E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core ProcessorARM® Cortex®-M0+Core Size32-Bit Single-CoreSpeed32MHzConnectivityI²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O84Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LOFP (14x14)				
Core Size32-Bit Single-CoreSpeed32MHzConnectivityP'C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I'S, LCD, POR, PWM, WDTNumber of I/O84Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Product Status	Active		
Speed32MHzConnectivityI²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O84Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Core Processor	ARM® Cortex®-M0+		
ProductivityP²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O84Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Core Size	32-Bit Single-Core		
PeripheralsBrown-out Detect/Reset, DMA, I²S, LCD, POR, PWM, WDTNumber of I/O84Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Speed	32MHz		
Number of I/O84Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART, USB		
Program Memory Size192KB (192K x 8)Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT		
Program Memory TypeFLASHEEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Number of I/O	84		
EEPROM Size3K x 8RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFP (14x14)	Program Memory Size	192КВ (192К х 8)		
RAM Size20K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	Program Memory Type	FLASH		
Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	EEPROM Size	3K x 8		
Data ConvertersA/D 16x12b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	RAM Size	20K x 8		
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case100-LQFPSupplier Device Package100-LQFP (14x14)	Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V		
Operating Temperature -40°C ~ 85°C (TA) Mounting Type Surface Mount Package / Case 100-LQFP Supplier Device Package 100-LQFP (14x14)	Data Converters	A/D 16x12b; D/A 2x12b		
Mounting Type Surface Mount Package / Case 100-LQFP Supplier Device Package 100-LQFP (14x14)	Oscillator Type	Internal		
Package / Case 100-LQFP Supplier Device Package 100-LQFP (14x14)	Operating Temperature	-40°C ~ 85°C (TA)		
Supplier Device Package 100-LQFP (14x14)	Mounting Type	Surface Mount		
	Package / Case	100-LQFP		
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l083vzt6	Supplier Device Package	100-LQFP (14x14)		
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l083vzt6		

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Functionalitie	tionalities depending on the operating power supply range				
Operating power supply range	DAC and ADC operation Dynamic voltage scaling range		I/O operation	USB		
V _{DD} = 1.65 to 1.71 V	ADC only, conversion time up to 570 ksps	conversion time Range 2 or		Not functional		
V _{DD} = 1.71 to 1.8 V ⁽¹⁾	ADC only, conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾		
V_{DD} = 1.8 to 2.0 V ⁽¹⁾	Conversion time up to 1.14 Msps	Range1, range 2 or range 3	Degraded speed performance	Functional ⁽²⁾		
V _{DD} = 2.0 to 2.4 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾		
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation	Functional ⁽²⁾		

Table 3. Functionalities	depending on the operating	g power supply range

CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 µs, then switch from 16 MHz to 32 MHz.

2. To be USB compliant from the I/O voltage standpoint, the minimum $V_{\text{DD_USB}}$ is 3.0 V.

Table 4. CPU frequency range depending on dynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
32 kHz to 4.2 MHz (0ws) Range 3	

• Startup clock

After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled.

Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.17 AES

The AES Hardware Accelerator can be used to encrypt and decrypt data using the AES algorithm (compatible with FIPS PUB 197, 2001 Nov 26).

- Key scheduler
- Key derivation for decryption
- 128-bit data block processed
- 128-bit key length
- 213 clock cycles to encrypt/decrypt one 128-bit block
- Electronic codebook (ECB), cypher block chaining (CBC), and counter mode (CTR) supported by hardware.

The AES can be served by the DMA controller.

3.18 Timers and watchdogs

The ultra-low-power STM32L083xx devices include three general-purpose timers, one low-power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 10 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

 Table 10. Timer feature comparison

3.18.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)

There are four synchronizable general-purpose timers embedded in the STM32L083xx device (see *Table 10* for differences).

TIM2, TIM3

TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output.

The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2/TIM3 have independent DMA request generation.

DocID027070 Rev 3

3.18.6 Window watchdog (WWDG)

The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.19 Communication interfaces

3.19.1 I²C bus

Up to three I²C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.

Each I²C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as well as programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 11. Comparison of I2C analog and digital filters

In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop mode on address match.

Each I2C interface can be served by the DMA controller.

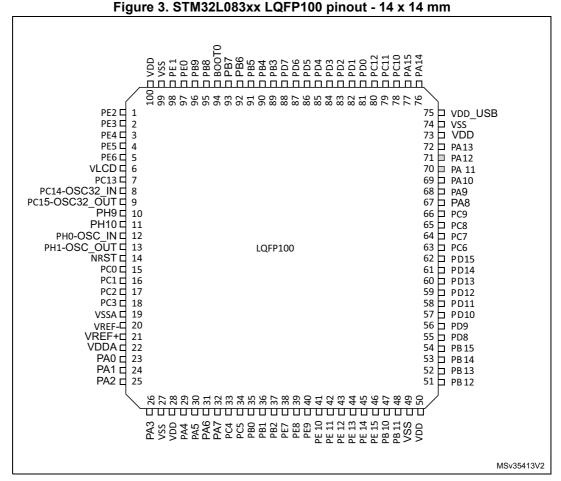

Refer to Table 12 for an overview of I2C interface features.

Table 12. STM32L083xx I ² C i	implementation
--	----------------

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
7-bit addressing mode	Х	Х	Х
10-bit addressing mode	Х	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х	Х

4 Pin descriptions

1. The above figure shows the package top view.

2. I/O pin supplied by VDD_USB.

					Table 20. A	Iternate func	tions port D			
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
		Port	SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1/ LCD/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/TSC/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/ COMP1/2/TIM3
		PD0	TIM21_CH1	SPI2_NSS/I2S2_WS	-	-	-	-	-	-
		PD1	-	SPI2_SCK/I2S2_CK	-	-	-	-	-	-
		PD2	LPUART1_RTS_ DE	LCD_COM7/ LCD_SEG31/ LCD_SEG51	TIM3_ETR	-	-	-	USART5_RX	-
Doc		PD3	USART2_CTS	LCD_SEG44	SPI2_MISO/ I2S2_MCK	-	-	-	-	-
DocID027070 Rev 3		PD4	USART2_RTS_D E	SPI2_MOSI/I2S2_SD	-	-	-	-	-	-
070		PD5	USART2_TX	-	-	-	-	-	-	-
10 P V	t D	PD6	USART2_RX	-	-	-	-	-	-	-
در	Port D	PD7	USART2_CK	TIM21_CH2	-	-	-	-	-	-
		PD8	LPUART1_TX	LCD_SEG28	-	-	-	-	-	-
		PD9	LPUART1_RX	LCD_SEG29	-	-	-	-	-	-
		PD10	-	LCD_SEG30	-	-	-	-	-	-
		PD11	LPUART1_CTS	LCD_SEG31	-	-	-	-	-	-
		PD12	LPUART1_RTS_ DE	LCD_SEG32	-	-	-	-	-	-
		PD13	-	LCD_SEG33	-	-	-	-	-	-
		PD14	-	LCD_SEG34	-	-	-	-	-	-
		PD15	USB_CRS_SYNC	LCD_SEG35	-	-	-	-	-	-

STM32L083xx

53/139

Pin descriptions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V	PVD threshold 6	Falling edge	2.97	3.05	3.09	V	
V _{PVD6}	PVD threshold o	Rising edge	3.08	3.15	3.20	v	
		BOR0 threshold	-	40	-		
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV	

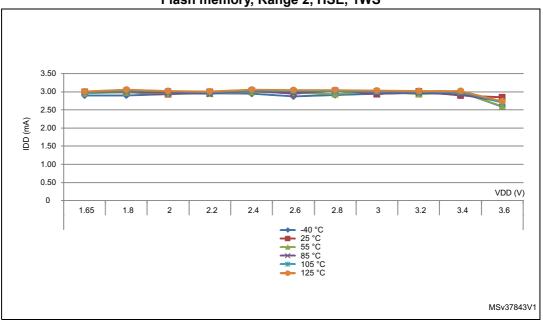
 Table 27. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

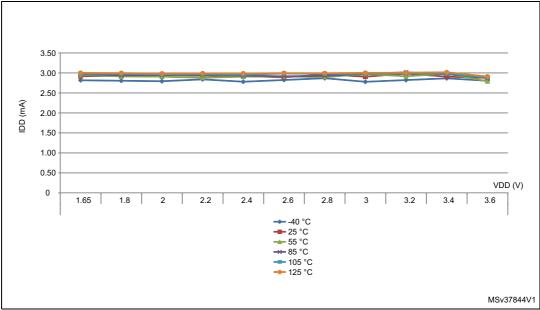
6.3.3 Embedded internal reference voltage

The parameters given in *Table 29* are based on characterization results, unless otherwise specified.


Table 28. Embedde	d internal reference voltage calibration	values


Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF


Table 29. Embedded internal reference voltage⁽¹⁾

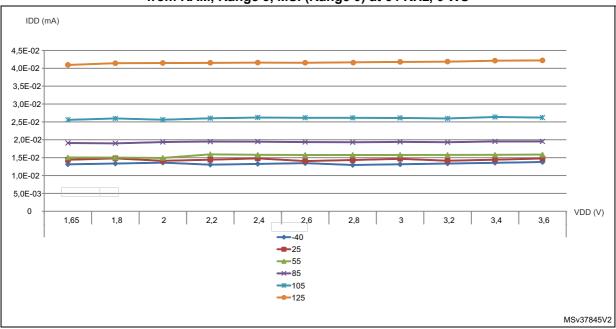


Figure 16. I_{DD} vs V_{DD}, at T_A= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Symbol	Parameter		Condition		Тур	Max (1)	Unit
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz, Flash memory OFF	$T_A = -40$ to $25^{\circ}C$	4,7	-	
				$T_A = -40$ to $25^{\circ}C$	17	24	1
. Su			MSI clock = 65 kHz,	T _A = 85°C	19,5	30	1
	Supply current in Low-power sleep mode		f _{HCLK} = 32 kHz	T _A = 105°C	23	47	-
				T _A = 125°C	32,5	70	
			MSI clock = 65 kHz, f _{HCLK} = 65 kHz	$T_A = -40$ to $25^{\circ}C$	17	24]
I _{DD} (LP Sleep)				T _A = 85°C	20	31	μA
	mode			T _A = 105°C	23,5	47	
				T _A = 125°C	32,5	70	
				T_A = - 40 to 25°C	19,5	27	
				T _A = 55°C	20,5	28	
			MSI clock = 131kHz, f _{HCLK} = 131 kHz	T _A = 85°C	22,5	33]
			HULK TOT KIZ	T _A = 105°C	26	50	
				T _A = 125°C	35	73	

Table 36. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

		/ _{DD} = 3.0 V, T _A =	25 °C			
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01	Range 2, V _{CORE} =1.5 V VOS[1:0] = 10	Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit
	ADC1 ⁽²⁾	5.5	5	3.5	4	
	SPI1	4	3	3	2.5	
	USART1	14.5	11.5	9.5	12	
APB2	TIM21	7.5	6	5	5.5	µA/MHz
APDZ	TIM22	7	6	5	6	(f _{HCLK})
	FIREWALL	1.5	1	1	0.5	
	DBGMCU	1.5	1	1	0.5	
	SYSCFG	2.5	2	2	1.5	
	GPIOA	3.5	3	2.5	2.5	μA/MHz
	GPIOB	3.5	2.5	2	2.5	
Cortex- M0+ core	GPIOC	8.5	6.5	5.5	7	
I/O port	GPIOD	1	0.5	0.5	0.5	(f _{HCLK})
	GPIOE	8	6	5	6	
	GPIOH	1.5	1	1	0.5	
	CRC	1.5	1	1	1	
	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	
AHB	DMA1	10	8	6.5	8.5	µA/MHz
АПБ	RNG	5.5	1	0.5	0.5	(f _{HCLK})
	TSC	3	2.5	2	3	
	AES	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	
All e	enabled	204	162	130	202	µA/MHz (f _{HCLK})
PWR		2.5	2	2	1	µA/MHz (f _{HCLK})

Table 40. Peripheral current consumption in Run or Sleep mode ⁽¹⁾ (continued)
--

 Data based on differential I_{DD} measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is off for this measure.

3. Current consumption is negligible and close to 0 μ A.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 45*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{OSC_IN}	Oscillator frequency	-	1		25	MHz		
R _F	Feedback resistor	-	-	200	-	kΩ		
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V		
t _{SU(HSE)}	Startup time	V_{DD} is stabilized	-	2	-	ms		

Table 45. HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 21*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

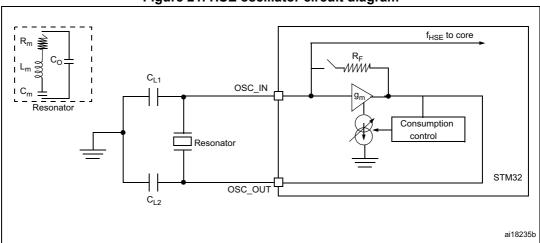


Figure 21. HSE oscillator circuit diagram

6.3.9 Memory characteristics

RAM memory

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

Table 52. RAM and hardware registers

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit	
V _{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V	
t _{prog}	Programming time for word or half-page	Erasing	-	3.28	3.94	me	
		Programming	-	3.28	3.94	ms	
Average current during the whole programming / erase operation Maximum current (peak) during the whole programming / erase operation		-	500	700	μA		
	during the whole programming / erase	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA	

Table 53. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Table 54. Flash memory	and data EEPROM endurance and retention	

Symbol	Parameter	Conditions	Value	Unit	
Symbol	Falameter	Conditions	Min ⁽¹⁾	Unit	
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	T 40°C to 105 °C	10	- kcycles	
	Cycling (erase / write) EEPROM data memory	T _A = -40°C to 105 °C	100		
	Cycling (erase / write) Program memory	T 40°C to 125 °C	0.2		
	Cycling (erase / write) EEPROM data memory	T _A = -40°C to 125 °C	2		

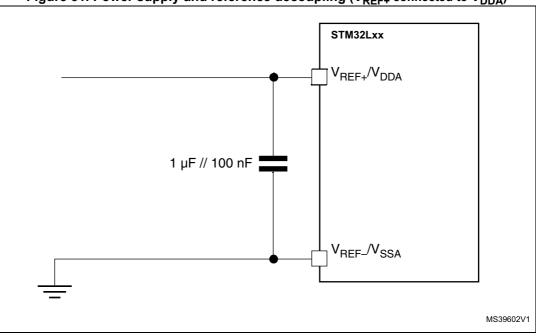


Figure 31. Power supply and reference decoupling (V_{REF+} connected to V_{DDA})

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			8	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.65 <v<sub>DD<3.6V</v<sub>	-	-	8	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>			8 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input actus time	Master mode	0	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	11	-	-	
t _{h(SI)}		Slave mode	4.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	18	-	52	
t _{dis(SO)}	Data output disable time	Slave mode	12	-	42	
t _{v(SO)}	Data output valid time	Slave mode	-	20	56.5	
t _{v(MO)}		Master mode	-	5	9	
t _{h(SO)}	Data output hold time	Slave mode	13	-	-	
t _{h(MO)}		Master mode	3	-	-	

Table 76. SPI characteristics in vo	oltage Range 2 ⁽¹⁾
-------------------------------------	-------------------------------

1. Guaranteed by characterization results.

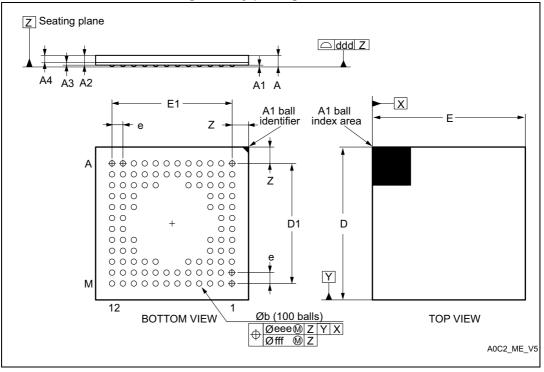
2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

I2S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
£	125 alook froguopov	Master data: 32 bits	-	64xFs	MHz
f _{СК}	I2S clock frequency	Slave data: 32 bits	-	64xFs	IVITZ
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	15	
t _{h(WS)}	WS hold time	Master mode	11	-	
t _{su(WS)}	WS setup time	Slave mode	6	-	
t _{h(WS)}	WS hold time	Slave mode	2	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	0	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	6.5	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	18	-	115
t _{h(SD_SR)}	Data Input noid time	Slave receiver	15.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	77	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	8	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	18	-	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	1.5	-	

Table 78. I2S characteristics⁽¹⁾

1. Guaranteed by characterization results.


2. 256xFs maximum value is equal to the maximum clock frequency.

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

7.2 UFBGA100 package information

Figure 42. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 84. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	0.0094
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	6.850	7.000	7.150	0.2697	0.2756	0.2815
D1	-	5.500	-	-	0.2165	-
E	6.850	7.000	7.150	0.2697	0.2756	0.2815
E1	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
Z	-	0.750	-	-	0.0295	-

7.4 **TFBGA64** package information

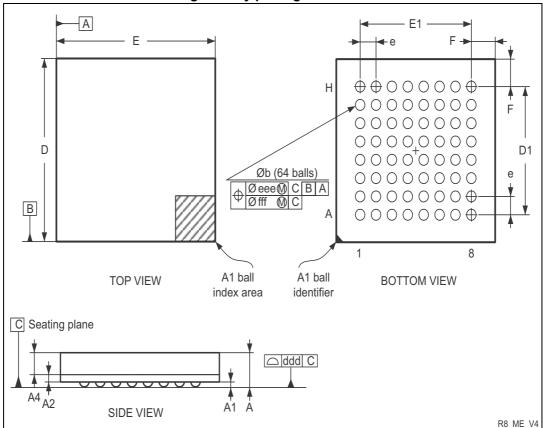


Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 87. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball				
grid array package mechanical data				

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.200	-	-	0.0472
A1	0.150	-	-	0.0059	-	-
A2	-	0.200	-	-	0.0079	-
A4	-	-	0.600	-	-	0.0236
b	0.250	0.300	0.350	0.0098	0.0118	0.0138
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D1	-	3.500	-	-	0.1378	-
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E1	-	3.500	-	-	0.1378	-

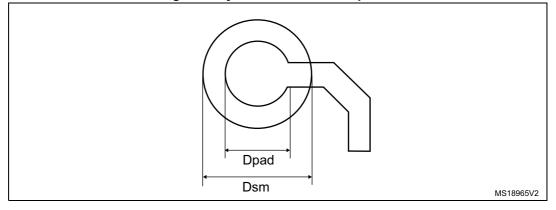


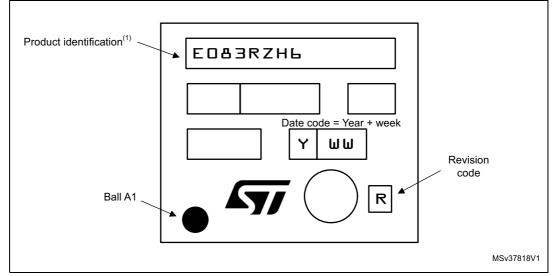
Table 87. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ballgrid array package mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 49. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 88. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)


Dimension	Recommended values		
Pitch	0.5		
Dpad	0.27 mm		
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)		
Solder paste	0.27 mm aperture diameter.		

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

Device marking for TFBGA64

The following figure gives an example of topside marking versus ball A 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

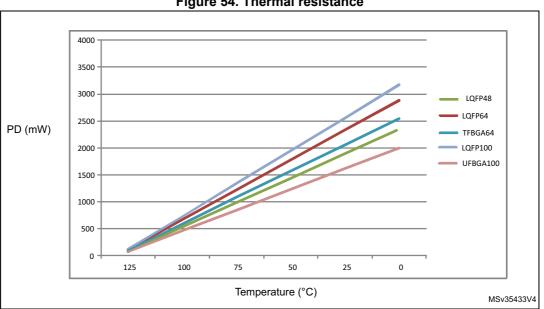


Figure 54. Thermal resistance

7.6.1 **Reference document**

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

