xA0 0xA7	RW	Static link configuration	

Figure 43: Summary

D.1 Device identification: 0x00

This register contains version and revision identifiers and the mode-pins as sampled at boot-time.

	Bits	Perm	Init	Description
	31:24	RO	0x00	Chip identifier.
0x00: Device identification	23:16	RO		Sampled values of pins MODE0, MODE1, on reset.
	15:8	RO		SSwitch revision.
	7:0	RO		SSwitch version.

D.2 System switch description: 0x01

This register specifies the number of processors and links that are connected to this switch.

XMOS

D.13 PLink status and network: 0x40 .. 0x43

These registers contain status information and the network number that each processor-link belongs to.

Bits	Perm	Init	Description
31:26	RO	-	Reserved
25:24	RO		If this link is currently routing data into the switch, this field specifies the type of link that the data is routed to: 0: plink 1: external link 2: internal control link
23:16	RO	0	If the link is routing data into the switch, this field specifies the destination link number to which all tokens are sent.
15:6	RO	-	Reserved
5:4	RW	0	Determines the network to which this link belongs, set for quality of service.
3	RO	-	Reserved
2	RO	0	Set to 1 if the current packet is junk and being thrown away. A packet is considered junk if, for example, it is not routable.
1	RO	0	Set to 1 if the switch is routing data into the link, and if a route exists from another link.
0	RO	0	Set to 1 if the link is routing data into the switch, and if a route is created to another link on the switch.

0x40 .. 0x43: PLink status and network

D.14 Link configuration and initialization: 0x80 .. 0x87

-XMOS[®]

These registers contain configuration and debugging information specific to external links. The link speed and width can be set, the link can be initialized, and the link status can be monitored. The registers control links C, D, A, B, G, H, E, and F in that order.

	Bits	Perm	Init	Description
37: nk	31	RW	0	Write '1' to this bit to enable the link, write '0' to disable it. This bit controls the muxing of ports with overlapping links.
	30	RW	0	Set to 0 to operate in 2 wire mode or 1 to operate in 5 wire mode
	29:28	RO	-	Reserved
	27	RO	0	Set to 1 on error: an RX buffer overflow or illegal token encoding has been received. This bit clears on reading.
	26	RO	0	1 if this end of the link has issued credit to allow the remote end to transmit.
	25	RO	0	1 if this end of the link has credits to allow it to transmit.
	24	WO	0	Set to 1 to initialize a half-duplex link. This clears this end of the link's credit and issues a HELLO token; the other side of the link will reply with credits. This bit is self-clearing.
	23	WO	0	Set to 1 to reset the receiver. The next symbol that is detected will be assumed to be the first symbol in a token. This bit is self-clearing.
	22	RO	-	Reserved
	21:11	RW	0	The number of system clocks between two subsequent transi- tions within a token
nd on	10:0	RW	0	The number of system clocks between two subsequent transmit tokens.

0x80 .. 0x87 Link configuration and initialization

D.15 Static link configuration: 0xA0 .. 0xA7

These registers are used for static (ie, non-routed) links. When a link is made static, all traffic is forwarded to the designated channel end and no routing is attempted. The registers control links C, D, A, B, G, H, E, and F in that order.

	Bits	Perm	Init	Description
	31	RW	0	Enable static forwarding.
:	30:5	RO	-	Reserved
(1	4:0	RW	0	The destination channel end on this node that packets received in static mode are forwarded to.

-XMOS[®]

0xA0 .. 0xA7 Static link configuration

E Analogue Node Configuration

The analogue node control registers can be accessed using configuration reads and writes (use write_node_config_reg(device, ...) and read_node_config_reg(device, ...) for reads and writes).

Number	Perm	Description		
0x00	RO	Device identification register		
0x04	RW	Node configuration register		
0x05	RW	Node identifier		
0x50	RW	Reset and Mode Control		
0x51	RW	System clock frequency		
0x80	RW	Link Control and Status		
0xD6	RW	1 KHz Watchdog Control		
0xD7	RW	Watchdog Disable		

Figure 44: Summary

E.1 Device identification register: 0x00

This register contains version information, and information on power-on behavior.

Bits	Perm	Init	Description
31:24	RO	0x0F	Chip identifier
23:17	RO	-	Reserved
16	RO	pin	Oscillator used on power-up. This is set by the OSC_EXT_N pin: 0: boot from crystal; 1: boot from on-silicon 20 MHz oscillator.
15:8	RO	0x02	Revision number of the analogue block
7:0	RO	0x00	Version number of the analogue block

0x00: Device identification register

E.2 Node configuration register: 0x04

This register is used to set the communication model to use (1 or 3 byte headers), and to prevent any further updates.

-XMOS

0x0C: ADC Control input pin 3

Bits	Perm	Init	Description	
31:8	RW	0	The node and channel-end identifier to which data for this ADC input pin should be send to. This is the top 24 bits of the channel-end identifier as allocated on an xCORE Tile.	
7:1	RO	-	Reserved	
0	RW	0	Set to 1 to enable this input pin on the ADC.	

F.5 ADC Control input pin 4: 0x10

Controls specific to ADC input pin 4.

0x10: ADC Control input pin 4

0x14: ADC Control input pin 5

Bits	Perm	Init	Description	
31:8	RW	0	The node and channel-end identifier to which data for this ADC input pin should be send to. This is the top 24 bits of the channel-end identifier as allocated on an xCORE Tile.	
7:1	RO	-	Reserved	
0	RW	0	Set to 1 to enable this input pin on the ADC.	

F.6 ADC Control input pin 5: 0x14

Controls specific to ADC input pin 5.

Bits	Perm	Init	Description	
31:8	RW	0	The node and channel-end identifier to which data for this ADC input pin should be send to. This is the top 24 bits of the channel-end identifier as allocated on an xCORE Tile.	
7:1	RO	-	Reserved	
0	RW	0	Set to 1 to enable this input pin on the ADC.	

-XMOS

F.7 ADC Control input pin 6: 0x18

Controls specific to ADC input pin 6.

0x18: ADC Control input pin 6

Bits	Perm	Init	Description	
31:8	RW	0	The node and channel-end identifier to which data for this ADC input pin should be send to. This is the top 24 bits of the channel-end identifier as allocated on an xCORE Tile.	
7:1	RO	-	Reserved	
0	RW	0	Set to 1 to enable this input pin on the ADC.	

F.8 ADC Control input pin 7: 0x1C

Controls specific to ADC input pin 7.

0x1C: ADC Control input pin 7

Bits	Perm	Init	Description	
31:8	RW	0	The node and channel-end identifier to which data for this ADC input pin should be send to. This is the top 24 bits of the channel-end identifier as allocated on an xCORE Tile.	
7:1	RO	-	Reserved	
0	RW	0	Set to 1 to enable this input pin on the ADC.	

-XMOS

F.9 ADC General Control: 0x20

General ADC control.

Bits	Perm	Init	Description
31:25	RO	-	Reserved
24	RO	1	Indicates that an ADC sample has been dropped. This bit is cleared on a read.
23:18	RO	-	Reserved
17:16	RW	1	 Number of bits per ADC sample. The ADC values are always left aligned: 0: 8 bits samples - the least significant four bits of each sample are discarded. 1: 16 bits samples - the sample is padded with four zero bits in bits 30. The most significant byte is transmitted first. 2: reserved 3: 32 bits samples - the sample is padded with 20 zero bits in bits 190. The most significant byte is transmitted first, hence the word can be input with a single 32-bit IN instruction.
15:8	RW	1	Number of samples to be transmitted per packet. The value 0 indicates that the packet will not be terminated until interrupted by an ADC control register access.
7:2	RO	-	Reserved
1	1 RW	0	Set to 1 to switch the ADC to sample a 0.8V signal rather than the external voltage. This can be used to calibrate the ADC. When switching to and from calibration mode, one sample value should be discarded. If a sample value x is measured in calibration mode, then a scale factor $800000/x$ can be used to translate subsequent measurements into microvolts (using integer arithmetic).
0	RW	0	Set to 1 to enable the ADC. Note that when enabled, the ADC control registers above are read-only. The ADC must be disabled whilst setting up the per-input-pin control. On enabling the ADC, six pulses must be generated to calibrate the ADC. These pulses will not generate packets on the selected channel-end. The seventh and further pulses will deliver samples to the selected channel-end. These six pulses have to be issued every time that this bit is changed from 0 to 1.

0x20: ADC General Control

G Deep sleep memory Configuration

This peripheral contains a 128 byte RAM that retains state whilst the main processor is put to sleep.

The *Deep sleep memory* is peripheral 3. The control registers are accessed using 8-bit reads and writes (use write_periph_8(device, 3, ...) and read_periph_8 \leftrightarrow (device, 3, ...) for reads and writes).

-XMOS"-

I Real time clock Configuration

The *Real time clock* is peripheral 5. The control registers are accessed using 32-bit reads and writes (use write_periph_32(device, 5, ...) and read_periph_32(device, \rightarrow 5, ...) for reads and writes).

	Number	Perm	Description
Figure 48:	0x00	RW	Real time counter least significant 32 bits
Summary	0x04	RW	Real time counter most significant 32 bits

I.1 Real time counter least significant 32 bits: 0x00

This registers contains the lower 32-bits of the real-time counter.

Bits	Perm	Init	Description	
31:0	RO	0	Least significant 32 bits of real-time counter.	
	Bits 31:0	Bits Perm 31:0 RO	Bits Perm Init 31:0 RO 0	BitsPermInitDescription31:0RO0Least significant 32 bits of real-time counter.

I.2 Real time counter most significant 32 bits: 0x04

This registers contains the upper 32-bits of the real-time counter.

-XM()S

J Power control block Configuration

The *Power control block* is peripheral 6. The control registers are accessed using 32-bit reads and writes (use write_periph_32(device, 6, ...) and read_periph_32(\hookrightarrow device, 6, ...) for reads and writes).

Bits	Perm	Init	Description
31:8	RO	-	Reserved
7	RW	0	By default, when waking up, the voltage levels stored in the LEVEL CONTROL registers are used. Set to 1 to use the power-on voltage levels.
6	WO		Set to 1 to re-apply the current contents of the AWAKE state. Use this when the program has changed the contents of the AWAKE state register. Self clearing.
5	RW	0	Set to 1 to use a 64-bit timer.
4	RW	0	Set to 1 to wake-up on the timer.
3	RW	1	If waking on the WAKE pin is enabled (see above), then by default the device wakes up when the WAKE pin is pulled high. Set to 0 to wake-up when the WAKE pin is pulled low.
2	RW	0	Set to 1 to wake-up when the WAKE pin is at the right level.
1	RW	0	Set to 1 to initiate sleep sequence - self clearing. Only set this bit when in AWAKE state.
0	RW	0	Sleep clock select. Set to 1 to use the default clock rather than the internal 31.25 kHz oscillator. Note: this bit is only effective in the ASLEEP state.

0x00: General control

J.2 Time to wake-up, least significant 32 bits: 0x04

This register stores the time to wake-up. The value is only used if wake-up from the real-time clock is enabled, and the device is asleep.

0x04:
Time to
wake-up,
least
significant 32
bits

,					
	Bits	Perm	Init	Description	
	31:0	RW	0	Least significant 32 bits of time to wake-up.	

J.3 Time to wake-up, most significant 32 bits: 0x08

-XMOS

This register stores the time to wake-up. The value is only used if wake-up from the real-time clock is enabled, if 64-bit comparisons are enabled, and the device is asleep. In most cases, 32-bit comparisons suffice.

80