

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, I ² C, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (16K x 8)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p87c660x2bbd-157

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

BLOCK DIAGRAM 1

SPECIAL FUNCTION REGISTERS (Continued)

SYMBOL	DESCRIPTION	DIRECT ADDRESS	BIT MSB	ADDRES	S, SYMB	ol, or a	LTERNAT	IVE POR	T FUNCT	ION LSB	RESET VALUE
P3*	Port 3	B0H	RD	WR	T1/ CEX4	T0/ CEX3	INT1	<u>INT0</u>	TxD	RxD	FFH
PCON#1	Power Control	87H	SMOD1	SMOD0	_	POF	GF1	GF0	PD	IDL	00xx0000B
			D7	D6	D5	D4	D3	D2	D1	D0	
PSW	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	000000x0B
RCAP2H# RCAP2L# SADDR# SADEN#	Timer 2 Capture High Timer 2 Capture Low Slave Address Slave Address Mask	CBH CAH A9H B9H									00H 00H 00H 00H
SBUF	Serial Data Buffer	99H									xxxxxxxB
			9F	9E	9D	9C	9B	9A	99	98	
SCON*	Serial Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	ТІ	RI	00H
SP	Stack Pointer	81H	8F	8E	8D	8C	8B	8A	89	88	07H
TCON*	Timer Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
			CF	CE	CD	СС	СВ	CA	C9	C8	
T2CON*	Timer 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	00H
T2MOD#	Timer 2 Mode Control	C9H	-	-	-	-	-	-	T2OE	DCEN	xxxxxx00B
TH0 TH1 TH2# TL0 TL1 TL2#	Timer High 0 Timer High 1 Timer High 2 Timer Low 0 Timer Low 1 Timer Low 2	8CH 8DH CDH 8AH 8BH CCH									00H 00H 00H 00H 00H 00H
TMOD	Timer Mode	89H	GATE	C/T	M1	MO	GATE	C/T	M1	M0	00H
S1CON	I2C Control	D8H	CR2	ENA1	STA	STO	SI	AA	CR1	CR0	00H
S1STA	I2C STATUS	D9H	SC4	SC3	SC2	SC1	SC0	0	0	0	F8H
S1DAT	I2C DATA	DAH									00H
S1ADR	I2C ADDRESS	DBH								GC	00H
S2CON ²	Second I ² C control	F8H	CR2	ENA1	STA	STO	SI	AA	CR1	CR0	00H
S2STA ²	Second I ² C	F1H	SC4	SC3	SC2	SC1	SC0	0	0	0	F8H
S2DAT ²	Second I ² C	F2H									00H
S2ADR ²	Second I ² C	F3H								GC	00H
S2IST ²	Second I ² C	F4H									
IP1 ²	Interrupt priority 1	E7H								PS2	00H
IP1H ²		F7H								PS2H	00H
WDTRST	Watchdog Timer Reset	A6H									

* SFRs are bit addressable.
SFRs are modified from or added to the 80C51 SFRs.

- Reserved bits.

Reset value depends on reset source.
 8xC661X2 only.

P8xC660X2/661X2

LOW POWER MODES Stop Clock Mode

The static design enables the clock speed to be reduced down to 0 MHz (stopped). When the oscillator is stopped, the RAM and Special Function Registers retain their values. This mode allows step-by-step utilization and permits reduced system power consumption by lowering the clock frequency down to any value. For lowest power consumption the Power Down mode is suggested.

Idle Mode

In the idle mode (see Table 2), the CPU puts itself to sleep while all of the on-chip peripherals stay active. The instruction to invoke the idle mode is the last instruction executed in the normal operating mode before the idle mode is activated. The CPU contents, the on-chip RAM, and all of the special function registers remain intact during this mode. The idle mode can be terminated either by any enabled interrupt (at which time the process is picked up at the interrupt service routine and continued), or by a hardware reset which starts the processor in the same manner as a power-on reset.

Power-Down Mode

To save even more power, a Power Down mode (see Table 2) can be invoked by software. In this mode, the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed. The on-chip RAM and Special Function Registers retain their values down to 2 V and care must be taken to return V_{CC} to the minimum specified operating voltages before the Power Down Mode is terminated.

Either a hardware reset or external interrupt can be used to exit from Power Down. Reset redefines all the SFRs but does not change the on-chip RAM. An external interrupt allows both the SFRs and the on-chip RAM to retain their values.

To properly terminate Power Down, the reset or external interrupt should not be executed before V_{CC} is restored to its normal operating level and must be held active long enough for the oscillator to restart and stabilize (normally less than 10 ms).

With an external interrupt, INT0 and INT1 must be enabled and configured as level-sensitive. Holding the pin LOW restarts the oscillator but bringing the pin back HIGH completes the exit. Once the interrupt is serviced, the next instruction to be executed after RETI will be the one following the instruction that put the device into Power Down.

LPEP

The EPROM array contains some analog circuits that are not required when V_{CC} is less than 3.6 V but are required for a V_{CC} greater than 3.6 V. The LPEP bit (AUXR.4), when set, will powerdown these analog circuits resulting in a reduced supply current. This bit should be set ONLY for applications that operate at a V_{CC} less than 4 V.

POWER-ON FLAG

The Power-On Flag (POF) is set by on-chip circuitry when the V_{CC} level on the P8xC66xX2 rises from 0 to 5 V. The POF bit can be set or cleared by software allowing a user to determine if the reset is the result of a power-on or a warm start after powerdown. The V_{CC} level must remain above 3 V for the POF to remain unaffected by the V_{CC} level.

Design Consideration

When the idle mode is terminated by a hardware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory.

ONCE™ Mode

The ONCE ("On-Circuit Emulation") Mode facilitates testing and debugging of systems without the device having to be removed from the circuit. The ONCE Mode is invoked by:

1. Pull ALE LOW while the device is in reset and PSEN is HIGH;

2. Hold ALE LOW as RST is deactivated.

While the device is in ONCE Mode, the Port 0 pins go into a float state, and the other port pins and ALE and PSEN are weakly pulled HIGH. The oscillator circuit remains active. While the device is in this mode, an emulator or test CPU can be used to drive the circuit. Normal operation is restored when a normal reset is applied.

Programmable Clock-Out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

- 1. to input the external clock for Timer/Counter 2, or
- to output a 50% duty cycle clock ranging from 61 Hz to 4 MHz at a 16 MHz operating frequency in 12-clock mode (122 Hz to 8 MHz in 6-clock mode).

To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

 Oscillator
 Frequency

 n × (65536 - RCAP2H, RCAP2L)

 n =
 2 in 6-clock mode 4 in 12-clock mode

Where (RCAP2H,RCAP2L) = the content of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will be the same.

80C51 8-bit microcontroller family 16 KB OTP/ROM, 512B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz), two 400KB l²C interfaces

TMOD Addres	ss = 89	ЭH								Re	set Value = 00H
Not Bi	t Addre	essable	9								
			7	6	5	4	3	2	1	0	
			GATE	C/T	M1	MO	GATE	C/T	M1	MO	
					۱ ۷		,		·)
				ТІМІ	ER 1			TIM	ER 0		
BIT TMOD.3/ TMOD.7	SYN Gat	I BOL E	FUNCTION Gating contr "TRn" contro	ol wher	n set. Tir set. whe	ner/Cou en cleare	nter "n" is ed Timer '	s enabled "n" is ena	l only while abled whe	e "INTn" p never "TR	in is high and n" control bit is set.
TMOD.2/ TMOD.6	C/T		Timer or Cor Set for Cour	unter Senter ope	elector c ration (i	leared for the second s	or Timer o n "Tn" inp	operation out pin).	(input fro	m internal	l system clock.)
	M1	MO	OPERATIN	3							
	0	0	8048 Timer:	"TLn" s	erves a	s 5-bit p	rescaler.				
	0	1	16-bit Timer	/Counte	er: "THn'	and "Tl	_n" are ca	scaded;	there is n	o prescale	er.
	1	0	8-bit auto-re into "TLn" ea	3-bit auto-reload Timer/Counter: "THn" holds a value which is to be reloaded nto "TLn" each time it overflows.							
	1	1	(Timer 0) TL TH0 is an 8-	0 is an bit time	8-bit Tin r only co	ner/Cou	nter contr	olled by t 1 contro	the standa I bits.	ard Timer (0 control bits.
	1	1	(Timer 1) Tir	ner/Cou	unter 1 s	topped.					
											SU01580

Figure 2. Timer/Counter 0/1 Mode Control (TMOD) Register

Figure 3. Timer/Counter 0/1 Mode 0: 13-Bit Timer/Counter

80C51 8-bit microcontroller family 16 KB OTP/ROM, 512B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz), two 400KB I²C interfaces

S	CON	Addres	s = 98H									Reset Value = 00H
		Bit Add	ressable	7	6	5	4	3	2	1	0	
		SM0 SM1 SM2 REN TB8 RB8 TI RI										
Wher	ere SM0, SM1 specify the serial port mode, as follows:											
SM0	SM1	SM1 Mode Description Baud Rate										
0	0	0	shift register		f _{OSC} /12	2 (12-cl	ock mod	le) or f _O	_{SC} /6 (6-	clock m	ode)	
0	1	1	8-bit UART		variable							
1	0	2	9-bit UART		f _{OSC} /64 or f _{OSC} /32 (12-clock mode) or f _{OSC} /32 or f _{OSC} /16 (6-clock mode)							
1	1	3	9-bit UART	variable								
SM2	Ena acti rec	ables the vated if th eived. In l	multiprocessor on the received 9th of Mode 0, SM2 sh	commur data bit ould be	iication (RB8) is 0.	feature 6 0. In N	in Mode lode 1, i	es 2 and f SM2=	3. In M 1 then F	ode 2 o RI will no	r 3, if Sl ot be ac	M2 is set to 1, then RI will not be tivated if a valid stop bit was not
REN	Ena	ables seri	al reception. Set	t by soft	ware to	enable	receptio	n. Clea	r by sof	tware to	disable	e reception.
TB8	The	e 9th data	bit that will be t	ransmitt	ed in M	odes 2	and 3. S	et or cl	ear by s	oftware	as desi	red.
RB8	In N RB	In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, it SM2=0, RB8 is the stop bit that was received. In Mode 0, RB8 is not used.										
ті	Tra mo	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission. Must be cleared by software.								beginning of the stop bit in the other		
RI	Reo mo	Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.									r through the stop bit time in the other	

SU01626

Baud Rate		t.	CMOD		Timer 1			
Mode	12-clock mode	6-clock mode	TOSC	SMOD	C/T	Mode	Reload Value	
Mode 0 Max	1.67 MHz	3.34 MHz	20 MHz	Х	Х	Х	Х	
Mode 2 Max	625 k	1250 k	20 MHz	1	X	Х	Х	
Mode 1, 3 Max	104.2 k	208.4 k	20 MHz	1	0	2	FFH	
Mode 1, 3	19.2 k	38.4 k	11.059 MHz	1	0	2	FDH	
	9.6 k	19.2 k	11.059 MHz	0	0	2	FDH	
	4.8 k	9.6 k	11.059 MHz	0	0	2	FAH	
	2.4 k	4.8 k	11.059 MHz	0	0	2	F4H	
	1.2 k	2.4 k	11.059 MHz	0	0	2	E8H	
	137.5	275	11.986 MHz	0	0	2	1DH	
	110	220	6 MHz	0	0	2	72H	
	110	220	12 MHz	0	0	1	FEEBH	

Figure 7. Serial Port Control (SCON) Register

Figure 8. Timer 1 Generated Commonly Used Baud Rates

More About Mode 0

Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received: 8 data bits (LSB first). The baud rate is fixed a 1/12 the oscillator frequency (12-clock mode) or 1/6 the oscillator frequency (6-clock mode).

Figure 9 shows a simplified functional diagram of the serial port in Mode 0, and associated timing.

Transmission is initiated by any instruction that uses SBUF as a destination register. The "write to SBUF" signal at S6P2 also loads a 1 into the 9th position of the transmit shift register and tells the TX Control block to commence a transmission. The internal timing is such that one full machine cycle will elapse between "write to SBUF" and activation of SEND.

SEND enables the output of the shift register to the alternate output function line of P3.0 and also enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK is LOW during S3, S4, and S5 of every machine cycle, and HIGH during S6, S1, and S2. At

S6P2 of every machine cycle in which SEND is active, the contents of the transmit shift are shifted to the right one position.

As data bits shift out to the right, zeros come in from the left. When the MSB of the data byte is at the output position of the shift register, then the 1 that was initially loaded into the 9th position, is just to the left of the MSB, and all positions to the left of that contain zeros. This condition flags the TX Control block to do one last shift and then deactivate SEND and set T1. Both of these actions occur at S1P1 of the 10th machine cycle after "write to SBUF."

Reception is initiated by the condition REN = 1 and R1 = 0. At S6P2 of the next machine cycle, the RX Control unit writes the bits 1111110 to the receive shift register, and in the next clock phase activates RECEIVE.

RECEIVE enable SHIFT CLOCK to the alternate output function line of P3.1. SHIFT CLOCK makes transitions at S3P1 and S6P1 of every machine cycle. At S6P2 of every machine cycle in which RECEIVE is active, the contents of the receive shift register are

Figure 10. Serial Port Mode 1

000V0/004V0

Product data

P8xC660X2/661X2

SIO1 and SIO2, I²C Serial I/O

The I²C-bus is a simple bi-directional 2-wire bus to transfer information between devices connected to the bus. The main features of the bus are:

- Only two bus lines are required: a serial clock line (SCL) and a serial data line (SDA).
- Bi-directional data transfer between masters and slaves.
- Each device connected to the bus is software addressable by a unique address.
- Masters can operate as Master-transmitter or as Master-receiver.
- It is a true multi-master bus (no central master) and includes collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer.
- Serial clock synchronization allows devices with different bit rates to communicate via the same serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- Devices can be added to or removed from an I²C-bus system without affecting any other device on the bus.
- Fault diagnostics and debugging are simple; malfunctions can be immediately traced.

For more information see the Philips publication "The I²C-Bus Specification", especially for detailed descriptions of the Fast and the Standard data-transfer modes. Also, refer to the data sheets for the 8xC552, the 8xC554, the 8xC557, and the 8xC65x.

The SIO1 I²C serial port interface has a selectable bi-directional data-transfer mode, either the 400Kbit/s Fast-mode or the 100Kbit/s Standard-mode. In the Fast-mode, the port performance and the register definitions are identical to those of the 8xC557 devices, and in the Standard-mode (the reset default), they are identical to those of the 8xC652, 8xC654, 8xC552, and 8xC554 devices.

The Fast-mode is functionally the same as the Standard-mode except for the bit rate selection (see Tables 7 and 8), the timing of the SCL and SDA signals (see the I²C electrical characteristics), and the output slew-rate control. The Fast-mode allows up to a four-fold bit-rate increase over that of the Standard-mode, and yet, it is downward compatible with the Standard-mode, i.e. it can be used in a 0 to 100Kbit/s bus system.

The SCL serial port for the clock line of the l^2C bus is an alternate function of the P1.6 port pin, and the SDA serial port for the data line of the l^2C bus is an alternate function of the P1.7 port pin. Consequently, these 2 port pins are open drain outputs (no pull-ups), and the output latches of P1.6 and P1.7 must be set to logic 1 in order to enable the SIO1 outputs.

The second I²C serial port of the 8xC661X2, SIO2, has the 400Kbit/s Fast data-transfer mode only and selectable slew-rate control of the output pins. It also has the same port performance and register definitions as those of the 8xC557. The SCL1 and SDA1 serial ports have dedicated pins with open-drain outputs and Schmitt-trigger inputs.

There is an analog circuit for controlling the turn-on and turn-off rates of the output pull-down (slew-rate control circuit) which is required to meet the electrical specifications of the Fast-mode under nominal conditions (5 V). To achieve the maximum slew-rates, the

circuit must be disabled. For the SIO1 serial port, the slew-rate control circuits for both the SCL and SDA pins are disabled in the Standard mode (maximum slew-rate), and they are enabled in the Fast-mode. For the SIO2 serial port, the slew-rate control circuits for both pins are enabled by reset, but the Slew-Rate Disable bit (SRD bit) in the AUXR Register disables the slew-rate circuits for both the SCL1 and SDA1 pins when set for maximum slew-rates. This feature of the SIO2 slew-rate control is very useful for higher bus loads, higher temperatures and lower voltages that cause additional decreases in slew-rates.

All of the functional descriptions discussed below apply to both the SIO1 and the SIO2 I²C serial ports although the text may refer to the SIO1 only. See page 10 for the corresponding SIO2 register addresses.

The l²C on-chip logic performs a byte oriented data transfer, clock generation, address recognition and bus control arbitration, and interfaces to the external l²C-bus via the two port pins SCL and SDA. It meets the l²C-bus specification and supports all transfer modes (other than the low-speed mode) from-and-to the l²C-bus. The logic handles byte transfers autonomously. It also keeps track of serial transfers, and a status register (SxSTA) reflects the status of the SIOx logic and the l²C-bus.

The CPU interfaces to the logic of each of the two I^2 Cs via the following four Special Function Registers (where x=1,2):

- SxCON: Control register, bit addressable by the CPU.
- SxSTA: Status register whose contents may be used as a vector to service routines.
- SxDAT: Data shift register; the data byte is stable as long as the SI bit = 1 (SxCON.3).
- SxADR: Slave address register; its LSB enables / disables general call address recognition.

A typical I²C-bus configuration is shown in Figure 15, and Figure 16 shows how a data transfer is accomplished on the bus. Depending on the state of the direction bit (R/W), two types of data transfers are possible on the I²C-bus:

- Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each received byte.
- 2. Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is transmitted by the master. The slave then returns an acknowledge bit. Next follows the data bytes transmitted by the slave to the master. The master returns an acknowledge bit after all received bytes other than the last byte. At the end of the last received byte, a "not acknowledge" is returned.

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of the next serial transfer, the I²C bus will not be released.

Modes of Operation: The on-chip SIO1 logic may operate in the following four modes:

1. Master Transmitter Mode:

Serial data output through P1.7/SDA while P1.6/SCL outputs the serial clock. The first byte transmitted contains the slave address

Figure 22. Format and States in the Master Transmitter Mode

Figure 24. Format and States in the Slave Receiver Mode

Table 10. Master Receiver Mode

STATUS		APPLICATION SOFTWARE RESPONSE							
CODE	BUS AND			TO S	ICON		NEXT ACTION TAKEN BY SIO1 HARDWARE		
(S1STA)	SIO1 HARDWARE	TO/FROM STDAT	STA STO SI AA		AA				
08H	A START condition has been transmitted	Load SLA+R	Х	0	0	X	SLA+R will be transmitted; ACK bit will be received		
10H	A repeated START condition has been transmitted	Load SLA+R or Load SLA+W	X X	0 0	0 0	X X	As above SLA+W will be transmitted; SIO1 will be switched to MST/TRX mode		
38H	Arbitration lost in NOT ACK bit	No S1DAT action or No S1DAT action	0 1	0 0	0 0	X X	I ² C bus will be released; SIO1 will enter a slave mode A START condition will be transmitted when the bus becomes free		
40H	SLA+R has been transmitted; ACK has been received	No S1DAT action or no S1DAT action	0 0	0 0	0 0	0 1	Data byte will be received; NOT ACK bit will be returned Data byte will be received; ACK bit will be returned		
48H	SLA+R has been transmitted; NOT ACK has been received	No S1DAT action or no S1DAT action or no S1DAT action	1 0 1	0 1 1	0 0 0	X X X	Repeated START condition will be transmitted STOP condition will be transmitted; STO flag will be reset STOP condition followed by a START condition will be transmitted; STO flag will be reset		
50H	Data byte has been received; ACK has been returned	Read data byte or read data byte	0 0	0 0	0 0	0 1	Data byte will be received; NOT ACK bit will be returned Data byte will be received; ACK bit will be returned		
58H	Data byte has been received; NOT ACK has been returned	Read data byte or read data byte or read data byte	1 0 1	0 1 1	0 0 0	X X X	Repeated START condition will be transmitted STOP condition will be transmitted; STO flag will be reset STOP condition followed by a START condition will be transmitted; STO flag will be reset		

Table 11. Slave Receiver Mode (Continued)

STATUS	STATUS OF THE	APPLICATION SO	OFTWA	RE RE	SPON	SE .	
CODE	I ² C BUS AND		TO S1CON				NEXT ACTION TAKEN BY SIO1 HARDWARE
(S1STA)	SIO1 HARDWARE	TO/FROM STDAT	STA	STO	SI	AA	
A0H	A STOP condition or repeated START	No STDAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address
	condition has been received while still addressed as	No STDAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1
	SLV/REC or SLV/TRX	No STDAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free
		No STDAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1. A START condition will be transmitted when the bus becomes free.

Table 12. Slave Transmitter Mode

STATUS	STATUS OF THE	APPLICATION SO	OFTWA	RE RE	SPONS	6E	
CODE	I ² C BUS AND	TO/FROM S1DAT		TO S1	CON		NEXT ACTION TAKEN BY SIO1 HARDWARE
(3131A)	SIOT HARDWARE		STA	STO	SI	AA	
A8H	Own SLA+R has been received; ACK	Load data byte or	Х	0	0	0	Last data byte will be transmitted and ACK bit will be received
	has been returned	load data byte	Х	0	0	1	Data byte will be transmitted; ACK will be received
B0H	Arbitration lost in SLA+R/W as master; Own SLA+R has	Load data byte or	Х	0	0	0	Last data byte will be transmitted and ACK bit will be received
	been received, ACK has been returned	load data byte	Х	0	0	1	Data byte will be transmitted; ACK bit will be received
B8H	Data byte in S1DAT has been transmitted;	Load data byte or	Х	0	0	0	Last data byte will be transmitted and ACK bit will be received
	ACK has been received	load data byte	Х	0	0	1	Data byte will be transmitted; ACK bit will be received
СОН	Data byte in S1DAT has been transmitted;	No S1DAT action or	0	0	0	01	Switched to not addressed SLV mode; no recognition of own SLA or General call address
	NOT ACK has been received	no S1DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1
		no S1DAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free
		no S1DAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1. A START condition will be transmitted when the bus becomes free.
C8H	Last data byte in S1DAT has been	No S1DAT action or	0	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address
	transmitted (AA = 0); ACK has been received	no S1DAT action or	0	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1
		no S1DAT action or	1	0	0	0	Switched to not addressed SLV mode; no recognition of own SLA or General call address. A START condition will be transmitted when the bus becomes free
		no S1DAT action	1	0	0	1	Switched to not addressed SLV mode; Own SLA will be recognized; General call address will be recognized if S1ADR.0 = logic 1. A START condition will be transmitted when the bus becomes free.

Figure 29. SIO1 Data Memory Map

		!************ !*********** ! MASTER !***********	. RECEIVEI	********** R STATI	E SERVICE ROUTINES	******
		! ! STATE ! ! ACTION	: 40, Prev SLA+R I : DATA wi	rious sta have be ill be rec	ate was STATE 08 or STATE 10, en transmitted, ACK received. ceived, ACK returned.	
		! .sect .base	mts40 0x140			
0140	75D8C5			mov	S1CON,#ENS1_NOTSTA_NOTSTC	D_NOTSI_AA_CR0
0143	D0D0 32			pop reti	psw	
		! ! STATE ! ACTION	: 48, SLA : STOP co	+R have	e been transmitted, NOT ACK receive will be generated.	ed.
		.sect .base	mts48 0x148			
0148	75D8D5	STOP:		mov	S1CON,#ENS1_NOTSTA_STO_NO	DTSI_AA_CR0 !set_STO, clr_SI
014B 014D	D0D0 32			pop reti	psw	
		! ! STATE ! ACTION !	: 50, DAT : Read DA DATA wi then NO	A have ATA of S ill be rec DT ACK	been received, ACK returned. S1DAT. ceived, if it is last DATA will be returned else ACK will be retu	
		.sect .base	mrs50 0x150			
0150 0153 0155	75D018 A6DA 01C0			mov mov ajmp	psw,#SELRB3 @r0,S1DAT REC1	! Read received DATA
		.sect .base	mrs50s 0xc0			
00C0 00C3	D55205 75D8C1	REC1:		djnz mov	NUMBYTMST,NOTLDAT2 S1CON,#ENS1_NOTSTA_NOTSTC	D_NOTSI_NOTAA_CR0 ! clr_SI,AA
00C6 00C8	8003 75D8C5	NOTLDAT	2:	sjmp mov	RETmr S1CON,#ENS1_NOTSTA_NOTSTC	D_NOTSI_AA_CR0 ! clr_SI, set_AA
00CB 00CC 00CE	08 D0D0 32	RETmr:		inc pop reti	r0 psw	
		! ! STATE ! ACTION	: 58, DAT : Read DA	A have	been received, NOT ACK returned. S1DAT and generate a STOP condition	
		.sect .base	mrs58 0x158			
0158 015B 015D	75D018 A6DA 80E9			mov mov sjmp	psw,#SELRB3 @R0,S1DAT STOP	

P8xC660X2/661X2

Reduced EMI Mode

The AO bit (AUXR.0) in the AUXR register when set disables the ALE output unless the CPU needs to perform an off-chip memory access.

Reduced EMI Mode

AUXR (8EH)

7	6	5	4	3	2	1	0
-	-	SRD	-	Fast/ STD I ² C	-	EXTRAM	AO

AUXR.0 AO

See more detailed description in Figure 48.

Dual DPTR

The dual DPTR structure (see Figure 34) is a way by which the chip will specify the address of an external data memory location. There are two 16-bit DPTR registers that address the external memory, and a single bit called DPS = AUXR1/bit0 that allows the program code to switch between them.

- New Register Name: AUXR1#
- SFR Address: A2H
- Reset Value: xxxxxx0B

AUXR1 (A2H)

7	6	5	4	3	2	1	0
-	-	-	LPEP	GPS	0	-	DPS

Where:

DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.

Select Reg	DPS
DPTR0	0
DPTR1	1

The DPS bit status should be saved by software when switching between DPTR0 and DPTR1.

The GF2 bit is a general purpose user-defined flag. Note that bit 2 is not writable and is always read as a zero. This allows the DPS bit to be quickly toggled simply by executing an INC AUXR1 instruction without affecting the GF2 bit.

Figure 34.

DPTR Instructions

The instructions that refer to DPTR refer to the data pointer that is currently selected using the AUXR1/bit 0 register. The six instructions that use the DPTR are as follows:

INC DPTR	Increments the data pointer by 1
MOV DPTR, #data16	Loads the DPTR with a 16-bit constant
MOV A, @ A+DPTR	Move code byte relative to DPTR to ACC
MOVX A, @ DPTR	Move external RAM (16-bit address) to ACC
MOVX @ DPTR , A	Move ACC to external RAM (16-bit address)
JMP @ A + DPTR	Jump indirect relative to DPTR

The data pointer can be accessed on a byte-by-byte basis by specifying the LOW or HIGH byte in an instruction which accesses the SFRs. See *Application Note AN458* for more details.

80C51 8-bit microcontroller family 16 KB OTP/ROM, 512B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz), two 400KB I²C interfaces

Figure 44. PCA High Speed Output Mode

Figure 45. PCA PWM Mode

80C51 8-bit microcontroller family 16 KB OTP/ROM, 512B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz), two 400KB I²C interfaces

The input threshold voltage of SCL and SDA (SIO1) meets the I²C specification, so an input voltage below 0.3 V_{DD} will be recognized as a logic 0 while an input voltage above 0.7 V_{DD} will be recognized as a logic 1.
 Not 100% tested.

AC ELECTRICAL CHARACTERISTICS (6-CLOCK MODE, 5 V ±10% OPERATION)

 $T_{amb} = 0 \degree C$ to +70 $\degree C$ or -40 $\degree C$ to +85 $\degree C$: $V_{CC} = 5 \lor \pm 10\%$. $V_{SS} = 0 \lor^{1,2,3,4,5}$

Symbol	Figure	Parameter	Limits	Limits			Unit
			MIN	MAX	MIN	MAX	1
1/t _{CLCL}	55	Oscillator frequency	0	30			MHz
t _{LHLL}	50	ALE pulse width	t _{CLCL} -8		54.5		ns
t _{AVLL}	50	Address valid to ALE LOW	0.5 t _{CLCL} –13		18.25		ns
t _{LLAX}	50	Address hold after ALE LOW	0.5 t _{CLCL} –20		11.25		ns
t _{LLIV}	50	ALE LOW to valid instruction in		2 t _{CLCL} –35		90	ns
t _{LLPL}	50	ALE LOW to PSEN LOW	0.5 t _{CLCL} –10		21.25		ns
t _{PLPH}	50	PSEN pulse width	1.5 t _{CLCL} –10		83.75		ns
t _{PLIV}	50	PSEN LOW to valid instruction in		1.5 t _{CLCL} –35		58.75	ns
t _{PXIX}	50	Input instruction hold after PSEN	0		0		ns
t _{PXIZ}	50	Input instruction float after PSEN		0.5 t _{CLCL} –10		21.25	ns
t _{AVIV}	50	Address to valid instruction in		2.5 t _{CLCL} –35		121.25	ns
t _{PLAZ}	50	PSEN LOW to address float		10		10	ns
Data Merr	ory						
t _{RLRH}	51	RD pulse width	3 t _{CLCL} –20		167.5		ns
t _{WLWH}	52	WR pulse width	3 t _{CLCL} –20		167.5		ns
t _{RLDV}	51	RD LOW to valid data in		2.5 t _{CLCL} –35		121.25	ns
t _{RHDX}	51	Data hold after RD	0		0		ns
t _{RHDZ}	51	Data float after RD	Data float after RD t _{CLCL} -10			52.5	ns
t _{LLDV}	51	ALE LOW to valid data in		4 t _{CLCL} –35		215	ns
t _{AVDV}	51	Address to valid data in		4.5 t _{CLCL} –35		246.25	ns
t _{LLWL}	51, 52	ALE LOW to RD or WR LOW 1.5 t _{CLCL} –15		1.5 t _{CLCL} +15	78.75	108.75	ns
t _{AVWL}	51, 52	Address valid to \overline{WR} LOW or \overline{RD} LOW	2 t _{CLCL} –15		110		ns
t _{QVWX}	52	Data valid to WR transition	WR transition 0.5 t _{CLCL} –25		6.25		ns
t _{WHQX}	52	Data hold after WR	0.5 t _{CLCL} –15		16.25		ns
t _{QVWH}	52	Data valid to WR HIGH	3.5 t _{CLCL} –5		213.75		ns
t _{RLAZ}	51	RD LOW to address float		0		0	ns
t _{WHLH}	51, 52	RD or WR HIGH to ALE HIGH	0.5 t _{CLCL} –10	0.5 t _{CLCL} +10	21.25	41.25	ns
External (Clock			1	-		
t _{CHCX}	55	High time	0.4 t _{CLCL}	t _{CLCL} – t _{CLCX}			ns
t _{CLCX}	55	Low time	0.4 t _{CLCL}	.4 t _{CLCL} t _{CLCL} – t _{CHCX}			ns
t _{CLCH}	55	Rise time		5			ns
t _{CHCL}	55	Fall time		5			ns
Shift regis	ster			1			
t _{XLXL}	54	Serial port clock cycle time	6 t _{CLCL}		375		ns
t _{QVXH}	54	Output data setup to clock rising edge 5 t _{CLCL} –2			287.5		ns
t _{XHQX}	54	Output data hold after clock rising edge	t _{CLCL} –15 47.5			ns	
t _{XHDX}	54	Input data hold after clock rising edge	0		0		ns
t _{XHDV}	54	Clock rising edge to input data valid ⁶		5 t _{CLCL} –133		179.5	ns

NOTES:

1. Parameters are valid over operating temperature range unless otherwise specified.

 Load capacitance for port 0, ALE, and PSEN=100 pF, load capacitance for all outputs = 80 pF
 Interfacing the microcontroller to devices with float time up to 45ns is permitted. This limited bus contention will not cause damage to port 0 drivers.

4. Parts are guaranteed by design to operate down to 0 Hz.

5. Data shown in the table are the best mathematical models for the set of measured values obtained in tests. If a particular parameter

calculated at a customer specified frequency has a negative value, it should be considered equal to zero.

6. Below 16 MHz this parameter is 4 t_{CLCL} - 133

80C51 8-bit microcontroller family 16 KB OTP/ROM, 512B RAM, low voltage (2.7 to 5.5 V), low power, high speed (30/33 MHz), two 400KB l^2C interfaces

Figure 54. Shift Register Mode Timing

Figure 55. External Clock Drive

2003 Oct 02

Table 17. EPROM Programming Modes

MODE	RST	PSEN	ALE/PROG	EA/V _{PP}	P2.7	P2.6	P3.7	P3.6	P3.3
Read signature	1	0	1	1	0	0	0	0	Х
Program code data	1	0	0*	V _{PP}	1	0	1	1	Х
Verify code data	1	0	1	1	0	0	1	1	Х
Pgm encryption table	1	0	0*	V _{PP}	1	0	1	0	Х
Pgm security bit 1	1	0	0*	V _{PP}	1	1	1	1	Х
Pgm security bit 2	1	0	0*	V _{PP}	1	1	0	0	Х
Pgm security bit 3	1	0	0*	V _{PP}	0	1	0	1	Х
Program to 6-clock mode	1	0	0*	V _{PP}	0	0	1	0	0
Verify 6-clock ⁴	1	0	1	1	е	0	0	1	1
Verify security bits ⁵	1	0	1	1	е	0	1	0	Х

NOTES:

1. '0' = Valid LOW for that pin, '1' = valid HIGH for that pin.

2. V_{PP} = 12.75 V ±0.25 V.

3. $V_{CC} = 5 V \pm 10\%$ during programming and verification. 4. Bit is output on P0.4 (1 = 12x, 0 = 6x).

5. Security bit one is output on P0.7.

Security bit two is output on P0.6.

Security bit three is output on P0.3.

ALE/PROG receives 5 programming pulses for code data (also for user array; 5 pulses for encryption or security bits) while V_{PP} is held at 12.75 V. Each programming pulse is LOW for 100 μ s (±10 μ s) and HIGH for a minimum of 10 μ s. *

Table 18. Program Security Bits for EPROM Devices

PROGRAM LOCK BITS ^{1, 2}			31, 2	
	SB1	SB2	SB3	PROTECTION DESCRIPTION
1	U	U	U	No Program Security features enabled. (Code verify will still be encrypted by the Encryption Array if programmed.)
2	Р	U	U	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.
3	Р	Р	U	Same as 2, also verify is disabled.
4	Р	Р	Р	Same as 3, external execution is disabled. Internal data RAM is not accessible.

NOTES:

1. P - programmed. U - unprogrammed.

2. Any other combination of the security bits is not defined.

P8xC660X2/661X2

Purchase of Philips I²C components conveys a license under the Philips' I²C patent to use the components in the I²C system provided the system conforms to the I²C specifications defined by Philips. This specification can be ordered using the code 9398 393 40011.

Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2] [3]}	Definitions
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax:

sales.addresses@www.semiconductors.philips.com

For sales offices addresses send e-mail to:

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2003 All rights reserved. Printed in U.S.A.

Date of release: 10-03

9397 750 12144

Let's make things better.

Document order number:

PHILIPS