E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	3K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l083vbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.8	PLL characteristics	87
		6.3.9	Memory characteristics	88
		6.3.10	EMC characteristics	89
		6.3.11	Electrical sensitivity characteristics	91
		6.3.12	I/O current injection characteristics	92
		6.3.13	I/O port characteristics	93
		6.3.14	NRST pin characteristics	97
		6.3.15	12-bit ADC characteristics	98
		6.3.16	DAC electrical specifications	104
		6.3.17	Temperature sensor characteristics	106
		6.3.18	Comparators	107
		6.3.19	Timer characteristics	108
		6.3.20	Communications interfaces	108
		6.3.21	LCD controller	117
7	Packa	age info	ormation	. 119
	7.1	LQFP10	00 package information	119
	7.2	UFBGA	100 package information	. 122
	7.3	LQFP64	4 package information	. 125
	7.4	TFBGA	64 package information	. 128
	7.5	LQFP48	3 package information	. 131
	7.6	Therma	Il characteristics	. 134
		7.6.1	Reference document	135
8	Part r	7.6.1 Numberi	Reference document	135 . 136

			Low-	Low-		Stop	5	Standby
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability
CPU	Y		Y					
Flash memory	0	0	0	0				
RAM	Y	Y	Y	Y	Y			
Backup registers	Y	Y	Y	Y	Y		Y	
EEPROM	0	0	0	0				
Brown-out reset (BOR)	0	0	0	0	0	0	0	0
DMA	0	0	0	0				
Programmable Voltage Detector (PVD)	0	0	О	Ο	0	0	-	
Power-on/down reset (POR/PDR)	Y	Y	Y	Y	Y	Y	Y	Y
High Speed Internal (HSI)	0	0			(3)			
High Speed External (HSE)	0	0	0	0				
Low Speed Internal (LSI)	0	0	0	0	0		0	
Low Speed External (LSE)	0	0	0	0	0		0	
Multi-Speed Internal (MSI)	0	0	Y	Y				
Inter-Connect Controller	Y	Y	Y	Y	Y			
RTC	0	0	0	0	0	0	0	
RTC Tamper	0	0	0	0	0	0	0	0
Auto WakeUp (AWU)	Ο	О	О	О	0	О	0	Ο
LCD	0	0	0	0	0			
USB	0	0				0	1	
USART	0	0	0	0	O ⁽⁴⁾	0		
LPUART	0	0	0	0	0 ⁽⁴⁾	0		
SPI	0	0	0	0				
I2C	0	0	0	0	O ⁽⁵⁾	0		
ADC	0	0						

Table 5. Functionalities depending on the working mode (from Run/active down to standby) ⁽¹⁾⁽²⁾

Figure 2. Clock tree

DocID027070 Rev 3

3.16 Touch sensing controller (TSC)

The STM32L083xx provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1	5	TSC_G5_IO2	PB4
I	TSC_G1_IO3	PA2	5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3		TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4		TSC_G6_IO1	PB11
2	TSC_G2_IO2	PA5	6	TSC_G6_IO2	PB12
2	TSC_G2_IO3	PA6	0	TSC_G6_IO3	PB13
	TSC_G2_IO4	PA7		TSC_G6_IO4	PB14
	TSC_G3_IO1	PC5		TSC_G7_IO1	PC0
3	TSC_G3_IO2	PB0	7	TSC_G7_IO2	PC1
5	TSC_G3_IO3	PB1	'	TSC_G7_IO3	PC2
	TSC_G3_IO4	PB2		TSC_G7_IO4	PC3
	TSC_G4_IO1	PA9		TSC_G8_IO1	PC6
л	TSC_G4_IO2	PA10	8	TSC_G8_IO2	PC7
	TSC_G4_IO3	PA11	0	TSC_G8_IO3	PC8
	TSC_G4_IO4	PA12		TSC_G8_IO4	PC9

Table 9. Capacitive sensing GPIOs available on STM32L083xx devices

3.17 AES

The AES Hardware Accelerator can be used to encrypt and decrypt data using the AES algorithm (compatible with FIPS PUB 197, 2001 Nov 26).

- Key scheduler
- Key derivation for decryption
- 128-bit data block processed
- 128-bit key length
- 213 clock cycles to encrypt/decrypt one 128-bit block
- Electronic codebook (ECB), cypher block chaining (CBC), and counter mode (CTR) supported by hardware.

The AES can be served by the DMA controller.

3.18 Timers and watchdogs

The ultra-low-power STM32L083xx devices include three general-purpose timers, one low-power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 10 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 10. Timer feature comparison

3.18.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)

There are four synchronizable general-purpose timers embedded in the STM32L083xx device (see *Table 10* for differences).

TIM2, TIM3

TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output.

The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2/TIM3 have independent DMA request generation.

DocID027070 Rev 3

3.19.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.19.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The SPIs can be served by the DMA controller.

Refer to *Table 14* for the differences between SPI1 and SPI2.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
I2S mode	-	Х
TI mode	Х	Х

Table 14. SPI/I2S implementation

1. X = supported.

6.1.6 Power supply scheme

Figure 11. Power supply scheme

Symbol	Parameter	Conditions	Min	Max	Unit
ΤΑ		Maximum power dissipation (range 6)	-40	85	
	Temperature range	Maximum power dissipation (range 7)	-40	105	
		Maximum power dissipation (range 3)	-40	125	°C
TJ	Junction temperature range (range 6)	-40 °C \leq T _A \leq 85 °	-40	105	
	Junction temperature range (range 7)	-40 °C \leq T _A \leq 105 °C	-40	125	
	Junction temperature range (range 3)	-40 °C \leq T _A \leq 125 °C	-40	130]

 Table 26. General operating conditions (continued)

1. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and normal operation.

2. V_{DD_USB} must respect the following conditions:

- When V_DD is powered on (V_DD < V_DD_min), V_DD_USB should be always lower than V_DD.

- When V_{DD} is powered down (V_{DD} < V_{DD_min}), V_{DD_USB} should be always lower than V_{DD}.

- In operating mode, V_{DD_USB} could be lower or higher $V_{DD.}$

- If the USB is not used, V_{DD} USB must range from V_{DD} min to V_{DD} max to be able to use PA11 and PA12 as standard I/Os.

3. To sustain a voltage higher than V_{DD} +0.3V, the internal pull-up/pull-down resistors must be disabled.

 If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 90: Thermal characteristics* on page 134).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{PVD6}	PVD threshold 6	Falling edge	2.97	3.05	3.09	V	
		Rising edge	3.08	3.15	3.20		
V _{hyst}	Hysteresis voltage	BOR0 threshold	-	40	-		
		All BOR and PVD thresholds excepting BOR0	-	100	-	mV	

 Table 27. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 29* are based on characterization results, unless otherwise specified.

Table 28. Embedde	d internal ref	erence voltage	calibration values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V_{DDA} and V_{REF+} voltage during V_{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF

Table 29. Embedded internal reference voltage⁽¹⁾

Tubi memory								
Symbol	Parameter	Conditio	on	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit	
			Range3.	1	190	250		
			Vcore=1.2 V	2	345	380	μA	
			VOS[1:0]=11	4	650	670		
		f _{HSE} = f _{HCLK} up to	Range2.	4	0,8	0,86		
		16MHz included,	Vcore=1.5 V	8	1,55	1,7	- mA - μΑ	
I _{DD} (Run	Supply current in Run mode code executed from Flash memory	16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	2,95	3,1		
			Range1, Vcore=1.8 V VOS[1:0]=01	8	1,9	2,1		
				16	3,55	3,8		
from Flash				32	6,65	7,2		
memory)		MSI clock source	Range3, Vcore=1.2 V VOS[1:0]=11	0,065	39	130		
				0,524	115	210		
				4,2	700	770		
		HSI clock source (16MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	2,9	3,2	m۸	
			Range1, Vcore=1.8 V VOS[1:0]=01	32	7,15	7,4		

Table 30. Current consumption in Run mode, code with data processing running fromFlash memory

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 31. Current consumption in Run mode vs code type, code with data processing running from Flash memory

Symbol	Parameter		Conditions				
				Dhrystone		650	
Supply I _{DD} current in (Run Run mode, from code Flash executed memory) from Flash memory			Range 3, Voors=1.2 V	CoreMark		655	
				Fibonacci	4 MHz	485	uА
		VOS[1:0]=11	while(1)		385		
	Run mode, code	Content III $f_{HSE} = f_{HCLK}$ up toRun mode, code16 MHz included, f_{HSE} executed from Flash memory $f_{HCLK}/2$ above 16 MHz (PLL on) ⁽¹⁾		while(1), 1WS, prefetch off		375	
	executed from Elash		Range 1, V _{CORE} =1.8 V, VOS[1:0]=01	Dhrystone		6,65	mA
	memory			CoreMark		6,9	
				Fibonacci	32 MHz	6,75	
				while(1)		5,8	
				while(1), prefetch off		5,5	

1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 61* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾ ,	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$1_{\text{IO}} = 1_{\text{O}} = 1_{\text{O}}$ 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$\begin{array}{c} {\sf TTL} \; {\sf port}^{(2)}, \\ {\sf I}_{IO} \; \mbox{=} + \; 8 \; \mbox{mA} \\ 2.7 \; V \leq V_{DD} \leq \; 3.6 \; V \end{array}$	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{c} \text{TTL port}^{(2)},\\ \text{I}_{\text{IO}} \texttt{=} \texttt{-6 mA}\\ \textbf{2.7 V} \leq \text{V}_{\text{DD}} \leq \ \textbf{3.6 V} \end{array}$	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	$\begin{array}{l} \text{I}_{IO} = +15 \text{ mA} \\ 2.7 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \end{array}$	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{\text{IO}} \text{ = -15 mA} \\ \text{2.7 V} \leq \text{V}_{\text{DD}} \leq \ \text{3.6 V} \end{array}$	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +4 mA 1.65 V \leq V _{DD} < 3.6 V	-	0.45	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{IO} = \text{-4 mA} \\ 1.65 \ \text{V} \leq \text{V}_{DD} \leq \ 3.6 \ \text{V} \end{array}$	V _{DD} -0.45	-	
V	Output low level voltage for an FTf	$I_{IO} = 20 \text{ mA}$ 2.7 V \leq V _{DD} \leq 3.6 V	-	0.4	
VOLFM+````	I/O pin in Fm+ mode	$\label{eq:loss} \hline I_{IO} = 10 \text{ mA} \\ 1.65 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \\ \hline \end{array}$	-	0.4	

 The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 24*. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI_{IO(PIN)}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 24. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed $\Sigma I_{IO(PIN)}$.

4. Guaranteed by characterization results.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 26* and *Table 62*, respectively.

Unless otherwise specified, the parameters given in *Table 62* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 26*.

OSPEEDRx[1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max ⁽²⁾	Unit		
	f	Maximum frequency ⁽³⁾	$C_{L} = 50 \text{ pF}, V_{DD} = 2.7 \text{ V to } 3.6 \text{ V}$		400	kH7		
00	'max(IO)out	Maximum nequency**	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	100	KI IZ		
00	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	125	ne		
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	320	- ns		
	f (IO) (Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	2	MHz		
01	'max(IO)out	Maximum nequency	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	0.6	1011 12		
01	t _{f(IO)out}	Output rise and fall time	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	30	ne		
	t _{r(IO)out}		C_L = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	65	ns		
	F	Maximum frequency ⁽³⁾	C_L = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	10	MЦZ		
10	max(IO)out	Maximum nequency**	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	2			
10	t _{f(IO)out}	Output rise and fall time	C_{L} = 50 pF, V_{DD} = 2.7 V to 3.6 V	-	13	ns		
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	28	115		
	F	Maximum frequency ⁽³⁾	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	35	MH-		
11	max(IO)out	Maximum nequency**	C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	10			
	t _{f(IO)out}	Output rise and fall time	C_L = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	6			
	t _{r(IO)out}		C_{L} = 50 pF, V_{DD} = 1.65 V to 2.7 V	-	17	115		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	1	MHz		
	t _{f(IO)out}	Output fall time	C_{L} = 50 pF, V_{DD} = 2.5 V to 3.6 V		10	ne		
Fm+	t _{r(IO)out}	Output rise time		-	30	115		
configuration ⁽⁴⁾	f _{max(IO)out}	Maximum frequency ⁽³⁾	n frequency ⁽³⁾		350	KHz		
	t _{f(IO)out}	Output fall time	$C_{L} = 50 \text{ pF}, V_{DD} = 1.65 \text{ V to } 3.6 \text{ V}$	-	15	20		
	t _{r(IO)out}	Output rise time		-	60	115		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	8	-	ns		

 Table 62. I/O AC characteristics⁽¹⁾

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design.

3. The maximum frequency is defined in *Figure 26*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration.

- 1. Refer to Table 64: ADC characteristics for the values of RAIN, RADC and CADC.
- $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in Figure 30 or Figure 31, depending on whether $V_{\text{REF+}}$ is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

Figure 30. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

The analog spike filter is compliant with I^2C timings requirements only for the following voltage ranges:

- Fast mode Plus: 2.7 V \leq V_DD \leq 3.6 V and voltage scaling Range 1
- Fast mode:
 - 2 V \leq V_{DD} \leq 3.6 V and voltage scaling Range 1 or Range 2.
 - V_{DD} < 2 V, voltage scaling Range 1 or Range 2, C_{load} < 200 pF.

In other ranges, the analog filter should be disabled. The digital filter can be used instead.

Note: In Standard mode, no spike filter is required.

Table 73.	I2C ana	log filter	[•] characteristics ^{(†}	1)	
-----------	---------	------------	--	----	--

Symbol	Parameter	Conditions	Min	Мах	Unit
		Range 1		100 ⁽³⁾	
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	Range 2	50 ⁽²⁾	-	ns
		Range 3		-	

- 1. Guaranteed by characterization results.
- 2. Spikes with widths below $t_{\mbox{AF}(\mbox{min})}$ are filtered.
- 3. Spikes with widths above $t_{AF(max)}$ are not filtered

USART/LPUART characteristics

The parameters given in the following table are guaranteed by design.

Symbol	Parameter	Conditions	Тур	Max	Unit
		Stop mode with main regulator in Run mode, Range 2 or 3	-	8.7	
^t wuusart	Wakeup time needed to calculate the maximum USART/LPUART baudrate allowing to wake up from Stop mode	Stop mode with main regulator in Run mode, Range 1	-	8.1	μs
		Stop mode with main regulator in low-power mode, Range 2 or 3	-	12	
		Stop mode with main regulator in low-power mode, Range 1	-	11.4	

Table 74. USART/LPUART characteristics

Symbol	Parameter	Min	Тур	Max	Unit
L (1)	Supply current at V_{DD} = 2.2 V	-	3.3	-	
'LCD`	Supply current at V _{DD} = 3.0 V	-	3.1	-	μA
R _{Htot} ⁽²⁾	Low drive resistive network overall value	5.28	6.6	7.92	MΩ
$R_L^{(2)}$	High drive resistive network total value	192	240	288	kΩ
V ₄₄	Segment/Common highest level voltage	-	-	V _{LCD}	V
V ₃₄	Segment/Common 3/4 level voltage	-	$3/4 V_{LCD}$	-	
V ₂₃	Segment/Common 2/3 level voltage	-	$2/3 V_{LCD}$	-	
V ₁₂	Segment/Common 1/2 level voltage	-	$1/2 V_{LCD}$	-	V
V ₁₃	Segment/Common 1/3 level voltage	-	1/3 V _{LCD}	-	v
V ₁₄	Segment/Common 1/4 level voltage	-	$1/4 V_{LCD}$	-	
V ₀	Segment/Common lowest level voltage	0	-	-	
∆Vxx ⁽³⁾	Segment/Common level voltage error T _A = -40 to 85 °C	-	-	± 50	mV

LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD connected.

2. Guaranteed by design.

3. Guaranteed by characterization results.

Device marking for LQFP64

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.5 LQFP48 package information

Figure 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

8 Part numbering

Table 91. STM32L083xx orc	dering info	orma	tion s	chen	ne			
Example:	STM32	L	083	R	Z	Т	6	D TR
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
L = Low power		_						
Device subfamily								
083 = USB + LCD + AES								
Pin count								
C = 48/49 pins								
R = 64 pins								
V = 100 pins								
Flash memory size								
8 = 64 Kbytes								
B = 128 Kbytes								
Z = 192 Kbytes								
Package								
T = LQFP								
H = TFBGA								
I = UFBGA								
Temperature range								
6 = Industrial temperature range, –40 to 85 °C								
7 = Industrial temperature range, -40 to 105 °C								
3 = Industrial temperature range, –40 to 125 °C								
Options								
No character = V_{DD} range: 1.8 to 3.6 V and BOR enabled								
D = V_{DD} range: 1.65 to 3.6 V and BOR disabled								
Packing								

TR = tape and reel

No character = tray or tube

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office.

9 Revision history

Date	Revision	Changes
03-Aug-2015	1	Initial release
26-Oct-2015	2	Added UFBGA100 package. Changed confidentiality level to public. Updated datasheet status to "production data". Modified ultra-low-power platform features on cover page. Changed LCD_VLCD1 into LCD_VLCD2 in Section 3.13.2: VLCD voltage monitoring. In Section 6: Electrical characteristics, updated notes related to values guaranteed by characterization. Updated $ \Delta V_{SS} $ definition to include V_{REF-} in Table 23: Voltage characteristics. Added ΣV_{DD_USB} and updated $\Sigma I_{IO(PIN)}$ in Figure 24: Current characteristics. Updated Table 56: EMI characteristics. Updated T_{RIG} and V_{AIN} maximum value, added V_{REF+} and V_{REF-} in Table 64: ADC characteristics. Updated Figure 53: LQFP48 marking example (package top view).

Table 92. Document revision history

Date	Revision	Changes
22-Mar-2016	3	Updated number of SPIs on cover page and in <i>Table 2: Ultra-low-power STM32L083xxx device features and peripheral counts</i> . Changed minimum comparator supply voltage to 1.65 V on cover page. Added minimum DAC supply voltage on cover page. Added number of fast and standard channels in <i>Section 3.12:</i> <i>Analog-to-digital converter (ADC)</i> . Updated Section 3.19.2: Universal synchronous/asynchronous receiver transmitter (USART) and Section 3.19.4: Serial peripheral interface (SPI)/Inter-integrated sound (I2S) to mention the fact that USARTs with synchronous mode feature can be used as SPI master interfaces. Added baudrate allowing to wake up the MCU from Stop mode in Section 3.19.2: Universal synchronous/asynchronous receiver transmitter (USART) and Section 3.19.3: Low-power universal asynchronous receiver transmitter (LPUART). Section 6.3.15: 12-bit ADC characteristics: – Table 64: ADC characteristics: Distinction made between V _{DDA} for fast and standard channels; added note 1. Added note 4. related to R _{ADC} . Updated f _{TRIG} . Updated f _{TRIG} . Updated f ₁ distinction made between fast and standard channels; added note 1. Added note 4. related to R _{ADC} . Updated f ₂ and t _{CONV} . – Updated Table 65: RAIN max for fADC = 16 MHz for f _{ADC} = 16 MHz and distinction made between fast and standard channels. Updated R _O and added Note 2. in Table 67: DAC characteristics. Added Table 74: USART/LPUART characteristics.

Table 92. Document revision history

