

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

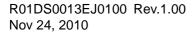
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

·XE

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	CANbus, I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	59
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	10K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f2136cwkfp-u0

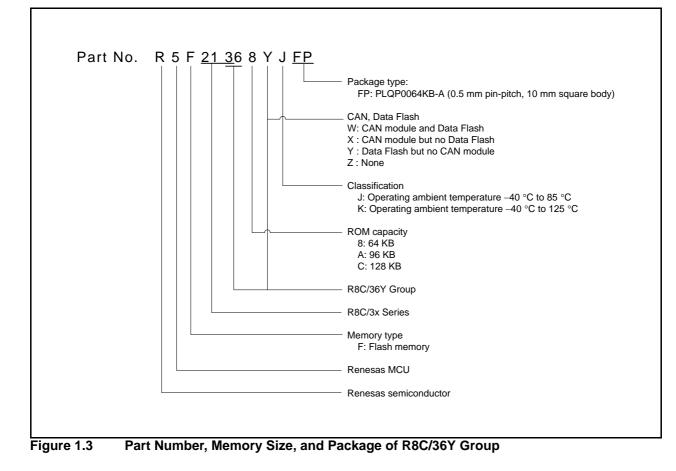
Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Item	Function	Specification
Timer	Timer RA0	8 bits (with 8-bit prescaler) × 1
		Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
	T DA4	measurement mode
	Timer RA1	8 bits (with 8-bit prescaler) × 1 Timer mode (period timer), pulse output mode (output level inverted every
		period), event counter mode, pulse width measurement mode, pulse period
		measurement mode
	Timer RB	8 bits (with 8-bit prescaler) × 1
		Timer mode (period timer), programmable waveform generation mode (PWM
		output), programmable one-shot generation mode, programmable wait one-
		shot generation mode
	Timer RC	16 bits (with 4 capture/compare registers) × 1
		Timer mode (input capture function, output compare function), PWM mode
	T i DD	(output 3 pins), PWM2 mode (PWM output pin)
	Timer RD	16 bits (with 4 capture/compare registers) × 2 Timer mode (input capture function, output compare function), PWM mode
		(output 6 pins), reset synchronous PWM mode (output three-phase waveforms
		(6 pins), sawtooth wave modulation), complementary PWM mode (output
		three-phase waveforms (6 pins), triangular wave modulation), PWM3 mode
		(PWM output 2 pins with fixed period)
	Timer RE	8 bits x 1
		Output compare mode
	Timer RF	16 bits x 1
		Input capture mode (input capture circuit), output compare mode (output compare circuit)
	Timer RG	16 bits × 1
		Timer mode (input capture function, output compare function), PWM mode (output 1 pin), phase counting mode (available automatic measurement for the counts of 2-phase encoder)
Serial Interface	UART0, 1	2 channels Clock synchronous serial I/O, UART
	UART2	1 channel
		Clock synchronous serial I/O, UART, I ² C mode (I ² C-bus), IE mode (IEBus), multiprocessor communication function
Synchronous S		1 channel
Communicatio	n Unit (SSU)	
LIN Module		Hardware LIN: 2 (timer RA0, timer RA1, UART0, UART1)
A/D Converter		10-bit resolution × 16 channels, includes sample and hold function, with sweep mode
Flash Memory		 Programming and erasure voltage: VCC = 2.7 to 5.5 V
		 Programming and erasure endurance: 100 times (program ROM)
		 Program security: ROM code protect, ID code check
		Debug functions: On-chip debug, on-board flash rewrite function
Operating Free Voltage	quency/Supply	f(XIN) = 20 MHz (VCC = 2.7 to 5.5 V)
Current Consu	Imption	Typ. 7 mA (VCC = 5.0 V, f(XIN) = 20 MHz)
	pient Temperature	-40 to 85°C (J version)
	·	-40 to 125°C (K version) ⁽¹⁾
Package		64-pin LQFP
		Package code: PLQP0064KB-A (previous code: 64P6Q-A)

RENESAS

Specifications for R8C/36Z Group (2) Table 1.8


Note: 1. Specify the K version if K version functions are to be used.

Part No.	ROM C	ROM Capacity		Bookogo Tupo	Remarks	
Fait NO.	Program ROM	Data flash	Capacity	Package Type	Remarks	
R5F21368YJFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0064KB-A	J version	
R5F2136AYJFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0064KB-A		
R5F2136CYJFP	128 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0064KB-A		
R5F21368YKFP	64 Kbytes	1 Kbyte × 4	6 Kbytes	PLQP0064KB-A	K version	
R5F2136AYKFP	96 Kbytes	1 Kbyte × 4	8 Kbytes	PLQP0064KB-A		
R5F2136CYKFP	128 Kbytes	1 Kbyte × 4	10 Kbytes	PLQP0064KB-A		

Table 1.11 Product List for R8C/36Y Group

Current of Nov 2010

1.4 Pin Assignment

Figure 1.6 shows Pin Assignment (Top View). Tables 1.13 and 1.14 outline the Pin Name Information by Pin Number.

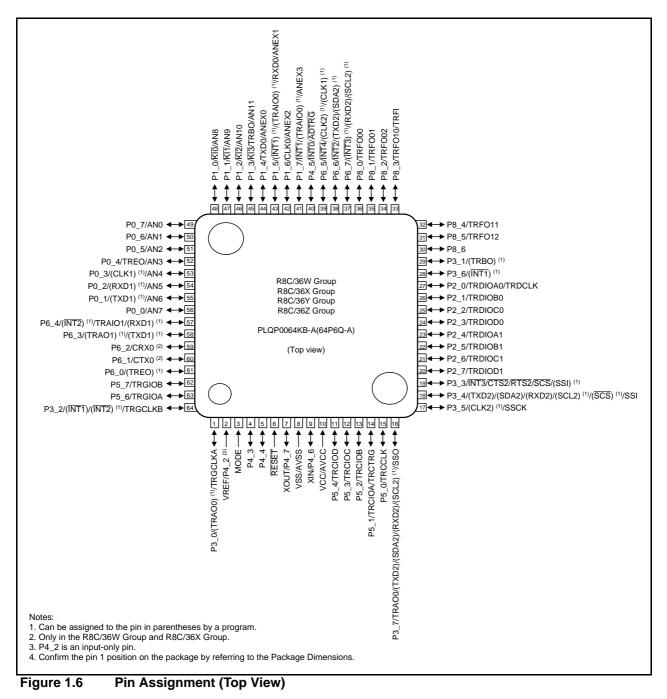


Table 1.16Pin Functions (2)

Item	Pin Name	I/O Type	Description
CAN module	CRX0 ⁽¹⁾	I	CAN data input pin
	CTX0 ⁽¹⁾	0	CAN data output pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11 ANEX0 to ANEX3	I	Analog input pins to A/D converter
	ADTRG	I	AD external trigger input pin
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_3 to P4_7, P5_0 to P5_4, P5_6, P5_7, P6_0 to P6_7, P8_0 to P8_6	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program.
Input port	P4_2	I	Input-only port

I: Input O: Output I/O: Input and output Note:

1. Only in the R8C/36W Group and R8C/36X Group.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

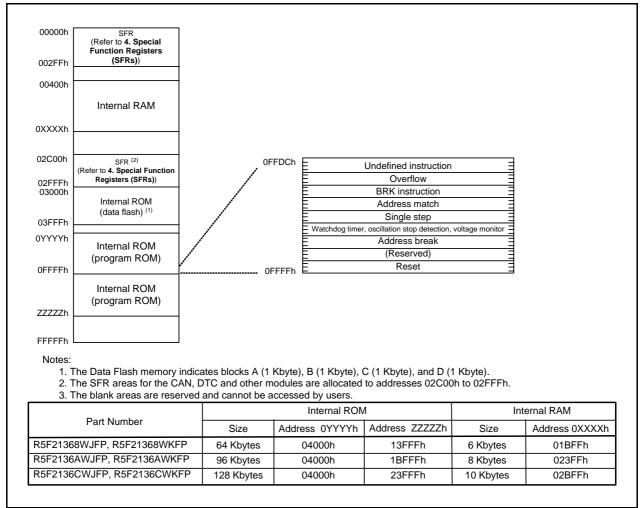
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

3. Memory

3.1 R8C/36W Group


Figure 3.1 is a Memory Map of R8C/36W Group. The R8C/36W Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFh. For example, a 64-Kbyte internal ROM area is allocated addresses 04000h to 13FFFh.

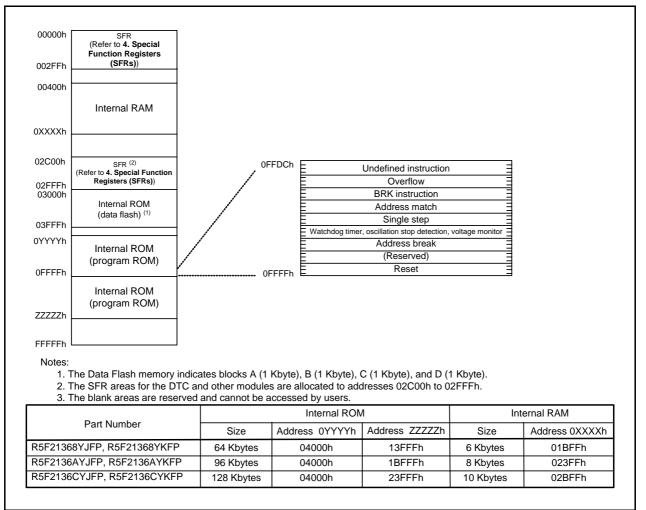
The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 6-Kbyte internal RAM area is allocated addresses 00400h to 01BFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFFh (the SFR areas for the CAN, DTC, and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

3.3 R8C/36Y Group


Figure 3.3 is a Memory Map of R8C/36Y Group. The R8C/36Y Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFh. For example, a 64-Kbyte internal ROM area is allocated addresses 04000h to 13FFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated addresses 03000h to 03FFFh.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 6-Kbyte internal RAM area is allocated addresses 00400h to 01BFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Memory Map of R8C/36Y Group

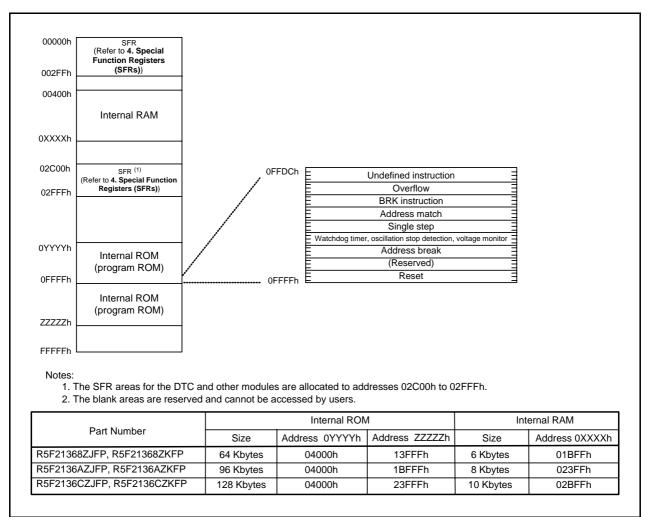

3.4 R8C/36Z Group

Figure 3.4 is a Memory Map of R8C/36Z Group. The R8C/36Z Group has a 1-Mbyte address space from addresses 00000h to FFFFh. The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFh. For example, a 64-Kbyte internal ROM area is allocated addresses 04000h to 13FFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. The starting address of each interrupt routine is stored here.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 6-Kbyte internal RAM area is allocated addresses 00400h to 01BFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh and 02C00h to 02FFh (the SFR areas for the DTC and other modules). Peripheral function control registers are allocated here. All unallocated spaces within the SFRs are reserved and cannot be accessed by users.

Address	- Contraction (C)	Sumbol	After react
Address 0080h	Register	Symbol DTCTL	After reset
	DTC Activation Control Register	DICIL	0011
0081h			
0082h			
0083h			
0084h			
0085h			
0086h			
0087h			
0088h	DTC Activation Enable Register 0	DTCEN0	00h
0089h	DTC Activation Enable Register 1	DTCEN1	00h
008Ah	DTC Activation Enable Register 2	DTCEN2	00h
008Bh	DTC Activation Enable Register 3	DTCEN3	00h
	DTC Activation Enable Register 4	DTCEN4	00h
008Ch			
008Dh	DTC Activation Enable Register 5	DTCEN5	00h
008Eh	DTC Activation Enable Register 6	DTCEN6	00h
008Fh			
0090h	Timer RF Register	TRF	00h
0091h			00h
0092h		ł	1
0093h			
0094h			
0094h			
0095h			
0097h			
0098h			
0099h			
009Ah	Timer RF Control Register 0	TRFCR0	00h
009Bh	Timer RF Control Register 1	TRFCR1	00h
009Ch	Capture and Compare 0 Register	TRFM0	00h
009Dh	- · · ·		00h
009Eh	Compare 1 Register	TRFM1	FFh
009Fh			FFh
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
	UARTO Bit Rate Register	U0BRG	XXh
00A1h			
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	UORB	XXh
00A7h	1 -		XXh
00A8h	UART2 Transmit/Receive Mode Register	U2MR	00h
00A9h	UART2 Bit Rate Register	U2BRG	XXh
00A3h 00AAh	UART2 Transmit Buffer Register	U2TB	XXh
	UTITZ Hanshill Dullet Negislet	UZID	
00ABh			XXh
00ACh	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
00ADh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
00AEh	UART2 Receive Buffer Register	U2RB	XXh
00AFh			XXh
00B0h	UART2 Digital Filter Function Select Register	URXDF	00h
00B1h			
00B2h			
00B3h			
00B3h			
00B5h			
00B6h			
00B7h			
00B8h			
00B9h			
00BAh			
00BBh	UART2 Special Mode Register 5	U2SMR5	00h
00BCh	UART2 Special Mode Register 4	U2SMR4	00h
00BDh	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
00BDh	UART2 Special Mode Register 3		X000000b
	UARTZ SPECIAL MODE REGISTER Z	U2SMR2	duuuuun
00BEh	UART2 Special Mode Register	U2SMR	X000000b

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Table 4.5	SFR Information	(5) (1)
Table 4.5	SFR Information	(5) (1

Address	Register	Symbol	After reset
0100h	Timer RA0 Control Register Timer RA0 I/O Control Register	TRA0CR TRA0IOC	00h 00h
0101h			
0102h	Timer RA0 Mode Register	TRAOMR	00h
0103h	Timer RA0 Prescaler Register	TRAOPRE	FFh
0104h	Timer RA0 Register	TRA0	FFh
0105h	LIN0 Control Register 2	LIN0CR2	00h
0106h	LIN0 Control Register	LIN0CR	00h
0107h	LIN0 Status Register	LIN0ST	00h
0108h	Timer RB Control Register	TRBCR	00h
0109h	Timer RB One-Shot Control Register	TRBOCR	00h
010Ah	Timer RB I/O Control Register	TRBIOC	00h
010Bh	Timer RB Mode Register	TRBMR	00h
010Ch	Timer RB Prescaler Register	TRBPRE	FFh
010Dh	Timer RB Secondary Register	TRBSC	FFh
010Eh	Timer RB Primary Register	TRBPR	FFh
010Fh			
0110h	Timer RA1 Control Register	TRA1CR	00h
0111h	Timer RA1 I/O Control Register	TRAIIOC	00h
0112h	Timer RA1 Mode Register	TRA1MR	00h
0112h	Timer RA1 Prescaler Register	TRA1PRE	FFh
0113h	Timer RA1 Register	TRA1	FFh
0114h	LIN1 Control Register 2	LIN1CR2	00h
0115h	LINI Control Register	LINICR2	00h
	LINI Control Register		
0117h		LIN1ST	00h
0118h	Timer RE Counter Data Register	TRESEC	00h
0119h	Timer RE Compare Data Register	TREMIN	00h
011Ah			
011Bh			
011Ch	Timer RE Control Register 1	TRECR1	00h
011Dh	Timer RE Control Register 2	TRECR2	00h
011Eh	Timer RE Count Source Select Register	TRECSR	00001000b
011Fh			
0120h	Timer RC Mode Register	TRCMR	01001000b
0121h	Timer RC Control Register 1	TRCCR1	00h
0122h	Timer RC Interrupt Enable Register	TRCIER	01110000b
0123h	Timer RC Status Register	TRCSR	01110000b
0124h	Timer RC I/O Control Register 0	TRCIOR0	10001000b
0125h	Timer RC I/O Control Register 1	TRCIOR1	10001000b
0126h	Timer RC Counter	TRC	00h
0120h			00h
0128h	Timer RC General Register A	TRCGRA	FFh
0120h		INCONA	FFh
012911 012Ah	Timer RC General Register B	TRCGRB	FFh
012An 012Bh		IRCGRB	FFh
	Times DO Osneral Desister O	TROOPO	
012Ch	Timer RC General Register C	TRCGRC	FFh
012Dh			FFh
012Eh	Timer RC General Register D	TRCGRD	FFh
012Fh			FFh
0130h	Timer RC Control Register 2	TRCCR2	00011000b
0131h	Timer RC Digital Filter Function Select Register	TRCDF	00h
0132h	Timer RC Output Master Enable Register	TRCOER	0111111b
0133h	Timer RC Trigger Control Register	TRCADCR	00h
0134h			
0135h			
0136h	Timer RD Trigger Control Register	TRDADCR	00h
0137h	Timer RD Start Register	TRDSTR	11111100b
0138h	Timer RD Mode Register	TRDMR	00001110b
0139h	Timer RD PWM Mode Register	TRDPMR	10001000b
013Ah	Timer RD Function Control Register	TRDFCR	1000000b
013Bh	Timer RD Output Master Enable Register 1	TRDOER1	FFh
013Ch	Timer RD Output Master Enable Register 2	TRDOER2	0111111b
013Dh	Timer RD Output Kinster Enable Register 2	TRDOER2	00h
013Dh 013Eh		TRDOCK	
	Timer RD Digital Filter Function Select Register 0	TRDDF0	00h 00h
013Fh	Timer RD Digital Filter Function Select Register 1		

Note: 1. The blank areas are reserved and cannot be accessed by users.

Address	Decietor	Sumb al	After reach
Address	Register	Symbol	After reset
2E70h	CAN0 Mailbox 7: Message ID	C0MB7	XXh
2E71h	4		XXh
2E72h	4		XXh
2E73h			XXh
2E74h	CANO Mailhay 7: Data langth		VVh
2E75h	CANO Mailbox 7: Data length		XXh
2E76h	CAN0 Mailbox 7: Data field		XXh
2E77h	4		XXh
2E78h	4		XXh
2E79h	4		XXh
2E7Ah	4		XXh
2E7Bh	4		XXh
2E7Ch	4		XXh
2E7Dh			XXh
2E7Eh	CAN0 Mailbox 7: Time stamp		XXh
2E7Fh			XXh
2E80h	CAN0 Mailbox 8: Message ID	C0MB8	XXh
2E81h	4		XXh
2E82h			XXh
2E83h			XXh
2E84h			
2E85h	CAN0 Mailbox 8: Data length		XXh
2E86h	CAN0 Mailbox 8: Data field		XXh
2E87h			XXh
2E88h			XXh
2E89h]		XXh
2E8Ah]		XXh
2E8Bh]		XXh
2E8Ch			XXh
2E8Dh	1		XXh
2E8Eh	CAN0 Mailbox 8: Time stamp		XXh
2E8Fh	1		XXh
2E90h	CAN0 Mailbox 9: Message ID	C0MB9	XXh
2E91h	Ĭ		XXh
2E92h	1		XXh
2E93h	1		XXh
2E94h			
2E95h	CAN0 Mailbox 9: Data length		XXh
2E96h	CANO Mailbox 9: Data field		XXh
2E97h			XXh
2E98h	1		XXh
2E99h	1		XXh
2E9Ah	1		XXh
2E9Bh	1		XXh
2E9Ch	1		XXh
2E9Dh	1		XXh
2E9Eh	CAN0 Mailbox 9: Time stamp		XXh
2E9Eh	of the manbox of time stamp		XXh
2EA0h	CAN0 Mailbox 10: Message ID	C0MB10	XXh
2EA01		COMBIO	XXh
2EA111 2EA2h	4		XXh
2EA2h	4		
2EA3h 2EA4h			XXh
2EA4n 2EA5h	CAN0 Mailbox 10: Data length		XXh
2EA5h 2EA6h	CANO Malibox 10: Data field		XXh
2EA01 2EA7h			XXh
2EA7h 2EA8h	4		XXh
	4		XXh
			AA[]
2EA9h			
2EAAh			XXh
2EAAh 2EABh			XXh XXh
2EAAh 2EABh 2EACh			XXh XXh XXh
2EAAh 2EABh 2EACh 2EADh			XXh XXh XXh XXh
2EAAh 2EABh 2EACh	CAN0 Mailbox 10: Time stamp		XXh XXh XXh

X: Undefined Note: 1. The blank areas are reserved and cannot be accessed by users.

Symbol	Parameter			Conditions		Standard	1	Unit		
Symbol					Conditions	Min.	Тур.		Max.	
Vcc/AVcc	Supply voltage	upply voltage				2.7	-	5.5	V	
Vss/AVss	Supply voltage					-	0	-	V	
Viн	Input "H" voltage	Other that	an CMOS inp	out		0.8 Vcc	-	Vcc	V	
		CMOS	Input		$4.0~V \leq Vcc \leq 5.5~V$	0.5 Vcc	-	Vcc	V	
		input	level	: 0.35 Vcc	$2.7~V \leq Vcc < 4.0~V$	0.55 Vcc	-	Vcc	V	
			switching function	Input level selection	$4.0~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$	0.65 Vcc	-	Vcc	V	
			(I/O port)	: 0.5 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.7 Vcc	-	Vcc	V	
			(#0 port)		$4.0~V \leq Vcc \leq 5.5~V$	0.85 Vcc	-	Vcc	V	
				: 0.7 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0.85 Vcc	-	Vcc	V	
		External	clock input	(XOUT)		1.2	-	Vcc	V	
VIL	Input "L" voltage	Other that	Other than CMOS input			0	-	0.2 Vcc	V	
		input level switcl	Input	evel : 0.35 Vcc	$4.0~\text{V} \leq \text{Vcc} \leq 5.5~\text{V}$	0	-	0.2 Vcc	V	
					$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0	-	0.2 Vcc	V	
			switching	1000 mput level selection	$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.4 Vcc	V	
			(I/O port)		$2.7~V \leq Vcc < 4.0~V$	0	-	0.3 Vcc	V	
						$4.0~V \leq Vcc \leq 5.5~V$	0	-	0.55 Vcc	V
				: 0.7 Vcc	$2.7~\text{V} \leq \text{Vcc} < 4.0~\text{V}$	0	-	0.45 Vcc	V	
		External	clock input	(XOUT)		0	-	0.4	V	
IOH(sum)	Peak sum output "H"	current	Sum of all	pins IOH(peak)		-	-	-80	mA	
IOH(sum)	Average sum output "		Sum of all	pins IOH(avg)		-	-	-40	mA	
IOH(peak)	Peak output "H" curre	ent				-	-	-10	mA	
IOH(avg)	Average output "H" c	urrent				-	-	-5	mA	
IOL(sum)	Peak sum output "L"	current	Sum of all	pins IOL(peak)		-	-	80	mA	
IOL(sum)	Average sum output "	L" current	Sum of all	pins IOL(avg)		-	_	40	mA	
IOL(peak)	Peak output "L" curre	ent	•			-	-	10	mA	
IOL(avg)	Average output "L" c					-	_	5	mA	
f(XIN)	XIN clock input oscill	ation frequ	lency		$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz	
fOCO40M	Count source for time	er RC, tim	er RD, or tir	ner RG	$2.7~V \leq Vcc \leq 5.5~V$	32	-	40	MHz	
fOCO-F	fOCO-F frequency				$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz	
_	System clock freque	ncy			$2.7~V \leq Vcc \leq 5.5~V$	-	_	20	MHz	
f(BCLK)	CPU clock frequency	/			$2.7~V \leq Vcc \leq 5.5~V$	-	-	20	MHz	

Recommended Operating Conditions (1) Table 5.2

Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.
 The average output current indicates the average value of current measured during 100 ms.

Symbol	Doromo	tor	0	Conditions		Standard		
Symbol	Parameter Resolution		Conditions			Тур.	Max.	Unit
-			Vref = AVCC		-	-	10	Bit
_	Absolute accuracy	10-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input ANEX0 to ANEX3 input	-	_	±3	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input ANEX0 to ANEX3 input	-	_	±5	LSB
		8-bit mode	Vref = AVcc = 5.0 V	AN0 to AN7 input, AN8 to AN11 input ANEX0 to ANEX3 input	-	-	±2	LSB
			Vref = AVcc = 3.0 V	AN0 to AN7 input, AN8 to AN11 input ANEX0 to ANEX3 input	-	-	±2	LSB
φAD	A/D conversion clock		$4.0 \leq V_{ref} = AV_{CC} = \leq 5.5 \ ^{(2)}$		2	-	20	MHz
			$2.7 \le V_{ref} = AV_{CC} = \le 5.5^{(2)}$		2	-	10	MHz
_	Tolerance level impe	edance			_	3	-	kΩ
lvref	Vref current		Vcc = 5 V, XIN = f1 =	φAD = 20 MHz	-	45	-	μΑ
tCONV	Conversion time	10-bit mode	$V_{ref} = AV_{CC} = 5.0V, \phi AD = 20 \text{ MHz}$		2.2	-	-	μS
		8-bit mode	Vref = AVcc = 5.0V, φAD = 20 MHz		2.2	-	-	μs
t SAMP	Sampling time		φAD = 20 MHz		0.8	-	-	μS
Vref	Reference voltage					_	AVcc	V
VIA	Analog input voltage	g (3)				-	Vref	V
OCVREF	On-chip reference v	oltage	$2 \text{ MHz} \le \phi \text{AD} \le 4 \text{ MH}$	z	1.14	1.34	1.54	V

	Table 5.4	A/D Converter Charact	teristics
1			

1. Vcc/AVcc = Vref = 2.7 to 5.5 V, Vss = 0 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. The A/D conversion result will be undefined in wait mode, stop mode, when the flash memory stops, and in low-consumption current mode. Do not perform A/D conversion in these states or transition to these states during A/D conversion.

3. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

Symbol	Parameter	Conditions		Stan	dard	Unit
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance (2)		10,000 (3)	-	-	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		-	160	950	μS
-	Byte program time (program/erase endurance > 1,000 times)		-	300	950	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	1	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	1	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	3+CPU clock × 3 cycles	ms
-	Interval from erase start/restart until following suspend request		0	-	_	μS
-	Time from suspend until erase restart		-	-	30+CPU clock × 1 cycle	μS
td(CMDRST- READY)	Time from when command is forcibly terminated until reading is enabled		-	-	30+CPU clock × 1 cycle	μS
_	Program, erase voltage		2.7	-	5.5	V
_	Read voltage		2.7	-	5.5	V
-	Program, erase temperature		-40	-	85 (J version) 125 (K version)	°C
-	Data hold time (7)	Ambient temperature = 55 °C $^{(8)}$	20	-	-	year

Table 5.6	Flash Memory (Data flash Block A to Block D) Electrical Characteristics
-----------	----------------	-------------------------------	------------------------------

1. Vcc = 2.7 to 5.5 V at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100, 1,000, 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the erasure endurance between blocks A to D can further reduce the actual erasure endurance. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.

5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.

- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.
- 8. This data hold time includes 3,000 hours in Ta = 125° C and 7,000 hours in Ta = 85° C.

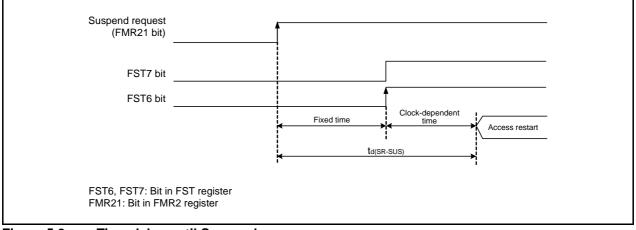


Figure 5.2 Time delay until Suspend

Table 5.10 Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics	Table 5.10	Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics ⁽²⁾
---	------------	---

Symbol	Parameter	Condition		Standard		Unit
Symbol		Condition	Min.	Тур.	Max.	Unit
trth	External power Vcc rise gradient	(1)	0	-	50000	mV/msec

1. The measurement condition is Vcc = 2.7 V to 5.5 V and $T_{opr} = -40$ to 85°C (J version) / -40 to 125°C (K version).2. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

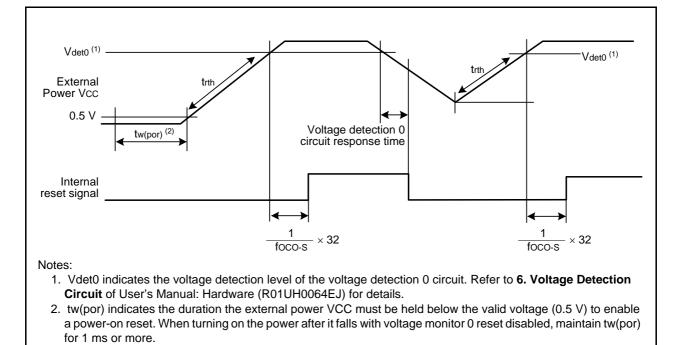


Figure 5.3 **Power-on Reset Circuit Electrical Characteristics**

Symbol		Parameter	Condition	St	andard		Unit
Symbol		Parameter	Condition	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Iон = -5 mA	Vcc - 2.0	-	Vcc	V
			Іон = –200 μА	Vcc - 0.3	-	Vcc	V
		XOUT	Іон = –200 μА	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	IoL = 5 mA	_	-	2.0	V
			IOL = 200 μA	_	-	0.45	V
		XOUT	Іон = –200 μА	-	-	0.5	V
VT+-VT-	Hysteresis	INTO to INT4, KIO to KI3, TRAIO0, TRAIO1, TRBO, TRCIOA to TRCIOD, TRDIOA0 to TRDIOD0, TRDIOA1 to TRDIOD1, TRFI, TRGIOA, TRGIOB, TRCCLK, TRDCLK, TRGCLKA, TRGCLKB, TRCTRG, ADTRG, RXD0 to RXD2, CLK0 to CLK2, SDA2, SSO		0.1	1.2	_	V
		RESET		0.1	1.2	-	V
Ін	Input "H" current		VI = 5 V, Vcc = 5.0 V	-	-	1.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 5.0 V	-	-	-1.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 5.0 V	25	50	100	kΩ
Rfxin	Feedback resistance	XIN		-	0.3	-	MΩ
Vram	RAM hold voltage	•	During stop mode	2.0	_	-	V

Table 5.15 Electrical Characteristics (1) [4.2 V \leq Vcc \leq 5.5 V]

1. $4.2 \text{ V} \le \text{Vcc} \le 5.5 \text{ V}$ at T_{opr} = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

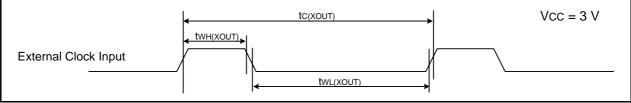
Cumhal		Parameter	Condition	Si	Standard		
Symbol		Parameter	Condition	Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Other than XOUT	Iон = –1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Іон = –200 μА	1.0	-	Vcc	V
Vol	Output "L" voltage	Other than XOUT	IoL = 1 mA	-	-	0.5	V
		XOUT	IoL = 200 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INT0 to INT4, KI0 to KI3, TRAIO0, TRAIO1, TRBO, TRCIOA to TRCIOD, TRDIOA0 to TRDIOD0, TRDIOA1 to TRDIOD1, TRFI, TRGIOA, TRGIOB, TRCCLK, TRDCLK, TRGCLKA, <u>TRGCLKB,</u> TRCTRG, ADTRG, RXD0 to RXD2, CLK0 to CLK2, SSI, SCL2, SDA2, SSO		0.1	0.4	_	V
		RESET		0.1	0.5	-	V
Ін	Input "H" current		VI = 3 V, Vcc = 3.0 V	-	-	1.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3.0 V	-	-	-1.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3.0 V	42	84	168	kΩ
Rfxin	Feedback resistance	XIN		-	0.3	-	MΩ
Vram	RAM hold voltage		During stop mode	2.0	_	-	V

Table 5.23Electrical Characteristics (4) $[2.7 V \le Vcc < 4.2 V]$

1. $2.7 \text{ V} \le \text{Vcc} < 4.2 \text{ V}$ at Topr = -40 to 85°C (J version) / -40 to 125°C (K version), f(XIN) = 20 MHz, unless otherwise specified.

Table 5.25	Electrical Characteristics (6) [2.7 V \leq Vcc $<$ 3.3 V]
	(Topr = -40 to $125^{\circ}C$ (K version), unless otherwise specified.)

Symbol	Parameter		Condition		Standard	t t	Unit
5,1100				Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode (1)	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	14.5	mA
	other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	5.6	12.0	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.6	-	mA
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.2	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	-	mA
		High-speed on-chip oscillator	XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	7.0	14.5	mA
	mode ⁽¹⁾ XIN clock off High-speed on-chip oscillator on fOCO-F = 20 MH. Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3.0	-	mA		
		Low-speed on-chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR27 = 1, VCA20 = 0	-	85	390	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	—	15	320	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	5	310	μA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	2.0	5.0	μA
			XIN clock off, $T_{opr} = 125^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	55.0	_	μA


1. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

The maximum value (Max.) indicates the current when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = -40°C to 85°C (J ver)/-40°C to 125°C (K ver))

Table 5.26 External clock input (XOUT)

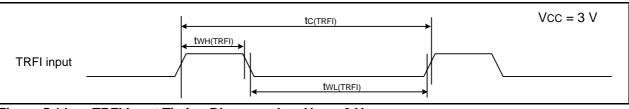
Symbol	Parameter	Standard		Unit
Symbol	Falanielei	Min. Max.		Unit
tc(XOUT)	XOUT input cycle time	50	-	ns
twh(xout)	XOUT input "H" width	24	-	ns
twl(xout)	XOUT input "L" width	24	-	ns

Figure 5.12 External Clock Input Timing Diagram when Vcc = 3 V

Table 5.27 TRAIOi (i = 0 to 1) Input

Symbol	ymbol Parameter		Standard		
Symbol	Falanielei	Min. Max.	Unit		
tc(TRAIO)	TRAIOi (i = 0 to 1) input cycle time	300	-	ns	
twh(traio)	TRAIOi (i = 0 to 1) input "H" width	120	-	ns	
twl(traio)	TRAIOi (i = 0 to 1) input "L" width	120	-	ns	

Figure 5.13 TRAIOi (i = 0 to 1) Input Timing Diagram when Vcc = 3 V


Table 5.28 TRFI Input

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
tc(TRFI)	TRFI input cycle time	400 (1)	-	ns
twh(trfi)	TRFI input "H" width	200 (2)	-	ns
twl(trfi)	TRFI input "L" width	200 (2)	-	ns

Notes:

1. When using timer RF input capture mode, adjust the cycle time to (1/timer RF count source frequency × 3) or above.

2. When using timer RF input capture mode, adjust the pulse width to (1/timer RF count source frequency × 1.5) or above.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for which the soften where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of soften an application categorized as "Specific" for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product of uses of any expression product of the prior written consent of Renesas Electronics.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically
 designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renease Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renease Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renease Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renease Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renease Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-12-827-1551, Fax: +86-21-6837-7859 Renease Electronics (Shanghai) Co., Ltd. 10n1 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 Renease Electronics Hong Kong Limited Unit 1801-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +88-2486-9318, Fax: +882-2486-9022/9044e, 1845-24817-9400, Fax: +882-2486-9022/9044e, 1945-063 Fu Shing North Road Taipei, Taiwan Tel: +882-2486-9300, Fax: +882-24175-9670 Renease Electronics Mangapore Pte. Ltd. 1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +68-2413-2400, Fax: +885-24175-9670 Renease Electronics Malaysia Sch.Bhd. Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9300, Fax: +882-355-9510 Renease Electronics Korea Co., Ltd. 11F, Samik Lavied or Bilde, Tou-27 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2558-3737, Fax: +882-2-558-5141