

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, MPEG-4, VFP
RAM Controllers	DDR
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, Keypad, LCD
Ethernet	-
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	Random Number Generator, RTIC, Secure Fusebox, Secure JTAG, Secure Memory
Package / Case	473-LFBGA
Supplier Device Package	473-LFBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx31lvmn5cr2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Functional Description and Application Information

Block Mnemonic	Block Name	Functional Grouping	Brief Description	Section/ Page
SCC	Security Controller Module	Security	The SCC is a hardware component composed of two blocks—the Secure RAM module, and the Security Monitor. The Secure RAM provides a way of securely storing sensitive information.	_
SDHC	Secured Digital Host Controller	Connectivity Peripheral	The SDHC controls the MMC (MultiMediaCard), SD (Secure Digital) memory, and I/O cards by sending commands to cards and performing data accesses to and from the cards.	4.3.19/89
SDMA	Smart Direct Memory Access	System Control Peripheral	The SDMA controller maximizes the system's performance by relieving the ARM core of the task of bulk data transfer from memory to memory or between memory and on-chip peripherals.	_
SIM	Subscriber Identification Module	Connectivity Peripheral	The SIM interfaces to an external Subscriber Identification Card. It is an asynchronous serial interface adapted for Smart Card communication for e-commerce applications.	4.3.20/90
SJC	Secure JTAG Controller	Debug	The SJC provides debug and test control with maximum security and provides a flexible architecture for future derivatives or future multi-cores architecture.	4.3.21/94
SSI	Synchronous Serial Interface	Multimedia Peripheral	The SSI is a full-duplex, serial port that allows the device to communicate with a variety of serial devices, such as standard codecs, Digital Signal Processors (DSPs), microprocessors, peripherals, and popular industry audio codecs that implement the inter-IC sound bus standard (I2S) and Intel AC97 standard.	4.3.22/96
UART	Universal Asynchronous Receiver/Trans mitter	Connectivity Peripheral	The UART provides serial communication capability with external devices through an RS-232 cable or through use of external circuitry that converts infrared signals to electrical signals (for reception) or transforms electrical signals to signals that drive an infrared LED (for transmission) to provide low speed IrDA compatibility.	_
USB	Universal Serial Bus— 2 Host Controllers and 1 OTG (On-The-Go)	Connectivity Peripherals	 USB Host 1 is designed to support transceiverless connection to the on-board peripherals in Low Speed and Full Speed mode, and connection to the ULPI (UTMI+ Low-Pin Count) and Legacy Full Speed transceivers. USB Host 2 is designed to support transceiverless connection to the Cellular Modem Baseband Processor. The USB-OTG controller offers HS/FS/LS capabilities in Host mode and HS/FS in device mode. In Host mode, the controller supports direct connection of a FS/LS device (without external hub). In device (bypass) mode, the OTG port functions as gateway between the Host 1 Port and the OTG transceiver. 	4.3.23/104
WDOG	Watchdog Timer Module	Timer Peripheral	The WDOG module protects against system failures by providing a method for the system to recover from unexpected events or programming errors.	

Table 3. Digital ar	d Analog Module	s (continued)
---------------------	-----------------	---------------

4.2 Supply Power-Up/Power-Down Requirements and Restrictions

Any MCIMX31 board design must comply with the power-up and power-down sequence guidelines as described in this section to guarantee reliable operation of the device. Any deviation from these sequences may result in any or all of the following situations:

- Cause excessive current during power up phase
- Prevent the device from booting
- Cause irreversible damage to the MCIMX31 (worst-case scenario)

4.2.1 Powering Up

The Power On Reset (\overline{POR}) pin must be kept asserted (low) throughout the power up sequence. Power up logic must guarantee that all power sources reach their target values prior to the release (de-assertion) of \overline{POR} . Figure 2 shows the power-up sequence for silicon Revisions 1.2 and previous. Figure 3 and Figure 4 show the power-up sequence for silicon Revision 2.0.

NOTE

Stages need to be performed in the order shown; however, *within* each stage, supplies can be powered up in any order. For example, supplies IOQVDD, NVCC1, and NVCC3 through NVCC10 do not need to be powered up in the order shown.

CAUTION

NVCC6 and NVCC9 must be at the same voltage potential. These supplies are connected together on-chip to optimize ESD damage immunity.

4.3.4 1-Wire Electrical Specifications

Figure 7 depicts the RPP timing, and Table 21 lists the RPP timing parameters.

Figure 7. Reset and Presence Pulses (RPP) Timing Diagram

ID	Parameters	Symbol	Min	Тур	Max	Units
OW1	Reset Time Low	t _{RSTL}	480	511		μs
OW2	Presence Detect High	t _{PDH}	15		60	μs
OW3	Presence Detect Low	t _{PDL}	60	_	240	μs
OW4	Reset Time High	t _{RSTH}	480	512		μs

Table 21. RPP Sequence Delay Comparisons Timing Parameters

Figure 8 depicts Write 0 Sequence timing, and Table 22 lists the timing parameters.

Figure 8. Write 0 Sequence Timing Diagram

Table 22. WR0 Sequence Timing Parameters

ID	Parameter	Symbol	Min	Тур	Max	Units
OW5	Write 0 Low Time	t _{WR0_low}	60	100	120	μs
OW6	Transmission Time Slot	t _{SLOT}	OW5	117	120	μs

Figure 9 depicts Write 1 Sequence timing, Figure 10 depicts the Read Sequence timing, and Table 23 lists the timing parameters.

ATA Parameter	Parameter from Figure 12	Value	Controlling Variable
t1	t1	t1 (min) = time_1 * T - (tskew1 + tskew2 + tskew5)	time_1
t2	t2w	t2 (min) = time_2w * T – (tskew1 + tskew2 + tskew5)	time_2w
t9	t9	t9 (min) = time_9 * T – (tskew1 + tskew2 + tskew6)	time_9
t3		t3 (min) = (time_2w - time_on)* T - (tskew1 + tskew2 +tskew5)	If not met, increase time_2w
t4	t4	t4 (min) = time_4 * T – tskew1	time_4
tA	tA	$tA = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf)$	time_ax
tO	—	t0(min) = (time_1 + time_2 + time_9) * T	time_1, time_2r, time_9
—	—	Avoid bus contention when switching buffer on by making ton long enough.	—
—	—	Avoid bus contention when switching buffer off by making toff long enough.	—

Figure 13 shows timing for MDMA read, Figure 14 shows timing for MDMA write, and Table 27 lists the timing parameters for MDMA read and write.

Figure 13. MDMA Read Timing Diagram

Figure 14. MDMA Write Timing Diagram

ATA Parameter	Parameter from Figure 13, Figure 14	Value	Controlling Variable
tm, ti	tm	tm (min) = ti (min) = time_m * T – (tskew1 + tskew2 + tskew5)	time_m
td	td, td1	td1.(min) = td (min) = time_d * T – (tskew1 + tskew2 + tskew6)	time_d
tk	tk	tk.(min) = time_k * T – (tskew1 + tskew2 + tskew6)	time_k
tO	—	t0 (min) = (time_d + time_k) * T	time_d, time_k
tg(read)	tgr	tgr (min-read) = tco + tsu + tbuf + tbuf + tcable1 + tcable2 tgr.(min-drive) = td - te(drive)	time_d
tf(read)	tfr	tfr (min-drive) = 0	—
tg(write)	—	tg (min-write) = time_d * T – (tskew1 + tskew2 + tskew5)	time_d
tf(write)	—	tf (min-write) = time_k * T – (tskew1 + tskew2 + tskew6)	time_k
tL	—	$tL (max) = (time_d + time_k-2)^T - (tsu + tco + 2^tbuf + 2^tcable2)$	time_d, time_k
tn, tj	tkjn	tn= tj= tkjn = (max(time_k,. time_jn) * T - (tskew1 + tskew2 + tskew6)	time_jn
—	ton toff	ton = time_on * T - tskew1 toff = time_off * T - tskew1	_

Figure 20. UDMA Out Device Terminates Transfer Timing Diagram

ATA Parameter	Parameter from Figure 18, Figure 19, Figure 20	Value	Controlling Variable
tack	tack	tack (min) = (time_ack * T) - (tskew1 + tskew2)	time_ack
tenv	tenv	tenv (min) = (time_env * T) - (tskew1 + tskew2) tenv (max) = (time_env * T) + (tskew1 + tskew2)	time_env
tdvs	tdvs	tdvs = (time_dvs * T) - (tskew1 + tskew2)	time_dvs
tdvh	tdvh	tdvs = (time_dvh * T) - (tskew1 + tskew2)	time_dvh
tcyc	tcyc	tcyc = time_cyc * T - (tskew1 + tskew2)	time_cyc
t2cyc	—	t2cyc = time_cyc * 2 * T	time_cyc
trfs1	trfs	trfs = 1.6 * T + tsui + tco + tbuf + tbuf	—
—	tdzfs	tdzfs = time_dzfs * T - (tskew1)	time_dzfs
tss	tss	tss = time_ss * T – (tskew1 + tskew2)	time_ss
tmli	tdzfs_mli	tdzfs_mli =max (time_dzfs, time_mli) * T - (tskew1 + tskew2)	—
tli	tli1	tli1 > 0	—
tli	tli2	tli2 > 0	—
tli	tli3	tli3 > 0	_
tcvh	tcvh	tcvh = (time_cvh *T) - (tskew1 + tskew2)	time_cvh
—	ton toff	ton = time_on * T - tskew1 toff = time_off * T - tskew1	—

Table 29. UDMA Out Burst Timing Parameters

Figure 38. Mobile DDR SDRAM Write Cycle Timing Diagram

Table 38. Mobile DDR SDRAM Write Cycle Timing Parameters¹

ID	Parameter	Symbol	Min	Мах	Unit
SD17	DQ and DQM setup time to DQS	tDS	0.95	_	ns
SD18	DQ and DQM hold time to DQS	tDH	0.95	_	ns
SD19	Write cycle DQS falling edge to SDCLK output delay time.	tDSS	1.8	_	ns
SD20	Write cycle DQS falling edge to SDCLK output hold time.	tDSH	1.8		ns

¹ Test condition: Measured using delay line 5 programmed as follows: ESDCDLY5[15:0] = 0x0703.

NOTE

SDRAM CLK and DQS related parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value.

The timing parameters are similar to the ones used in SDRAM data sheets—that is, Table 38 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

The timing described in Figure 44 is that of a Motorola sensor. Some other sensors may have a slightly different timing. The CSI can be programmed to support rising/falling-edge triggered SENSB_VSYNC; active-high/low SENSB_HSYNC; and rising/falling-edge triggered SENSB_PIX_CLK.

4.3.14.3 Electrical Characteristics

Figure 45 depicts the sensor interface timing, and Table 45 lists the timing parameters.

Figure 45. Sensor Interface Timing Diagram

ID	Parameter	Symbol	Min.	Max.	Units
IP1	Sensor input clock frequency	Fmck	0.01	133	MHz
IP2	Data and control setup time	Tsu	5	_	ns
IP3	Data and control holdup time	Thd	3	_	ns
IP4	Sensor output (pixel) clock frequency	Fpck	0.01	133	MHz

Table 45. Sensor Interface Timing Parameters¹

¹ The timing specifications for Figure 45 are referenced to the rising edge of SENS_PIX_CLK when the SENS_PIX_CLK_POL bit in the CSI_SENS_CONF register is cleared. When the SENS_PIX_CLK_POL is set, the clock is inverted and all timing specifications will remain the same but are referenced to the falling edge of the clock.

4.3.15 IPU–Display Interfaces

4.3.15.1 Supported Display Components

Table 46 lists the known supported display components at the time of publication.

² Display interface clock down time

$$\operatorname{`dicd} = \frac{1}{2} \operatorname{T}_{\operatorname{HSP}_{\operatorname{CLK}}} \cdot \operatorname{ceil} \left[\frac{2 \cdot \operatorname{DISP3}_{\operatorname{IF}_{\operatorname{CLK}}} \operatorname{DOWN}_{\operatorname{WR}}}{\operatorname{HSP}_{\operatorname{CLK}} \operatorname{PERIOD}} \right]$$

³ Display interface clock up time

 $Tdicu = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP3_IF_CLK_UP_WR}{HSP_CLK_PERIOD}\right]$

where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

4.3.15.3 Interface to Sharp HR-TFT Panels

Figure 50 depicts the Sharp HR-TFT panel interface timing, and Table 49 lists the timing parameters. The CLS_RISE_DELAY, CLS_FALL_DELAY, PS_FALL_DELAY, PS_RISE_DELAY, REV_TOGGLE_DELAY parameters are defined in the SDC_SHARP_CONF_1 and SDC_SHARP_CONF_2 registers. For other Sharp interface timing characteristics, refer to Section 4.3.15.2.2, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics." The timing images correspond to straight polarity of the Sharp signals.

Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 53. Asynchronous Parallel System 80 Interface (Type 2) Burst Mode Timing Diagram

Figure 59. Asynchronous Parallel System 68k Interface (Type 1) Timing Diagram

Figure 60. Asynchronous Parallel System 68k Interface (Type 2) Timing Diagram

Table 50. Asynchronous Parallel Interface	e Timing Parameters—Access Level
---	----------------------------------

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP27	Read system cycle time	Tcycr	Tdicpr-1.5	Tdicpr ²	Tdicpr+1.5	ns
IP28	Write system cycle time	Tcycw	Tdicpw-1.5	Tdicpw ³	Tdicpw+1.5	ns
IP29	Read low pulse width	Trl	Tdicdr-Tdicur-1.5	Tdicdr ⁴ –Tdicur ⁵	Tdicdr-Tdicur+1.5	ns
IP30	Read high pulse width	Trh	Tdicpr-Tdicdr+Tdicur-1.5	Tdicpr–Tdicdr+ Tdicur	Tdicpr-Tdicdr+Tdicur+1.5	ns
IP31	Write low pulse width	Twl	Tdicdw-Tdicuw-1.5	Tdicdw ⁶ –Tdicuw ⁷	Tdicdw-Tdicuw+1.5	ns
IP32	Write high pulse width	Twh	Tdicpw–Tdicdw+ Tdicuw–1.5	Tdicpw–Tdicdw+ Tdicuw	Tdicpw–Tdicdw+ Tdicuw+1.5	ns
IP33	Controls setup time for read	Tdcsr	Tdicur-1.5	Tdicur	—	ns
IP34	Controls hold time for read	Tdchr	Tdicpr-Tdicdr-1.5	Tdicpr–Tdicdr	—	ns
IP35	Controls setup time for write	Tdcsw	Tdicuw-1.5	Tdicuw	—	ns

The DISP#_IF_CLK_PER_WR, DISP#_IF_CLK_PER_RD, HSP_CLK_PERIOD, DISP#_IF_CLK_DOWN_WR, DISP#_IF_CLK_UP_WR, DISP#_IF_CLK_DOWN_RD, DISP#_IF_CLK_UP_RD and DISP#_READ_EN parameters are programmed via the DI_DISP#_TIME_CONF_1, DI_DISP#_TIME_CONF_2 and DI_HSP_CLK_PER Registers.

4.3.15.5.3 Serial Interfaces, Functional Description

The IPU supports the following types of asynchronous serial interfaces:

- 3-wire (with bidirectional data line)
- 4-wire (with separate data input and output lines)
- 5-wire type 1 (with sampling RS by the serial clock)
- 5-wire type 2 (with sampling RS by the chip select signal)

Figure 61 depicts timing of the 3-wire serial interface. The timing images correspond to active-low DISPB_D#_CS signal and the straight polarity of the DISPB_SD_D_CLK signal.

For this interface, a bidirectional data line is used outside the device. The IPU still uses separate input and output data lines (IPP_IND_DISPB_SD_D and IPP_DO_DISPB_SD_D). The I/O mux should provide joining the internal data lines to the bidirectional external line according to the IPP_OBE_DISPB_SD_D signal provided by the IPU.

Each data transfer can be preceded by an optional preamble with programmable length and contents. The preamble is followed by read/write (RW) and address (RS) bits. The order of the these bits is programmable. The RW bit can be disabled. The following data can consist of one word or of a whole burst. The interface parameters are controlled by the DI_SER_DISP1_CONF and DI_SER_DISP2_CONF Registers.

Figure 61. 3-Wire Serial Interface Timing Diagram

Figure 62 depicts timing of the 4-wire serial interface. For this interface, there are separate input and output data lines both inside and outside the device.

Figure 64 depicts timing of the 5-wire serial interface (Type 2). For this interface, a separate RS line is added. When a burst is transmitted within single active chip select interval, the RS can be changed at boundaries of words.

Figure 64. 5-Wire Serial Interface (Type 2) Timing Diagram

Figure 69. Write Accesses Timing Diagram—PSHT=1, PSST=1

Figure 74. Internal-Reset Card Reset Sequence

4.3.20.2.2 Cards with Active Low Reset

The sequence of reset for this kind of card is as follows (see Figure 75):

- 1. After powerup, the clock signal is enabled on CLK (time T0)
- 2. After 200 clock cycles, RX must be high.
- 3. RST must remain Low for at least 40000 clock cycles after T0 (no response is to be received on RX during those 40000 clock cycles)
- 4. RST is set High (time T1)
- 5. RST must remain High for at least 40000 clock cycles after T1 and a response must be received on RX between 400 and 40000 clock cycles after T1.

Figure 75. Active-Low-Reset Card Reset Sequence

Table	59.	SJC	Timina	Parameters
Tubic	00.	000		i urumetero

	Parameter	All Freq	Unit	
	Falanelei	Min	Min Max	
SJ1	TCK cycle time	100 ¹	_	ns
SJ2	TCK clock pulse width measured at V_M^2	40	—	ns
SJ3	TCK rise and fall times	_	3	ns
SJ4	Boundary scan input data set-up time	10	—	ns
SJ5	Boundary scan input data hold time	50	—	ns
SJ6	TCK low to output data valid		50	ns
SJ7	TCK low to output high impedance		50	ns
SJ8	TMS, TDI data set-up time	10	—	ns
SJ9	TMS, TDI data hold time	50	—	ns
SJ10	TCK low to TDO data valid	_	44	ns

5.2 MAPBGA Production Package—473 19 x 19 mm, 0.8 mm Pitch

This section contains the outline drawing, signal assignment map (see Section 8, "Revision History," Table 71 for the 19 x 19 mm, 0.8 mm pitch signal assignments), and MAPBGA ground/power ID by ball grid location for the 473 19 x 19 mm, 0.8 mm pitch package.

5.2.1 Production Package Outline Drawing–19 x 19 mm 0.8 mm

Figure 87. Production Package: Case 1931–0.8 mm Pitch

Signal	Ball Location
NC	N7
NC	P7
NC	U21

Table 68	. 19 x	19 E	BGA I	No (Connects ¹
----------	--------	------	--------------	------	-----------------------

¹ These contacts are not used and must be floated by the user.

5.2.3.2 BGA Signal ID by Ball Grid Location—19 x 19 0.8 mm

Table 69. 19 x 19 BGA Signal ID by Ball Grid Location

Signal ID	Ball Location
A0	Y6
A1	AC5
A10	V15
A11	AB3
A12	AA3
A13	Y3
A14	Y15
A15	Y14
A16	V14
A17	Y13
A18	V13
A19	Y12
A2	AB5
A20	V12
A21	Y11
A22	V11
A23	Y10
A24	Y9
A25	Y8
A3	AA5
A4	Y5
A5	AC4
A6	AB4
A7	AA4
A8	Y4
A9	AC3
ATA_CS0	E1
ATA_CS1	G4
ATA_DIOR	E3
ATA_DIOW	H6
ATA_DMACK	E2
ATA_RESET	F3
BATT_LINE	F6
BCLK	W20
BOOT_MODE0	F17
BOOT_MODE1	C21

Signal ID	Ball Location
CKIL	E21
CLKO	C20
CLKSS	H17
COMPARE	A20
CONTRAST	N21
CS0	U17
CS1	Y22
CS2	Y18
CS3	Y19
CS4	Y20
CS5	AA21
CSI_D10	K21
CSI_D11	K22
CSI_D12	K23
CSI_D13	L20
CSI_D14	L18
CSI_D15	L21
CSI_D4	J20
CSI_D5	J21
CSI_D6	L17
CSI_D7	J22
CSI_D8	J23
CSI_D9	K20
CSI_HSYNC	H22
CSI_MCLK	H20
CSI_PIXCLK	H23
CSI_VSYNC	H21
CSPI1_MISO	N2
CSPI1_MOSI	N1
CSPI1_SCLK	M4
CSPI1_SPI_RDY	M1
CSPI1_SS0	M2
CSPI1_SS1	N6
CSPI1_SS2	M3
CSPI2_MISO	B4
CSPI2_MOSI	D5

6 **Product Differences**

The locations that provide the differences between silicon Revision 2.0, 1.2, and previous versions are given in Table 72. The differences between the MCIMX31/MCIMX31L and the MCIMX31C/MCIMX31LC are outlined in Table 73.

Item	Location	Silicon 1.2 and Previous	Silicon 2.0
Ordering Information	Section 1.2, "Ordering Information	Table 1	Table 1
Feature Differences	Table 1.2.1, "Feature Differences Between Mask Sets," on page 3	N/A	Table 1.2.1
Operating Ranges	Table 4.1, "Chip-Level Conditions," on page 10	Table 8, "Operating Ranges," on page 13	Table 8, and Table 9, "Specific Operating Ranges for Silicon Revision 2.0," on page 14
Power-up Sequences	Section 4.2.1, "Powering Up	Figure 2, "Power-Up Sequence for Silicon Revisions 1.2 and Previous," on page 20	Figure 3, "Option 1 Power-Up Sequence (Silicon Revision 2.0)," on page 21
Power-down Sequences	Section 4.2.2, "Powering Down	_	_

Table 72. Silicon Differentiation by Location within the Data Sheet

Table 73. Product Differentiation

Item	Location	MCIMX31/MCIMX31L	MCIMX31C/MCIMX31LC	
Device ordering information	Table 1, "Ordering Information," on page 3	See Table 1.	See Table 1.	
Thermal simulation values	Table 6, "Thermal Resistance Data—14 \times 14 mm Package," on page 11 and Table 7, "Thermal Resistance Data—19 \times 19 mm Package," on page 11	See Table 6 and Table 7.	See Table 7.	
Core overdrive operating voltages	Table 8, "Operating Ranges," on page 13	Capability to operate in overdrive voltages.	Not capable of overdrive operating voltages.	
Fuse_VDD	Table 8, "Operating Ranges," on page 13 and Table 9, "Specific Operating Ranges for Silicon Revision 2.0," on page 14	Fusebox read Supply Voltage 1.65 min, 1.95 max.	In read mode, FUSE_VDD should be floated.	
Ambient operating temperature range	Table 13, "Current Consumption for -40×C to 85×C, for Silicon Revision 2.0," on page 17, and Table 14, "Current Consumption for 0×C to 70×C, for Silicon Revision 2.0," on page 18	0°C min, 70°C max −40°C min, 85°C max	–40°C min, 85°C max	
Current consumption values	Table 13, "Current Consumption for -40×C to 85×C, for Silicon Revision 2.0," on page 17	Typical value changes for State Retention, Doze, and Wait. See Table.	Typical value changes for State Retention, Doze, and Wait. See Table.	
DPLL maximum output freq range	Table 31, "DPLL Specifications," on page 37	MPLL and SPLL = 532 MHz	MPLL and SPLL = 400 MHz	