

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

minimal power consumption using the most advanced techniques for power saving (DPTC, DVFS, power gating, clock gating). With 90 nm technology and dual-Vt transistors (two threshold voltages), the MCIMX31 provides the optimal performance versus leakage current balance.

The performance of the MCIMX31 is boosted by a multi-level cache system, and features peripheral devices such as an MPEG-4 Hardware Encoder (VGA, 30 fps), an Autonomous Image Processing Unit, a Vector Floating Point (VFP11) co-processor, and a RISC-based SDMA controller.

The MCIMX31 supports connections to various types of external memories, such as DDR, NAND Flash, NOR Flash, SDRAM, and SRAM. The MCIMX31 can be connected to a variety of external devices using technology, such as high-speed USB2.0 OTG, ATA, MMC/SDIO, and compact flash.

1.1 Features

The MCIMX31 is designed for the high-tier, mid-tier smartphone markets, and portable media players. They provide low-power solutions for high-performance demanding multimedia and graphics applications.

The MCIMX31 is built around the ARM11 MCU core and implemented in the 90 nm technology.

The systems include the following features:

- Multimedia and floating-point hardware acceleration supporting:
 - MPEG-4 real-time encode of up to VGA at 30 fps
 - MPEG-4 real-time video post-processing of up to VGA at 30 fps
 - Video conference call of up to QCIF-30 fps (decoder in software), 128 kbps
 - Video streaming (playback) of up to VGA-30 fps, 384 kbps
 - 3D graphics and other applications acceleration with the ARM[®] tightly-coupled Vector Floating Point co-processor
 - On-the-fly video processing that reduces system memory load (for example, the power-efficient viewfinder application with no involvement of either the memory system or the ARM CPU)
- Advanced power management
 - Dynamic voltage and frequency scaling
 - Multiple clock and power domains
 - Independent gating of power domains
- Multiple communication and expansion ports including a fast parallel interface to an external graphic accelerator (supporting major graphic accelerator vendors)
- Security

1.2 Ordering Information

Table 1 provides the ordering information for the MCIMX31.

Part Number	Silicon Revision ^{1, 2, 3,4}	Device Mask	Operating Temperature Range (°C)	Package ⁵
MCIMX31VKN5	1.15	2L38W and 3L38W	0 to 70	14 14
MCIMX31LVKN5	1.15	2L38W and 3L38W	0 to 70	0.5 mm pitch,
MCIMX31VKN5B	1.2	M45G	0 to 70	MAPBGA-457, Case 1581
MCIMX31LVKN5B	1.2	M45G	0 to 70	
MCIMX31VKN5C	2.0	M91E	0 to 70	14 14
MCIMX31LVKN5C	2.0	M91E	0 to 70	0.5 mm pitch,
MCIMX31CVKN5C	2.0	M91E	-40 to 85	MAPBGA-457, Case 1581
MCIMX31LCVKN5C	2.0	M91E	-40 to 85	
MCIMX31VMN5C	2.0	M91E	0 to 70	19 x 19 mm,
MCIMX31LVMN5C	2.0	M91E	0 to 70	Case 1931

Table 1. Ordering Information

¹ Information on reading the silicon revision register can be found in the IC Identification (IIM) chapter of the Reference Manual, see Section 7, "Product Documentation."

² Errata and fix information of the various mask sets can be found in the standard MCIMX31 Chip Errata, see Section 7, "Product Documentation."

- ³ Changes in output buffer characteristics can be found in the I/O Setting Exceptions and Special Pad Descriptions table in the Reference Manual, see Section 7, "Product Documentation."
- ⁴ JTAG functionality is not tested nor guaranteed at -40°C.
- ⁵ Case 1581 and 1931 are RoHS compliant, lead-free, MSL = 3, and solders at 260°C.

1.2.1 Feature Differences Between Mask Sets

The following is a summary of differences between silicon Revision 2.0, mask set M91E, and previous revisions of silicon. A complete list of these differences is given in Table 72.

- Extended operating temperature range is available: -40°C to 85°C
- Supply current information changes, as shown in Table 13 and Table 14
- FUSE_VDD supply voltage is floated or grounded during read operation
- No restriction on PLL versus core supply voltage
- Operating frequency as shown in Table 8.

Functional Description and Application Information

2.2 Module Inventory

Table 3 shows an alphabetical listing of the modules in the multimedia applications processor. For extended descriptions of the modules, see the reference manual. A cross-reference is provided to the electrical specifications and timing information for each module with external signal connections.

Block Mnemonic	Block Name	Functional Grouping	Brief Description	Section/ Page
1-Wire®	1-Wire Interface	Connectivity Peripheral	The 1-Wire module provides bi-directional communication between the ARM11 core and external 1-Wire devices.	4.3.4/26
ATA	Advanced Technology (AT) Attachment	Connectivity Peripheral	The ATA block is an AT attachment host interface. It is designed to interface with IDE hard disc drives and ATAPI optical disc drives.	4.3.5/27
AUDMUX	Digital Audio Multiplexer	Multimedia Peripheral	The AUDMUX interconnections allow multiple, simultaneous audio/voice/data flows between the ports in point-to-point or point-to-multipoint configurations.	4.3.6/36
CAMP	Clock Amplifier Module	Clock	The CAMP converts a square wave/sinusoidal input into a rail-to-rail square wave. The output of CAMP feeds the predivider.	4.3.3/25
CCM	Clock Control Module	Clock	The CCM provides clock, reset, and power management control for the MCIMX31.	—
CSPI	Configurable Serial Peripheral Interface (x 3)	Connectivity Peripheral	The CSPI is equipped with data FIFOs and is a master/slave configurable serial peripheral interface module, capable of interfacing to both SPI master and slave devices.	4.3.7/36
DPLL	Digital Phase Lock Loop	Clock	The DPLLs produce high-frequency on-chip clocks with low frequency and phase jitters. Note: External clock sources provide the reference frequencies.	4.3.8/37
ECT	Embedded Cross Trigger	Debug	The ECT is composed of three CTIs (Cross Trigger Interface) and one CTM (Cross Trigger Matrix—key in the multi-core and multi-peripheral debug strategy.	_
EMI	External Memory Interface	Memory Interface (EMI)	The EMI includes • Multi-Master Memory Interface (M3IF) • Enhanced SDRAM Controller (ESDCTL) • NAND Flash Controller (NFC) • Wireless External Interface Module (WEIM)	4.3.9.3/46, 4.3.9.1/38, 4.3.9.2/41
EPIT	Enhanced Periodic Interrupt Timer	Timer Peripheral	The EPIT is a 32-bit "set and forget" timer which starts counting after the EPIT is enabled by software. It is capable of providing precise interrupts at regular intervals with minimal processor intervention.	_
ETM	Embedded Trace Macrocell	Debug/Trace	The ETM (from ARM, Ltd.) supports real-time instruction and data tracing by way of ETM auxiliary I/O port.	4.3.10/54
FIR	Fast InfraRed Interface	Connectivity Peripheral	This FIR is capable of establishing a 0.576 Mbit/s, 1.152 Mbit/s or 4 Mbit/s half duplex link via a LED and IR detector. It supports 0.576 Mbit/s, 1.152 Mbit/s medium infrared (MIR) physical layer protocol and 4Mbit/s fast infrared (FIR) physical layer protocol defined by IrDA, Rev. 1.4.	4.3.11/55

Table 3	. Digital	and	Analog	Modules
14010 0	- <u></u>	~	/	

Block Mnemonic	Block Name	Functional Grouping	Brief Description	Section/ Page
Fusebox	Fusebox	ROM	The Fusebox is a ROM that is factory configured by Freescale.	4.3.12/55 See also Table 11
GPIO	General Purpose I/O Module	Pins	The GPIO provides several groups of 32-bit bidirectional, general purpose I/O. This peripheral provides dedicated general-purpose signals that can be configured as either inputs or outputs.	
GPT	General Purpose Timer	Timer Peripheral	The GPT is a multipurpose module used to measure intervals or generate periodic output.	_
GPU	Graphics Processing Unit	Multimedia Peripheral	The GPU provides hardware acceleration for 2D and 3D graphics algorithms.	_
l ² C	Inter IC Communication	Connectivity Peripheral	The I ² C provides serial interface for controlling the Sensor Interface and other external devices. Data rates of up to 100 Kbits/s are supported.	4.3.13/56
IIM	IC Identification Module	ID	The IIM provides an interface for reading device identification.	_
IPU	Image Processing Unit	Multimedia Peripheral	The IPU processes video and graphics functions in the MCIMX31 and interfaces to video, still image sensors, and displays.	4.3.14/57, 4.3.15/59
KPP	Keypad Port	Connectivity Peripheral	The KPP is used for keypad matrix scanning or as a general purpose I/O. This peripheral simplifies the software task of scanning a keypad matrix.	_
MPEG-4	MPEG-4 Video Encoder	Multimedia Peripherals	The MPEG-4 encoder accelerates video compression, following the MPEG-4 standard	_
MSHC	Memory Stick Host Controller	Connectivity Peripheral	The MSHC is placed in between the AIPS and the customer memory stick to support data transfer from the MCIMX31 to the customer memory stick.	4.3.16/84
PADIO	Pads I/O	Buffers and Drivers	The PADIO serves as the interface between the internal modules and the device's external connections.	4.3.1/22
PCMCIA	PCM	Connectivity Peripheral	The PCMCIA Host Adapter provides the control logic for PCMCIA socket interfaces.	4.3.17/86
PWM	Pulse-Width Modulator	Timer Peripheral	The PWM has a 16-bit counter and is optimized to generate sound from stored sample audio images. It can also generate tones.	4.3.18/88
RNGA	Random Number Generator Accelerator	Security	The RNGA module is a digital integrated circuit capable of generating 32-bit random numbers. It is designed to comply with FIPS-140 standards for randomness and non-determinism.	
RTC	Real Time Clock	Timer Peripheral	The RTC module provides a current stamp of seconds, minutes, hours, and days. Alarm and timer functions are also available for programming. The RTC supports dates from the year 1980 to 2050.	
RTIC	Run-Time Integrity Checkers	Security	The RTIC ensures the integrity of the peripheral memory contents and assists with boot authentication.	_

NOTES

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Junction-to-Ambient Thermal Resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.
- 3. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- 4. Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- 5. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

4.1.1 Supply Current Specifications

Table 12 shows the core current consumption for 0°C to 70°C for Silicon Revision 1.2 and previous for the MCIMX31.

Mode	Conditions	QVCC (Peripheral)		QVCC1 (ARM)		QVCC4 (L2)		FVCC + MVCC + SVCC + UVCC (PLL)		Unit
		Тур	Max	Тур	Max	Тур	Max	Тур	Max	
State Retention	 QVCC and QVCC1 = 0.95 V L2 caches are power gated (QVCC4 = 0 V) All PLLs are off, VCC = 1.4 V ARM is in well bias FPM is off 32 kHz input is on CKIH input is off CAMP is off TCK input is off All modules are off No external resistive loads RNGA oscillator is off 	0.80	_	0.50		_		0.04		mA
Wait	 QVCC, QVCC1, and QVCC4 = 1.22 V ARM is in wait for interrupt mode MAX is active L2 cache is stopped but powered MCU PLL is on (532 MHz), VCC = 1.4 V USB PLL and SPLL are off, VCC = 1.4 V FPM is on CKIH input is on CAMP is on 32 kHz input is on All clocks are gated off All modules are off (by programming CGR[2:0] registers) RNGA oscillator is off No external resistive loads 	6.00		3.00		0.04		3.50		mA

Table 12	Current	Consumption	for 0°C to	70°C ^{1, 2} for	Silicon	Revision	1.2 and Previous
----------	---------	-------------	------------	--------------------------	---------	----------	------------------

¹ Typical column: TA = 25° C

² Maximum column: $TA = 70^{\circ}C$

Table 14 shows the core current consumption for 0°C to 70°C for Silicon Revision 2.0 for the MCIMX31.

Mode	le Conditions		QVCC (Peripheral)		QVCC1 (ARM)		CC4 .2)	FVCC, +MVCC, +SVCC, +UVCC (PLL)		Unit
		Тур	Мах	Тур	Max	Тур	Max	Тур	Max	
Deep Sleep	 QVCC = 0.95 V ARM and L2 caches are power gated (QVCC1 2= QVCC4 = 0 V) All PLLs are off, VCC = 1.4 V ARM is in well bias FPM is off 32 kHz input is on CKIH input is off CAMP is off TCK input is off All modules are off No external resistive loads RNGA oscillator is off 	0.16	2.50	_	_			0.02	0.10	mA
State Retention	 QVCC and QVCC1 = 0.95 V L2 caches are power gated (QVCC4 = 0 V) All PLLs are off, VCC = 1.4 V ARM is in well bias FPM is off 32 kHz input is on CKIH input is off CAMP is off TCK input is off All modules are off No external resistive loads RNGA oscillator is off 	0.16	2.50	0.07	1.60	_	_	0.02	0.10	mA
Wait	 QVCC, QVCC1, and QVCC4 = 1.22 V ARM is in wait for interrupt mode MAX is active L2 cache is stopped but powered MCU PLL is on (532 MHz), VCC = 1.4 V USB PLL and SPLL are off, VCC = 1.4 V FPM is on CKIH input is on CAMP is on 32 kHz input is on All clocks are gated off All modules are off (by programming CGR[2:0] registers) RNGA oscillator is off No external resistive loads 	6.00	13.00	2.20	16.00	0.03	0.17	3.60	4.40	mA

Table 14. Current Consumption for 0°C to 70°C^{1, 2} for Silicon Revision 2.0

¹ Typical column: TA = 25° C

² Maximum column: $TA = 70^{\circ}C$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
Low-level output current, slow slew rate	I _{OL_S}	V _{OL} =0.2*NVCC Std Drive High Drive Max Drive	2 4 8	_	_	mA
Low-level output current, fast slew rate	I _{OL_F}	V _{OL} =0.2*NVCC Std Drive High Drive Max Drive	4 6 8		_	mA
High-Level DC input voltage	V _{IH}	—	0.7*NVCC	_	NVCC	V
Low-Level DC input voltage	V _{IL}	—	0	_	0.3*QVCC	V
Input Hysteresis	V _{HYS}	Hysteresis enabled	0.25	_	—	V
Schmitt trigger VT+	V _T +	Hysteresis enabled	0.5*QVCC	_	—	V
Schmitt trigger VT-	V _T –	Hysteresis enabled	—	_	0.5*QVCC	V
Pull-up resistor (100 kΩ PU)	R _{PU}	—	—	100	—	kO
Pull-down resistor (100 k Ω PD)	R _{PD}	—	—	100	—	K52
Input current (no PU/PD)	I _{IN}	V _I = NVCC or GND	—	_	±1	μA
Input current (100 kΩ PU)	I _{IN}	V _I = 0 V _I = NVCC	—	_	25 0.1	μ Α μ Α
Input current (100 kΩ PD)	I _{IN}	V _I = 0 V _I = NVCC	—	_	0.25 28	μΑ μΑ
Tri-state leakage current	I _{OZ}	V _I = NVCC or GND I/O = High Z	—		±2	μA

Table 15.	GPIO DC	Electrical	Parameters	(continued))
-----------	----------------	------------	------------	-------------	---

The MCIMX31 I/O parameters appear in Table 16 for DDR (Double Data Rate). See Table 8, "Operating Ranges," on page 13 for temperature and supply voltage ranges.

NOTE

NVCC for Table 16 refers to NVCC2, NVCC21, and NVCC22.

Table 16. DDR (Double Data Rate) I/O DC Electrical Parameters

Parameter	Symbol	Test Conditions	Min	Тур	Max	Units
High-level output voltage	V _{OH}	I _{OH} = -1 mA	NVCC -0.12	_	—	V
		I _{OH} = specified Drive	0.8*NVCC	_	—	V
Low-level output voltage	V _{OL}	I _{OL} = 1 mA	—	_	0.08	V
		I_{OL} = specified Drive	—	_	0.2*NVCC	V
High-level output current	I _{OH}	V _{OH} =0.8*NVCC Std Drive High Drive Max Drive DDR Drive ¹	-3.6 -7.2 -10.8 -14.4	_	_	mA

ATA Parameter	Parameter from Figure 15, Figure 16, Figure 17	Description	Controlling Variable	
tack	tack	tack (min) = (time_ack * T) - (tskew1 + tskew2)	time_ack	
tenv	tenv	tenv (min) = (time_env * T) - (tskew1 + tskew2) tenv (max) = (time_env * T) + (tskew1 + tskew2)	time_env	
tds	tds1	$tds - (tskew3) - ti_ds > 0$	tskew3, ti_ds, ti_dh	
tdh	tdh1	$tdh - (tskew3) - ti_dh > 0$	snould be low enough	
tcyc	tc1	(tcyc – tskew) > T	T big enough	
trp	trp	trp (min) = time_rp * T – (tskew1 + tskew2 + tskew6)	time_rp	
_	tx1 ¹	(time_rp * T) - (tco + tsu + 3T + 2 *tbuf + 2*tcable2) > trfs (drive)	time_rp	
tmli	tmli1	tmli1 (min) = (time_mlix + 0.4) * T	time_mlix	
tzah	tzah	tzah (min) = (time_zah + 0.4) * T	time_zah	
tdzfs	tdzfs	tdzfs = (time_dzfs * T) - (tskew1 + tskew2)	time_dzfs	
tcvh	tcvh	tcvh = (time_cvh *T) – (tskew1 + tskew2)	time_cvh	
_	ton toff	ton = time_on * T - tskew1 toff = time_off * T - tskew1	_	

Table 28. UDMA In Burst Timing Parameters

¹ There is a special timing requirement in the ATA host that requires the internal DIOW to go only high 3 clocks after the last active edge on the DSTROBE signal. The equation given on this line tries to capture this constraint.

2. Make ton and toff big enough to avoid bus contention

NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

Timing for HCLK is 133 MHz and internal NFC clock (flash clock) is approximately 33 MHz (30 ns). All timings are listed according to this NFC clock frequency (multiples of NFC clock phases), except NF16 and NF17, which are not NFC clock related.

4.3.9.2 Wireless External Interface Module (WEIM)

All WEIM output control signals may be asserted and deasserted by internal clock related to BCLK rising edge or falling edge according to corresponding assertion/negation control fields. Address always begins related to BCLK falling edge but may be ended both on rising and falling edge in muxed mode according to control register configuration. Output data begins related to BCLK rising edge except in muxed mode where both rising and falling edge may be used according to control register configuration. Input data, ECB and DTACK all captured according to BCLK rising edge time. Figure 27 depicts the timing of the WEIM module, and Table 33 lists the timing parameters.

ID	Parameter	Min	Max	Unit
WE8	Clock rise/fall to OE Invalid	-3	3	ns
WE9	Clock rise/fall to EB[x] Valid	-3	3	ns
WE10	Clock rise/fall to $\overline{EB}[x]$ Invalid	-3	3	ns
WE11	Clock rise/fall to LBA Valid	-3	3	ns
WE12	Clock rise/fall to LBA Invalid	-3	3	ns
WE13	Clock rise/fall to Output Data Valid	-2.5	4	ns
WE14	Clock rise to Output Data Invalid	-2.5	4	ns
WE15	Input Data Valid to Clock rise, FCE=0 FCE=1	8 2.5	—	ns
WE16	Clock rise to Input Data Invalid, FCE=0 FCE=1	-2 -2	—	ns
WE17	ECB setup time, FCE=0 FCE=1	6.5 3.5	—	ns
WE18	ECB hold time, FCE=0 FCE=1	-2 2	—	ns
WE19	DTACK setup time ¹	0	—	ns
WE20	DTACK hold time ¹	4.5	—	ns
WE21	BCLK High Level Width ^{2, 3}	—	T/2 – 3	ns
WE22	BCLK Low Level Width ^{2, 3}	—	T/2 – 3	ns
WE23	BCLK Cycle time ²	15	—	ns

able 33. WEIM Bus آ	Timing	Parameters	(continued))
---------------------	--------	------------	-------------	---

¹ Applies to rising edge timing

² BCLK parameters are being measured from the 50% VDD.

³ The actual cycle time is derived from the AHB bus clock frequency.

NOTE

High is defined as 80% of signal value and low is defined as 20% of signal value.

Test conditions: load capacitance, 25 pF. Recommended drive strength for all controls, address, and BCLK is Max drive.

Figure 28, Figure 29, Figure 30, Figure 31, Figure 32, and Figure 33 depict some examples of basic WEIM accesses to external memory devices with the timing parameters mentioned in Table 33 for specific control parameter settings.

Figure 34. SDRAM Read Cycle Timing Diagram

Table 34	. DDR/SDR	SDRAM	Read	Cycle	Timing	Parameters
----------	-----------	-------	------	-------	--------	-------------------

ID	Parameter	Symbol	Min	Max	Unit
SD1	SDRAM clock high-level width	tCH	3.4	4.1	ns
SD2	SDRAM clock low-level width	tCL	3.4	4.1	ns
SD3	SDRAM clock cycle time	tCK	7.5	—	ns
SD4	CS, RAS, CAS, WE, DQM, CKE setup time	tCMS	2.0	_	ns
SD5	CS, RAS, CAS, WE, DQM, CKE hold time	tCMH	1.8	—	ns
SD6	Address setup time	tAS	2.0	—	ns
SD7	Address hold time	tAH	1.8	_	ns
SD8	SDRAM access time	tAC	_	6.47	ns

4.3.15.5.2 Parallel Interfaces, Electrical Characteristics

Figure 57, Figure 59, Figure 58, and Figure 60 depict timing of asynchronous parallel interfaces based on the system 80 and system 68k interfaces. Table 50 lists the timing parameters at display access level. All timing images are based on active low control signals (signals polarity is controlled via the DI_DISP_SIG_POL Register).

Figure 62. 4-Wire Serial Interface Timing Diagram

Figure 63 depicts timing of the 5-wire serial interface (Type 1). For this interface, a separate RS line is added. When a burst is transmitted within single active chip select interval, the RS can be changed at boundaries of words.

The DISP#_IF_CLK_PER_WR, DISP#_IF_CLK_PER_RD, HSP_CLK_PERIOD, DISP#_IF_CLK_DOWN_WR, DISP#_IF_CLK_UP_WR, DISP#_IF_CLK_DOWN_RD, DISP#_IF_CLK_UP_RD and DISP#_READ_EN parameters are programmed via the DI_DISP#_TIME_CONF_1, DI_DISP#_TIME_CONF_2 and DI_HSP_CLK_PER Registers.

4.3.16 Memory Stick Host Controller (MSHC)

Figure 66, Figure 67, and Figure 68 depict the MSHC timings, and Table 52 and Table 53 list the timing parameters.

Figure 67. Transfer Operation Timing Diagram (Serial)

Table	59.	SJC	Timina	Parameters
Tubic	00.	000		i urumeters

	Parameter	All Freq	uencies	Unit
	Falanelei	Min	Max	Om
SJ1	TCK cycle time	100 ¹	_	ns
SJ2	TCK clock pulse width measured at V_M^2	40	—	ns
SJ3	TCK rise and fall times	—	3	ns
SJ4	Boundary scan input data set-up time	10	—	ns
SJ5	Boundary scan input data hold time	50	—	ns
SJ6	TCK low to output data valid	—	50	ns
SJ7	TCK low to output high impedance	—	50	ns
SJ8	TMS, TDI data set-up time	10	—	ns
SJ9	TMS, TDI data hold time	50	—	ns
SJ10	TCK low to TDO data valid	—	44	ns

ID	Parameter	Min	Мах	Unit		
Internal Clo	ock Operation			I		
SS1	(Tx/Rx) CK clock period	81.4	—	ns		
SS2	(Tx/Rx) CK clock high period	36.0	_	ns		
SS3	(Tx/Rx) CK clock rise time	—	6	ns		
SS4	(Tx/Rx) CK clock low period	36.0	_	ns		
SS5	(Tx/Rx) CK clock fall time	—	6	ns		
SS6	(Tx) CK high to FS (bl) high	—	15.0	ns		
SS8	(Tx) CK high to FS (bl) low	—	15.0	ns		
SS10	(Tx) CK high to FS (wl) high	—	15.0	ns		
SS12	(Tx) CK high to FS (wl) low	—	15.0	ns		
SS14	(Tx/Rx) Internal FS rise time	—	6	ns		
SS15	(Tx/Rx) Internal FS fall time	—	6	ns		
SS16	(Tx) CK high to STXD valid from high impedance	—	15.0	ns		
SS17	(Tx) CK high to STXD high/low	—	15.0	ns		
SS18	(Tx) CK high to STXD high impedance	—	15.0	ns		
SS19	STXD rise/fall time	—	6	ns		
Synchronous Internal Clock Operation						
SS42	SRXD setup before (Tx) CK falling	10.0	_	ns		
SS43	SRXD hold after (Tx) CK falling	0	_	ns		
SS52	Loading		25	pF		

Table 60. SSI Transmitter with Internal Clock Timing Parameters

4.3.22.4 SSI Receiver Timing with External Clock

Figure 84 depicts the SSI receiver timing with external clock, and Table 63 lists the timing parameters.

Figure 84. SSI Receiver with External Clock Timing Diagram

|--|

ID	Parameter	Min	Max	Unit				
External	External Clock Operation							
SS22	(Tx/Rx) CK clock period	81.4	_	ns				
SS23	(Tx/Rx) CK clock high period	36.0	_	ns				
SS24	(Tx/Rx) CK clock rise time	_	6.0	ns				
SS25	(Tx/Rx) CK clock low period	36.0	_	ns				
SS26	(Tx/Rx) CK clock fall time	_	6.0	ns				

Signal ID	Ball Location
LD8	U21
LD9	W26
M_GRANT	Y21
M_REQUEST	AC25
MA10	AC1
MCUPG	See VPG0
NFALE	V1
NFCE	T6
NFCLE	U3
NFRB	U1
NFRE	V2
NFWE	T7
NFWP	U2
OE	AB25
PAR_RS	R21
PC_BVD1	H2
PC_BVD2	K6
PC_CD1	L7
PC_CD2	K1
PC_POE	J7
PC PWRON	K3
PC READY	J2
PC RST	H1
PC RW	G2
PC VS1	J1
PC VS2	K7
PC WAIT	L6
POR	H24
POWER FAIL	E26
PWMO	G1
BAS	AF19
READ	P20
BESET IN	J21
BL DCF1	F11
BL DTE1	G12
BTCK	C17
BTS1	G11
BTS2	B14
RW	AB22
RXD1	A10
RXD2	A13
SCK3	R2
SCK4	C4
SCK2	54
	AD21
SUCKET	AF21

Signal ID	Ball Location
SCLK0	B22
SD_D_CLK	P24
SD_D_I	N20
SD_D_IO	P25
SD0	AD18
SD1	AE17
SD1_CLK	M7
SD1_CMD	L2
SD1_DATA0	M6
SD1_DATA1	L1
SD1_DATA2	L3
SD1_DATA3	K2
SD10	AE15
SD11	AE14
SD12	AD14
SD13	AA14
SD14	AE13
SD15	AD13
SD16	AA13
SD17	AD12
SD18	AA12
SD19	AE11
SD2	AA19
SD20	AE10
SD21	AA11
SD22	AE9
SD23	AA10
SD24	AE8
SD25	AD10
SD26	AE7
SD27	AA9
SD28	AA8
SD29	AD9
SD3	AA18
SD30	AE6
SD31	AA7
SD4	AD17
SD5	AA17
SD6	AE16
SD7	AA16
SD8	AD15
SD9	AA15
SDBA0	AD7
SDBA1	AE5
TRSTB	B20
TTM_PAD	U20

Table 66. 14 x 14 BGA Signal ID by Ball Grid Location (continued)

Signal ID	Ball Location
EB1	W21
ECB	Y21
FPSHIFT	M23
GPIO1_0	C19
GPIO1_1	G17
GPIO1_2	B20
LD7	T20
LD8	R17
LD9	U23
M_GRANT	U18
M_REQUEST	T17
MA10	Y2
MCUPG	See VPG0
NFALE	T2
NFCE	R4
NFCLE	T1
NFRB	R3
NFRE	T4
NFWE	Т3
NFWP	P6
OE	T18
PAR_RS	P22
PC_BVD1	G2
PC_BVD2	H4
PC_CD1	J3
PC_CD2	H1
PC_POE	J6
PC_PWRON	K6
PC_READY	H2
PC_RST	F1
PC_RW	G3
PC_VS1	H3
PC_VS2	G1
PC_WAIT	J4
POR	F21
POWER_FAIL	F20
PWMO	F2
RAS	AA19
READ	N18
RESET_IN	F22
RI_DCE1	D10
RI_DTE1	B11
RTCK	D15
RTS1	B9
RTS2	B12
RW	V18

Signal ID	Ball Location
LD17	W23
LD2	R21
LD3	R20
LD4	T23
LD5	T22
LD6	T21
SCK6	R2
SCLK0	B19
SD_D_CLK	M21
SD_D_I	M20
SD_D_IO	M18
SD0	AC18
SD1	AA17
SD1_CLK	K2
SD1_CMD	K3
SD1_DATA0	K4
SD1_DATA1	J1
SD1_DATA2	J2
SD1_DATA3	L6
SD10	AB14
SD11	AC14
SD12	AA13
SD13	AB13
SD14	AC13
SD15	AA12
SD16	AC12
SD17	AA11
SD18	AB11
SD19	AC11
SD2	AB17
SD20	AA10
SD21	AB10
SD22	AC10
SD23	AC9
SD24	AA9
SD25	AC8
SD26	AB8
SD27	AC7
SD28	AA8
SD29	AB7
SD3	AC17
SD30	AA7
SD31	AC6
SD4	AA16
SD5	AC16
SD6	AA15

Table 69. 19 x 19 BGA Signal ID by Ball Grid Location (continued)