

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM1136JF-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	532MHz
Co-Processors/DSP	Multimedia; GPU, IPU, MPEG-4, VFP
RAM Controllers	DDR
Graphics Acceleration	Yes
Display & Interface Controllers	Keyboard, Keypad, LCD
Ethernet	-
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 2.0V, 2.5V, 2.7V, 3.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	Random Number Generator, RTIC, Secure Fusebox, Secure JTAG, Secure Memory
Package / Case	457-LFBGA
Supplier Device Package	457-LFBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx31vkn5r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block Mnemonic	Block Name	Functional Grouping	Brief Description	Section/ Page				
Fusebox	Fusebox	ROM	The Fusebox is a ROM that is factory configured by Freescale.					
GPIO	General Purpose I/O Module	Pins	The GPIO provides several groups of 32-bit bidirectional, general purpose I/O. This peripheral provides dedicated general-purpose signals that can be configured as either inputs or outputs.	_				
GPT	General Purpose Timer	Timer Peripheral	The GPT is a multipurpose module used to measure intervals or generate periodic output.	_				
GPU	Graphics Processing Unit	Multimedia Peripheral	The GPU provides hardware acceleration for 2D and 3D graphics algorithms.	_				
l ² C	Inter IC Communication	Connectivity Peripheral	The I ² C provides serial interface for controlling the Sensor Interface and other external devices. Data rates of up to 100 Kbits/s are supported.	4.3.13/56				
IIM	IC Identification Module	ID	The IIM provides an interface for reading device identification.	_				
IPU	Image Processing Unit	Multimedia Peripheral	The IPU processes video and graphics functions in the MCIMX31 and interfaces to video, still image sensors, and displays.	4.3.14/57, 4.3.15/59				
KPP	Keypad Port	Connectivity Peripheral	The KPP is used for keypad matrix scanning or as a general purpose I/O. This peripheral simplifies the software task of scanning a keypad matrix.	_				
MPEG-4	MPEG-4 Video Encoder	Multimedia Peripherals	The MPEG-4 encoder accelerates video compression, following the MPEG-4 standard	_				
MSHC	Memory Stick Host Controller	Connectivity Peripheral	The MSHC is placed in between the AIPS and the customer memory stick to support data transfer from the MCIMX31 to the customer memory stick.	4.3.16/84				
PADIO	Pads I/O	Buffers and Drivers	The PADIO serves as the interface between the internal modules and the device's external connections.	4.3.1/22				
PCMCIA	РСМ	Connectivity Peripheral	The PCMCIA Host Adapter provides the control logic for PCMCIA socket interfaces.	4.3.17/86				
PWM	Pulse-Width Modulator	Timer Peripheral	The PWM has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones.	4.3.18/88				
RNGA	Random Number Generator Accelerator	Security	The RNGA module is a digital integrated circuit capable of generating 32-bit random numbers. It is designed to comply with FIPS-140 standards for randomness and non-determinism.	_				
RTC	Real Time Clock	Timer Peripheral	The RTC module provides a current stamp of seconds, minutes, hours, and days. Alarm and timer functions are also available for programming. The RTC supports dates from the year 1980 to 2050.	—				
RTIC	Run-Time Integrity Checkers	Security	The RTIC ensures the integrity of the peripheral memory contents and assists with boot authentication.					

4 Electrical Characteristics

This section provides the device-level and module-level electrical characteristics for the MCIMX31.

4.1 Chip-Level Conditions

This section provides the device-level electrical characteristics for the IC. See Table 4 for a quick reference to the individual tables and sections.

For these characteristics,	Topic appears
Table 5, "Absolute Maximum Ratings"	on page 10
Table 7, "Thermal Resistance Data—19 \times 19 mm Package"	on page 11
Table 8, "Operating Ranges"	on page 13
Table 9, "Specific Operating Ranges for Silicon Revision 2.0"	on page 14
Table 10, "Interface Frequency"	on page 14
Section 4.1.1, "Supply Current Specifications"	on page 16
Section 4.2, "Supply Power-Up/Power-Down Requirements and Restrictions"	on page 19

Table 4. MCIMX31 Chip-Level Conditions

CAUTION

Stresses beyond those listed under Table 5 may cause permanent damage to the device. These are stress ratings only. Functional operation of the device at these or any other conditions beyond those indicated under Table 8, "Operating Ranges," on page 13 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter	Symbol	Min	Max	Units
Supply Voltage (Core)	QVCC _{max}	-0.5	1.65	V
Supply Voltage (I/O)	NVCC _{max}	-0.5	3.3	V
Input Voltage Range	V _{Imax}	-0.5	NVCC +0.3	V
Storage Temperature	T _{storage}	-40	125	°C
ESD Damage Immunity:				
Human Body Model (HBM)	V	—	1500	V
Machine Model (MM)	V _{esd}	—	200	v
Charge Device Model (CDM)		—	500	
Offset voltage allowed in run mode between core supplies.	V _{core_offset} ¹	_	15	mV

¹ The offset is the difference between all core voltage pair combinations of QVCC, QVCC1, and QVCC4.

Table 6 provides the thermal resistance data for the 14×14 mm, 0.5 mm pitch package.

Rating	Board	Symbol	Value	Unit	Notes
Junction to Ambient (natural convection)	Single layer board (1s)	$R_{ ext{ heta}JA}$	56	°C/W	1, 2, 3
Junction to Ambient (natural convection)	Four layer board (2s2p)	$R_{ ext{ heta}JA}$	30	°C/W	1, 3
Junction to Ambient (@200 ft/min)	Single layer board (1s)	R_{\thetaJMA}	46	°C/W	1, 2, 3
Junction to Ambient (@200 ft/min)	Four layer board (2s2p)	R_{\thetaJMA}	26	°C/W	1, 3
Junction to Board	—	$R_{\theta JB}$	17	°C/W	1, 4
Junction to Case	—	$R_{ ext{ heta}JC}$	10	°C/W	1, 5
Junction to Package Top (natural convection)	—	Ψ_{JT}	2	°C/W	1, 6

Table 6. Thermal Resistance Data—14 imes 14 mm Package

NOTES

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

Table 7 provides the thermal resistance data for the 19×19 mm, 0.8 mm pitch package.

Rating	Board	Symbol	Value	Unit	Notes
Junction to Ambient (natural convection)	Single layer board (1s)	$R_{ ext{ heta}JA}$	46	°C/W	1, 2, 3
Junction to Ambient (natural convection)	Four layer board (2s2p)	$R_{ ext{ heta}JA}$	29	°C/W	1, 2, 3
Junction to Ambient (@200 ft/min)	Single layer board (1s)	$R_{ ext{ heta}JMA}$	38	°C/W	1, 2, 3
Junction to Ambient (@200 ft/min)	Four layer board (2s2p)	$R_{ ext{ heta}JMA}$	25	°C/W	1, 2, 3
Junction to Board	_	$R_{ heta JB}$	19	°C/W	1, 3
Junction to Case (Top)	_	$R_{\theta JCtop}$	10	°C/W	1, 4
Junction to Package Top (natural convection)	_	Ψ_{JT}	2	°C/W	1, 5

Table 7. Thermal Resistance Data—19 imes 19 mm Package

4.2 Supply Power-Up/Power-Down Requirements and Restrictions

Any MCIMX31 board design must comply with the power-up and power-down sequence guidelines as described in this section to guarantee reliable operation of the device. Any deviation from these sequences may result in any or all of the following situations:

- Cause excessive current during power up phase
- Prevent the device from booting
- Cause irreversible damage to the MCIMX31 (worst-case scenario)

4.2.1 Powering Up

The Power On Reset (\overline{POR}) pin must be kept asserted (low) throughout the power up sequence. Power up logic must guarantee that all power sources reach their target values prior to the release (de-assertion) of \overline{POR} . Figure 2 shows the power-up sequence for silicon Revisions 1.2 and previous. Figure 3 and Figure 4 show the power-up sequence for silicon Revision 2.0.

NOTE

Stages need to be performed in the order shown; however, *within* each stage, supplies can be powered up in any order. For example, supplies IOQVDD, NVCC1, and NVCC3 through NVCC10 do not need to be powered up in the order shown.

CAUTION

NVCC6 and NVCC9 must be at the same voltage potential. These supplies are connected together on-chip to optimize ESD damage immunity.

4.3.5.2 PIO Mode Timing

Figure 11 shows timing for PIO read, and Table 25 lists the timing parameters for PIO read.

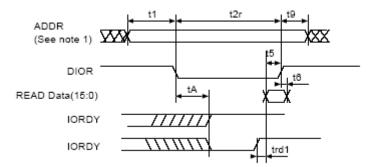


Figure 11. PIO Read Timing Diagram

Table 25. PIO Read Timing Parameters					
ATA Parameter	Parameter from Figure 11	Value	Controlling Variable		
t1	t1	t1 (min) = time_1 * T - (tskew1 + tskew2 + tskew5)	time_1		
t2	t2r	t2 min) = time_2r * T - (tskew1 + tskew2 + tskew5)	time_2r		
t9	t9	t9 (min) = time_9 * T - (tskew1 + tskew2 + tskew6)	time_3		
t5	t5	t5 (min) = tco + tsu + tbuf + tbuf + tcable1 + tcable2	If not met, increase time_2		
t6	t6	0	—		
tA	tA	$tA (min) = (1.5 + time_ax) * T - (tco + tsui + tcable2 + tcable2 + 2*tbuf)$	time_ax		
trd	trd1	$\label{eq:trd1} \begin{array}{l} (max) = (-trd) + (tskew3 + tskew4) \\ trd1 \ (min) = (time_pio_rdx - 0.5)^{*}T - (tsu + thi) \\ (time_pio_rdx - 0.5) \ ^{*}T > tsu + thi + tskew3 + tskew4 \end{array}$	time_pio_rdx		
tO	—	t0 (min) = (time_1 + time_2 + time_9) * T	time_1, time_2r, time_9		

Figure 12 shows timing for PIO write, and Table 26 lists the timing parameters for PIO write.

Parameter	Min	Тур	Max	Unit	Comments
Phase lock time	—	_	100	μs	In addition to the frequency
Maximum allowed PLL supply voltage ripple	—	_	25	mV	F _{modulation} < 50 kHz
Maximum allowed PLL supply voltage ripple		_	20	mV	50 kHz < F _{modulation} < 300 kHz
Maximum allowed PLL supply voltage ripple		_	25	mV	F _{modulation} > 300 kHz
PLL output clock phase jitter	_	_	5.2	ns	Measured on CLKO pin
PLL output clock period jitter	—	_	420	ps	Measured on CLKO pin

Table 31. DPLL Specifications (continued)

¹ The user or board designer must take into account that the use of a frequency other than 26 MHz would require adjustment to the DPTC–DVFS table, which is incorporated into operating system code.

² The PLL reference frequency must be ≤ 35 MHz. Therefore, for frequencies between 35 MHz and 70 MHz, program the predivider to divide by 2 or more. If the CKIH frequency is above 70 MHz, program the predivider to 3 or more. For PD bit description, see the reference manual.

4.3.9 EMI Electrical Specifications

This section provides electrical parametrics and timings for EMI module.

4.3.9.1 NAND Flash Controller Interface (NFC)

The NFC supports normal timing mode, using two flash clock cycles for one access of $\overline{\text{RE}}$ and $\overline{\text{WE}}$. AC timings are provided as multiplications of the clock cycle and fixed delay. Figure 23, Figure 24, Figure 25, and Figure 26 depict the relative timing requirements among different signals of the NFC at module level, for normal mode, and Table 32 lists the timing parameters.

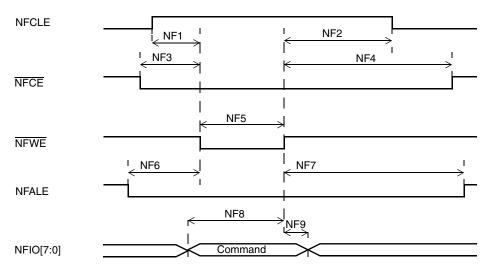


Figure 23. Command Latch Cycle Timing Dlagram

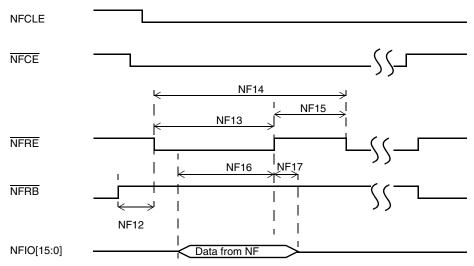


Figure 26. Read Data Latch Cycle Timing Dlagram

ID	Parameter	Symbol	Timing ymbol T = NFC Clock Cycle ²		Example Timing for NFC Clock \approx 33 MHz T = 30 ns		Unit
			Min	Max	Min	Мах	
NF1	NFCLE Setup Time	tCLS	T–1.0 ns	_	29	_	ns
NF2	NFCLE Hold Time	tCLH	T–2.0 ns	_	28	_	ns
NF3	NFCE Setup Time	tCS	T–1.0 ns		29	_	ns
NF4	NFCE Hold Time	tCH	T–2.0 ns	_	28	_	ns
NF5	NF_WP Pulse Width	tWP	T–1.5 ns		28.5		ns
NF6	NFALE Setup Time	tALS	Т	_	30	_	ns
NF7	NFALE Hold Time	tALH	T–3.0 ns	_	27	_	ns
NF8	Data Setup Time	tDS	Т	_	30	_	ns
NF9	Data Hold Time	tDH	T–5.0 ns	_	25	_	ns
NF10	Write Cycle Time	tWC	2T		60		ns
NF11	NFWE Hold Time	tWH	T–2	2.5 ns	27.5		ns
NF12	Ready to NFRE Low	tRR	6T	_	180	_	ns
NF13	NFRE Pulse Width	tRP	1.5T	_	45	_	ns
NF14	READ Cycle Time	tRC	2T		60	_	ns
NF15	NFRE High Hold Time	tREH	0.5T–2.5 ns		12.5	_	ns
NF16	Data Setup on READ	tDSR	1	N/A	10	—	ns
NF17	Data Hold on READ	tDHR	1	N/A	0	_	ns

Table 32. NFC	Timing	Parameters ¹
---------------	--------	-------------------------

¹ The flash clock maximum frequency is 50 MHz.

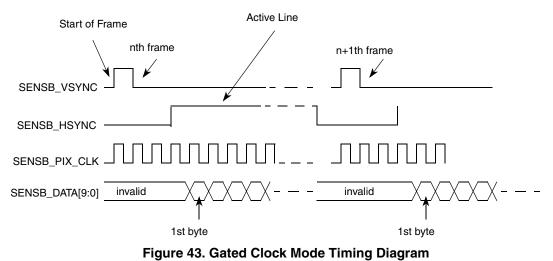
² Subject to DPLL jitter specification on Table 31, "DPLL Specifications," on page 37.

ID	Parameter	Symbol	Min	Max	Unit
SD9	Data out hold time ¹	tOH	1.8	_	ns
SD10	Active to read/write command period	tRC	10	_	clock

Table 34. DDR/SDR SDRAM Read Cycle Timing Parameters (continued)

¹ Timing parameters are relevant only to SDR SDRAM. For the specific DDR SDRAM data related timing parameters, see Table 38 and Table 39.

NOTE


SDR SDRAM CLK parameters are being measured from the 50% point—that is, high is defined as 50% of signal value and low is defined as 50% of signal value. SD1 + SD2 does not exceed 7.5 ns for 133 MHz.

The timing parameters are similar to the ones used in SDRAM data sheets—that is, Table 34 indicates SDRAM requirements. All output signals are driven by the ESDCTL at the negative edge of SDCLK and the parameters are measured at maximum memory frequency.

4.3.14.2.2 Gated Clock Mode

The SENSB_VSYNC, SENSB_HSYNC, and SENSB_PIX_CLK signals are used in this mode. See Figure 43.

A frame starts with a rising edge on SENSB_VSYNC (all the timings correspond to straight polarity of the corresponding signals). Then SENSB_HSYNC goes to high and hold for the entire line. Pixel clock is valid as long as SENSB_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. SENSB_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI stops receiving data from the stream. For next line the SENSB_HSYNC timing repeats. For next frame the SENSB_VSYNC timing repeats.

4.3.14.2.3 Non-Gated Clock Mode

The timing is the same as the gated-clock mode (described in Section 4.3.14.2.2, "Gated Clock Mode"), except for the SENSB_HSYNC signal, which is not used. See Figure 44. All incoming pixel clocks are valid and will cause data to be latched into the input FIFO. The SENSB_PIX_CLK signal is inactive (states low) until valid data is going to be transmitted over the bus.

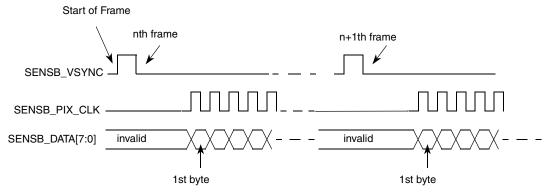
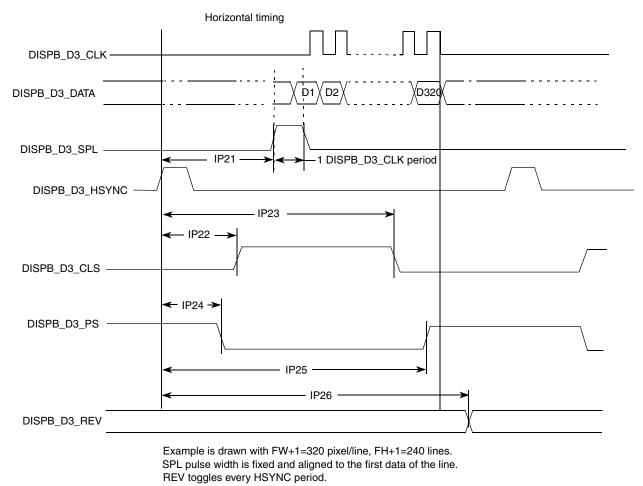


Figure 44. Non-Gated Clock Mode Timing Diagram

² Display interface clock down time

$$\[dicd = \frac{1}{2}T_{\text{HSP}_\text{CLK}} \cdot \text{ceil} \left[\frac{2 \cdot \text{DISP3}_\text{IF}_\text{CLK}_\text{DOWN}_\text{WR}}{\text{HSP}_\text{CLK}_\text{PERIOD}} \right]$$


³ Display interface clock up time

 $Tdicu = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP3_IF_CLK_UP_WR}{HSP_CLK_PERIOD}\right]$

where CEIL(X) rounds the elements of X to the nearest integers towards infinity.

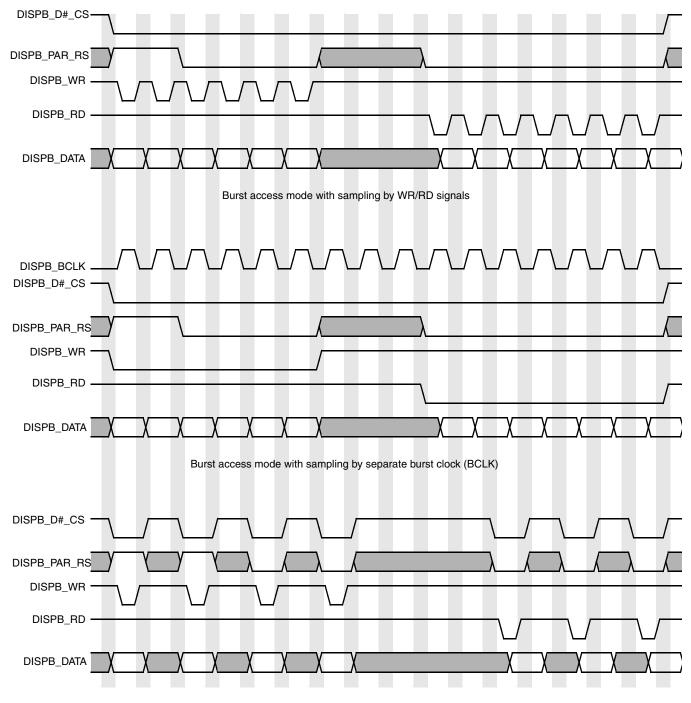
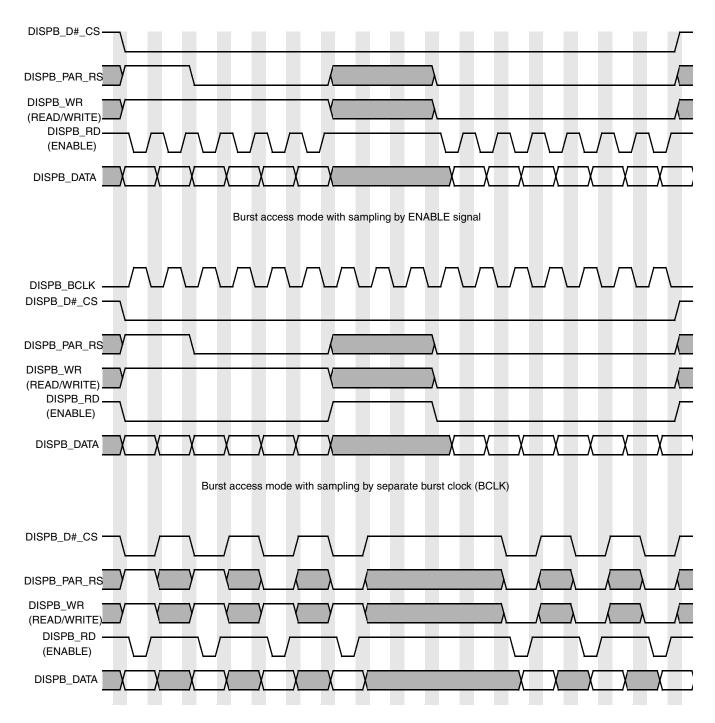

4.3.15.3 Interface to Sharp HR-TFT Panels

Figure 50 depicts the Sharp HR-TFT panel interface timing, and Table 49 lists the timing parameters. The CLS_RISE_DELAY, CLS_FALL_DELAY, PS_FALL_DELAY, PS_RISE_DELAY, REV_TOGGLE_DELAY parameters are defined in the SDC_SHARP_CONF_1 and SDC_SHARP_CONF_2 registers. For other Sharp interface timing characteristics, refer to Section 4.3.15.2.2, "Interface to Active Matrix TFT LCD Panels, Electrical Characteristics." The timing images correspond to straight polarity of the Sharp signals.



Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 53. Asynchronous Parallel System 80 Interface (Type 2) Burst Mode Timing Diagram

Single access mode (all control signals are not active for one display interface clock after each display access)

Figure 55. Asynchronous Parallel System 68k Interface (Type 2) Burst Mode Timing Diagram

Display read operation can be performed with wait states when each read access takes up to four display interface clock cycles according to the DISP0_RD_WAIT_ST parameter in the DI_DISP0_TIME_CONF_3, DI_DISP1_TIME_CONF_3, DI_DISP2_TIME_CONF_3 Registers. Figure 56 shows timing of the parallel interface with read wait states.

Figure 64 depicts timing of the 5-wire serial interface (Type 2). For this interface, a separate RS line is added. When a burst is transmitted within single active chip select interval, the RS can be changed at boundaries of words.

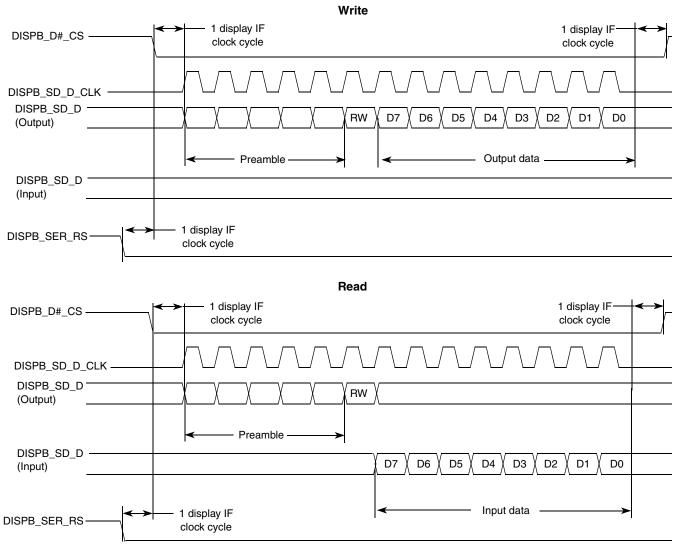


Figure 64. 5-Wire Serial Interface (Type 2) Timing Diagram

ID	Parameter	Symbol	Min.	Typ. ¹	Max.	Units
IP56	Controls setup time for write	Tdcsw	Tdicuw–1.5	Tdicuw	—	ns
IP57	Controls hold time for write	Tdchw	Tdicpw-Tdicdw-1.5	Tdicpw-Tdicdw	—	ns
IP58	Slave device data delay ⁸	Tracc	0	—	Tdrp ⁹ –Tlbd ¹⁰ –Tdicur–1.5	ns
IP59	Slave device data hold time ⁸	Troh	Tdrp-Tlbd-Tdicdr+1.5	—	Tdicpr-Tdicdr-1.5	ns
IP60	Write data setup time	Tds	Tdicdw-1.5	Tdicdw	—	ns
IP61	Write data hold time	Tdh	Tdicpw-Tdicdw-1.5	Tdicpw-Tdicdw	—	ns
IP62	Read period ²	Tdicpr	Tdicpr–1.5	Tdicpr	Tdicpr+1.5	ns
IP63	Write period ³	Tdicpw	Tdicpw-1.5	Tdicpw	Tdicpw+1.5	ns
IP64	Read down time ⁴	Tdicdr	Tdicdr-1.5	Tdicdr	Tdicdr+1.5	ns
IP65	Read up time ⁵	Tdicur	Tdicur–1.5	Tdicur	Tdicur+1.5	ns
IP66	Write down time ⁶	Tdicdw	Tdicdw-1.5	Tdicdw	Tdicdw+1.5	ns
IP67	Write up time ⁷	Tdicuw	Tdicuw-1.5	Tdicuw	Tdicuw+1.5	ns
IP68	Read time point ⁹	Tdrp	Tdrp-1.5	Tdrp	Tdrp+1.5	ns

 Table 51. Asynchronous Serial Interface Timing Parameters—Access Level (continued)

¹ The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display. These conditions may be device specific.

² Display interface clock period value for read:

 $Tdicpr = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_IF_CLK_PER_RD}{HSP_CLK_PERIOD} \right]$

³ Display interface clock period value for write:

 $Tdicpw = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_IF_CLK_PER_WR}{HSP_CLK_PERIOD} \right]$

⁴ Display interface clock down time for read:

 $Tdicdr = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_DOWN_RD}{HSP_CLK_PERIOD}\right]$

⁵ Display interface clock up time for read:

 $Tdicur = \frac{1}{2}T_{HSP_CLK} \cdot ceil \left[\frac{2 \cdot DISP\#_IF_CLK_UP_RD}{HSP_CLK_PERIOD}\right]$

⁶ Display interface clock down time for write:

$$\begin{bmatrix} \text{dicdw} &= \frac{1}{2} \text{T}_{\text{HSP}_\text{CLK}} \cdot \text{ceil} \begin{bmatrix} \frac{2 \cdot \text{DISP}\#_\text{IF}_\text{CLK}_\text{DOWN}_\text{WR}}{\text{HSP}_\text{CLK}_\text{PERIOD}} \end{bmatrix}$$

⁷ Display interface clock up time for write:

- ⁸ This parameter is a requirement to the display connected to the IPU.
- ⁹ Data read point:

 $drp = T_{HSP_CLK} \cdot ceil \left[\frac{DISP\#_READ_EN}{HSP_CLK_PERIOD} \right]$

¹⁰ Loopback delay Tlbd is the cumulative propagation delay of read controls and read data. It includes an IPU output delay, a device-level output delay, board delays, a device-level input delay, an IPU input delay. This value is device specific.

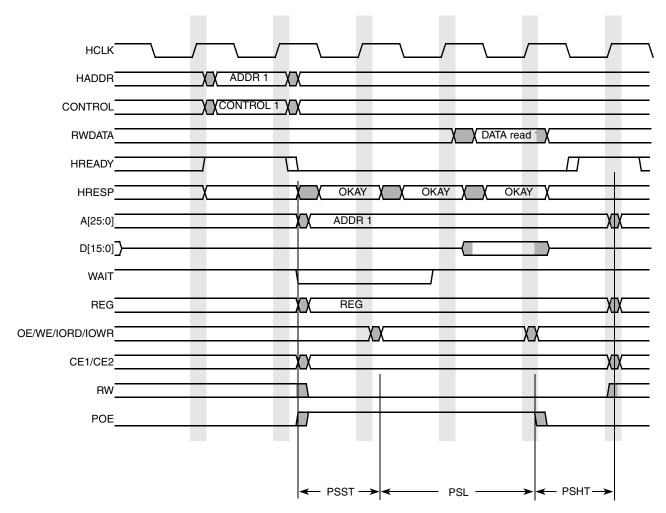


Figure 70. Read Accesses Timing Diagram—PSHT=1, PSST=1

Symbol	Parameter	Min	Max	Unit
PSHT	PCMCIA strobe hold time	0	63	clock
PSST	PCMCIA strobe set up time	1	63	clock
PSL	PCMCIA strobe length	1	128	clock

4.3.18 PWM Electrical Specifications

This section describes the electrical information of the PWM. The PWM can be programmed to select one of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before being input to the counter. The output is available at the pulse-width modulator output (PWMO) external pin.

ID	Parameter	Min	Мах	Unit
External	Clock Operation			1
SS22	(Tx/Rx) CK clock period	81.4	—	ns
SS23	(Tx/Rx) CK clock high period	36.0	—	ns
SS24	(Tx/Rx) CK clock rise time	_	6.0	ns
SS25	(Tx/Rx) CK clock low period	36.0	—	ns
SS26	(Tx/Rx) CK clock fall time	_	6.0	ns
SS27	(Tx) CK high to FS (bl) high	-10.0	15.0	ns
SS29	(Tx) CK high to FS (bl) low	10.0	—	ns
SS31	(Tx) CK high to FS (wl) high	-10.0	15.0	ns
SS33	(Tx) CK high to FS (wl) low	10.0	—	ns
SS37	(Tx) CK high to STXD valid from high impedance	—	15.0	ns
SS38	(Tx) CK high to STXD high/low	—	15.0	ns
SS39	(Tx) CK high to STXD high impedance	—	15.0	ns
Synchro	nous External Clock Operation			
SS44	SRXD setup before (Tx) CK falling	10.0	—	ns
SS45	SRXD hold after (Tx) CK falling	2.0	—	ns
SS46	SRXD rise/fall time	—	6.0	ns

Table 62. SSI Transmitter with External Clock Timing Parameters

ID	Parameter	Min	Max	Unit
SS28	(Rx) CK high to FS (bl) high	-10.0	15.0	ns
SS30	(Rx) CK high to FS (bl) low	10.0	_	ns
SS32	(Rx) CK high to FS (wl) high	-10.0	15.0	ns
SS34	(Rx) CK high to FS (wl) low	10.0	_	ns
SS35	(Tx/Rx) External FS rise time	—	6.0	ns
SS36	(Tx/Rx) External FS fall time	—	6.0	ns
SS40	SRXD setup time before (Rx) CK low	10.0	_	ns
SS41	SRXD hold time after (Rx) CK low	2.0	_	ns

Table 63. SSI Receiver with External Clock Timing Parameters (continued)

4.3.23 USB Electrical Specifications

This section describes the electrical information of the USBOTG port. The OTG port supports both serial and parallel interfaces.

The high speed (HS) interface is supported via the ULPI (Ultra Low Pin Count Interface). Figure 85 depicts the USB ULPI timing diagram, and Table 64 lists the timing parameters.

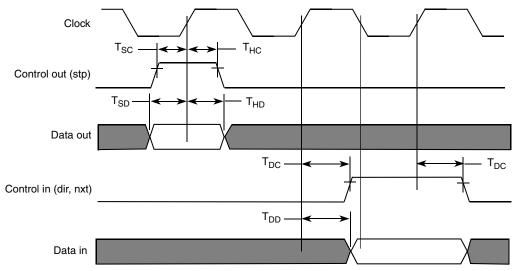


Figure 85. USB ULPI Interface Timing Diagram

Parameter	Symbol	Min	Мах	Units
Setup time (control in, 8-bit data in)	TSC, TSD	6	_	ns
Hold time (control in, 8-bit data in)	THC, THD	0	_	ns
Output delay (control out, 8-bit data out)	TDC, TDD	_	9	ns

¹ Timing parameters are given as viewed by transceiver side.

5.1.3.2 BGA Signal ID by Ball Grid Location–14 x 14 0.5 mm

Table 66 shows the device connection list for signals only, alpha-sorted by signal identification.

Table 66. 14 x 14 BGA Signal ID by E	Ball Grid Location
--------------------------------------	--------------------

A0 AD0 A1 AF A10 AF1 A11 AC A11 AC A12 AD0 A13 AD0 A14 AF1 A15 AF1 A16 AF1 A18 AF1 A2 AB3	5 8 3 3 4 7 6 5 5 4 3 2
A10 AF1 A11 AC A12 AD A13 AD A14 AF1 A15 AF1 A16 AF1 A18 AF1 A22 AB A20 AF1	8 3 3 4 7 6 5 4 3 2
A11 AC A12 AD A13 AD A13 AD A14 AF1 A15 AF1 A16 AF1 A17 AF1 A18 AF1 A2 AB A20 AF1	3 3 4 7 6 5 4 3 2
A12 AD3 A13 AD4 A13 AD4 A14 AF1 A15 AF1 A16 AF1 A17 AF1 A18 AF1 A19 AF1 A2 AB3 A20 AF1	3 4 7 6 5 4 3 2
A13 AD4 A14 AF1 A15 AF1 A16 AF1 A17 AF1 A18 AF1 A19 AF1 A2 AB3 A20 AF1	4 7 6 5 4 3 2
A14 AF1 A15 AF1 A16 AF1 A17 AF1 A18 AF1 A19 AF1 A2 AB3 A20 AF1	7 6 5 4 3 2
A15 AF1 A16 AF1 A17 AF1 A18 AF1 A19 AF1 A2 AB3 A20 AF1	6 5 4 3 2
A16 AF1 A17 AF1 A18 AF1 A19 AF1 A2 AB3 A20 AF1	5 4 3 2
A17 AF1 A18 AF1 A19 AF1 A2 AB3 A20 AF1	4 3 2
A18 AF1 A19 AF1 A2 AB3 A20 AF1	3 2
A19 AF1 A2 AB3 A20 AF1	2
A2 AB3 A20 AF1	
A20 AF1	
	5
	1
A21 AF1	0
A22 AFS	9
A23 AF8	8
A24 AF	7
A25 AF6	6
A3 AE4	4
A4 AA:	3
A5 AF4	4
A6 AB:	3
A7 AE	3
A8 AD	5
A9 AF:	3
ATA_CS0 J6	
ATA_CS1 F2	
ATA_DIOR E2	
ATA_DIOW H6	;
ATA_DMACK F1	
ATA_RESET H3	;
BATT_LINE F7	
BCLK AB2	26
BOOT_MODE0 F20)
BOOT_MODE1 C2 ⁻	1
BOOT_MODE2 D24	4
BOOT_MODE3 C22	2
BOOT_MODE4 D26	6
CAPTURE A22	2
CAS AD2	20
CE_CONTROL A14	4
CKIH F24	4

Signal ID	Ball Location
CKIL	H21
CLKO	C23
CLKSS	G26
COMPARE	G18
CONTRAST	R24
CS0	AE23
CS1	AF23
CS2	AE21
CS3	AD22
CS4	AF24
CS5	AF22
CSI_D10	M24
CSI_D11	L26
CSI_D12	M21
 CSI_D13	M25
 CSI_D14	M20
CSI D15	M26
CSI_D4	L21
CSI_D5	K25
CSI_D6	L24
 CSI_D7	K26
CSI_D8	L20
CSI_D9	L25
 CSI_HSYNC	K20
CSI_MCLK	K24
CSI_PIXCLK	J26
CSI_VSYNC	J25
CSPI1_MISO	P7
CSPI1_MOSI	P2
CSPI1 SCLK	N2
CSPI1_SPI_RDY	N3
CSPI1 SS0	P3
CSPI1_SS1	P1
CSPI1_SS2	P6
CSPI2_MISO	A4
CSPI2_MOSI	E3
CSPI2_SCLK	C7
CSPI2_SPI_RDY	B6
CSPI2_SS0	B5
CSPI2_SS1	C6
CSPI2_SS2	A5
CSPI3_MISO	G3
CSPI3_MOSI	D2

-	
-	
ω	

Table 71. Ball Map—19 x 19 0.8 mm Pitch

								Та	ble 7	'1. Ba	ll Map	—19 x	19 0.	8 mm	Pitch	1								
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	7
A	GND	GND	GND	CSPI2_ SS1	USBOTG_ DATA6	USBOTG _DATA2	USBOTG _DIR	USB_ PWR	CTS1	DTR_ DTE1	DSR_ DTE1	RXD2	KEY_ ROW0	KEY_ ROW3	KEY_ COL0	KEY_ COL5	KEY_ COL7	TDI	SRX0	COMPARE	GND	GND	GND	A
в	GND	GND	STXD4	CSPI2_ MISO	CSPI2_ SCLK	USBOTG_ DATA5	USBOTG_ NXT	USB_ OC	RTS1	DSR_ DCE1	RI_ DTE1	RTS2	KEY_ ROW1	KEY_ ROW6	KEY_ COL1	KEY_ COL6	TDO	SIMPD0	SCLK0	GPIO1_2	WATCH DOG RST	GND	GND	в
с	GND	GND	SRXD4	SRXD5	CSPI2_ SS0	USBOTG_ DATA7	USBOTG_ DATA1	USB_ BYP	RXD1	DCD_ DCE1	DTR_ DCE2	CTS2	KEY_ ROW2	KEY_ ROW7	KEY_ COL3	TMS	SJC_ MOD	SRST0	GPIO1 _0	CLKO	BOOT_ MODE1	GND	GND	с
D	STXD5	CSPI3_ MISO	SFS4	SCK5	CSPI2_ MOSI	CSPI2_SPI RDY	USBOTG_ DATA4	USBOTG_ CLK	TXD1	RI_ DCE1	DCD_ DTE1	CE_ CONTROL	KEY_ ROW5	KEY_ COL2	RTCK	DE	SVEN0	CAPTURE	GPIO1 5	BOOT_ MODE2	GPIO1_4	GND	GND	D
Е	ATA_ CS0	ATA_ DMACK	ATA_ DIOR	CSPI3_ MOSI																BOOT_ MODE4	CKIL	DVFS0	DVFS1	Е
F	PC_ RST	PWMO	ATA_ RESET	CSPI3_ SPI RDY		BATT_ LINE	CSPI2_ SS2	USBOTG_ DATA3	USBOT G_STP	DTR_ DCE1	TXD2	KEY_ ROW4	KEY_ COL4	тск	TRSTB	STX0	BOOT_ MODE0	BOOT_ MODE3		POWER_ FAIL	POR	RESET_	СКІН	F
G	PC_VS2	PC_ BVD1	PC_ RW	ATA_ CS1		SCK4	SFS5	USBOTG_ DATA0	NVCC5	NVCC5	NVCC6	NVCC6	NVCC6	NVCC9	NVCC1	NVCC1	GPIO1_1	GPIO1_6		GPIO1_3	VPG0	VPG1	GPIO3_0	G
н	PC_CD2	PC_ READY	PC_ VS1	PC_ BVD2		ATA_ DIOW	CSPI3_ SCLK	NVCC5	NVCC5	NVCC8	NVCC8	NVCC6	QVCC	NVCC4	NVCC7	NVCC1	CLKSS	VSTBY		CSI_ MCLK	CSI_ VSYNC	CSI_HSY NC	CSI_PIX CLK	н
J	SD1_ DATA1	SD1_ DATA2	PC_ CD1	PC_ WAIT		PC_POE	IOIS16	QVCC1	QVCC1	QVCC1	NVCC8	GND	GND	QVCC	NVCC4	NVCC7	NVCC1	I2C_ CLK		CSI_D4	CSI_D5	CSI_D7	CSI_D8	J
к	USBH2_ DATA1	SD1_ CLK	SD1_ CMD	SD1_ DATA0		PC_ PWRON	NVCC3	NVCC3	QVCC1	GND	GND	GND	GND	GND	NVCC4	NVCC7	GPIO3_1	I2C_ DAT		CSI_D9	CSI_ D10	CSI_ D11	CSI_ D12	к
L	USBH2_ CLK	USBH2_ DIR	USBH2_ STP	USBH2_ NXT		SD1_ DATA3	NVCC3	NVCC3	QVCC4	GND	GND	GND	GND	GND	QVCC	NVCC7	CSI_D6	CSI_ D14		CSI_D13	CSI_D15	VSYNC0	HSYNC	L
м	CSPI1_S PI_RDY	CSPI1_ SS0	CSPI1_ SS2	CSPI1_ SCLK		USBH2_ DATA0	QVCC4	QVCC4	GND	GND	GND	GND	GND	GND	QVCC	NVCC7	DRDY0	SD_D_ IO		SD_D_I	SD_D_ CLK	LCS0	FPSHIFT	м
N	CSPI1_ MOSI	CSPI1_ MISO	SRXD3	STXD3		CSPI1_ SS1	NC ¹	QVCC4	QVCC	GND	GND	GND	GND	GND	QVCC	NVCC2	D3_ SPL	READ		VSYNC3	CONTRAST	WRITE	LCS1	N
Р	SCK3	SFS3	STXD6	SFS6		NFWP	NC ¹	NVCC10	QVCC	GND	GND	GND	GND	GND	QVCC	NVCC2	UGND	UVCC		D3_CLS	D3_ REV	PAR_ RS	SER_ RS	Р
R	SRXD6	SCK6	NFRB	NFCE		D13	NVCC10	NVCC10	NVCC1 0	QVCC	QVCC	GND	QVCC	QVCC	NVCC2	NVCC2	LD8	LD11		LD3	LD2	LD1	LD0	R
т	NFCLE	NFALE	NFWE	NFRE		D8	D4	IOQVDD	NVCC1 0	NVCC22	NVCC21	NVCC21	NVCC21	NVCC2	FUSE_ VDD	FVCC	M_ REQUEST	OE		LD7	LD6	LD5	LD4	т
U	D15	D14	D12	D11		D0	NVCC22	NVCC22	NVCC2 2	NVCC22	NVCC21	SVCC	SGND	MGND	MVCC	FGND	CS0	M_ GRANT		LD12	NC	LD10	LD9	U
v	D10	D9	D6	D3		NVCC22	NVCC22	NVCC22	NVCC2 2	NVCC22	A22	A20	A18	A16	A10	SDCKE1	LBA	RW		LD16	LD15	LD14	LD13	v
w	D7	D5	D2	D1																BCLK	EB1	EB0	LD17	w
Y	GND	MA10	A13	A8	A4	A0	SDBA1	A25	A24	A23	A21	A19	A17	A15	A14	DQM1	SDCKE0	CS2	CS3	CS4	ECB	CS1	GND	Y
A	GND	GND	A12	A7	A3	SDBA0	SD30	SD28	SD24	SD20	SD17	SD15	SD12	SD9	SD6	SD4	SD1	DQM2	RAS	CAS	CS5	GND	GND	A.A
۱В	GND	GND	A11	A6	A2	SDQS3	SD29	SD26	SDQS2	SD21	SD18	SDQS1	SD13	SD10	SD7	SDQS0	SD2	DQM3	DQM0	SDWE	GND	GND	GND	AE
٩C	GND	GND	A9	A5	A1	SD31	SD27	SD25	SD23	SD22	SD19	SD16	SD14	SD11	SD8	SD5	SD3	SD0	SDCLK	SDCLK	GND	GND	GND	AC
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	•

¹ These contacts are not used and must be floated by the user.

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Preescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCIMX31 Rev. 4.1 11/2008 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM, ARM Thumb, Jazelle, and the ARM Powered logo are registered trademarks of ARM Limited. ARM1136JF-S, ARM11, Embedded Trace Kit, Embedded Trace Macrocell, ETM, Embedded Trace Buffer, and ETB are trademarks of ARM Limited. All other product or service names are the property of their respective owners. Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. France Telecom – TDF – Groupe des ecoles des telecommunications Turbo codes patents license.

© Freescale Semiconductor, Inc. 2005, 2006, 2007. All rights reserved.

