

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Active
Core Processor	ARM926EJ-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	400MHz
Co-Processors/DSP	-
RAM Controllers	DDR2, SDRAM, SRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10/100Mbps
SATA	-
USB	USB 2.0 (3)
Voltage - I/O	1.8V, 3.3V
Operating Temperature	-40°C ~ 85°C (TA)
Security Features	-
Package / Case	217-LFBGA
Supplier Device Package	217-LFBGA (15x15)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at91sam9g25-cu-999

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Mode commands:
 - Normal mode configures SAM-BA Monitor to send / receive data in binary format,
 - Terminal mode configures SAM-BA Monitor to send / receive data in ascii format.
- Write commands: Write a byte (**O**), a halfword (**H**) or a word (**W**) to the target.
 - Address: Address in hexadecimal.
 - *Value*: Byte, halfword or word to write in hexadecimal.
 - Output: '>'
- Read commands: Read a byte (o), a halfword (h) or a word (w) from the target.
 - Address: Address in hexadecimal.
 - Output: The byte, halfword or word read in hexadecimal followed by '>'
- Send a file (S): Send a file to a specified address.
 - *Address*: Address in hexadecimal.
 - Output: '>'
- Note: There is a time-out on this command which is reached when the prompt '>' appears before the end of the command execution.
 - Receive a file (R): Receive data into a file from a specified address
 - *Address*: Address in hexadecimal.
 - *NbOfBytes*: Number of bytes in hexadecimal to receive.
 - Output: '>'
 - Go (G): Jump to a specified address and execute the code.
 - Address: Address to jump in hexadecimal.
 - Output: '>'once returned from the program execution. If the executed program does not handle the link
 register at its entry and does not return, the prompt will not be displayed.
 - Get Version (V): Return the Boot Program version.
 - Output: version, date and time of ROM code followed by '>'.

10.5.2 DBGU Serial Port

Communication is performed through the DBGU serial port initialized to 115,200 baud, 8 bits of data, no parity, 1 stop bit.

10.5.2.1 Supported External Crystal/External Clocks

The SAM-BA monitor supports a frequency of 12 MHz to allow DBGU communication for both external crystal and external clock.

10.5.2.2 Xmodem Protocol

The Send and Receive File commands use the Xmodem protocol to communicate. Any terminal performing this protocol can be used to send the application file to the target. The size of the binary file to send depends on the SRAM size embedded in the product. In all cases, the size of the binary file must be lower than the SRAM size because the Xmodem protocol requires some SRAM memory in order to work.

The Xmodem protocol supported is the 128-byte length block. This protocol uses a two-character CRC16 to guarantee detection of a maximum bit error.

12.9.2 AIC Source Vector Register

Name: Address:	AIC_SVR0AIC_ 0xFFFFF080	_SVR31					
Access:	Read/Write						
Reset:	0x0						
31	30	29	28	27	26	25	24
			VEC	TOR			
23	22	21	20	19	18	17	16
			VEC	TOR			
15	14	13	12	11	10	9	8
	VECTOR						
7	6	5	4	3	2	1	0
			VEC	TOR			

This register can only be written if the WPEN bit is cleared in the AIC Write Protection Mode Register.

• VECTOR: Source Vector

The user may store in these registers the addresses of the corresponding handler for each interrupt source.

14.6.4 RTC Calendar Register

Name:	RTC_CALR						
Address:	0xFFFFFEBC						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-			DA	ATE		
23	22	21	20	19	18	17	16
	DAY				MONTH		
15	14	13	12	11	10	9	8
			YE	AR			
7	6	5	4	3	2	1	0
_				CENT			

• CENT: Current Century

Only the BCD value 20 can be configured.

The lowest four bits encode the units. The higher bits encode the tens.

• YEAR: Current Year

The range that can be set is 00–99 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• MONTH: Current Month

The range that can be set is 01–12 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

• DAY: Current Day in Current Week

The range that can be set is 1–7 (BCD).

The coding of the number (which number represents which day) is user-defined as it has no effect on the date counter.

• DATE: Current Day in Current Month

The range that can be set is 01–31 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

20.5.2 12 to 16 MHz Crystal Oscillator

After reset, the 12 to 16 MHz crystal oscillator is disabled and is not selected as the source of MAINCK.

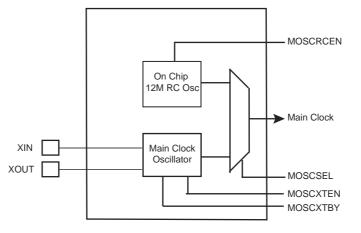
As the source of MAINCK, the 12 to 16 MHz crystal oscillator provides an accurate frequency. The software enables or disables this oscillator in order to reduce power consumption via CKGR_MOR.MOSCXTEN.

When disabling this oscillator by clearing the CKGR_MOR.MOSCXTEN bit, the PMC_SR.MOSCXTS bit is automatically cleared, indicating the 12 to 16 MHz crystal oscillator is off.

When enabling this oscillator, the user must initiate the startup time counter. This startup time depends on the characteristics of the external device connected to this oscillator. Refer to the section "Electrical Characteristics" for the startup time.

When CKGR_MOR.MOSCXTEN and CKGR_MOR.MOSCXTST are written to enable this oscillator, the PMC_SR.MOSCXTS bit is cleared and the counter starts counting down on the slow clock divided by 8 from the MOSCXTST value. When the counter reaches 0, the PMC_SR.MOSCXTS is set, indicating that the 12 to 16 MHz crystal oscillator is stabilized. Setting PMC_IMR.MOSCXTS triggers an interrupt to the processor.

20.5.3 Main Clock Source Selection


The main clock is generated by the 12 to 16 MHz crystal oscillator, or by the embedded 12 MHz RC oscillator.

The selection is made by writing CKGR_MOR.MOSCSEL. The switch of the main clock source is glitch-free, so there is no need to run out of SLCK or PLLACK in order to change the selection. PMC_SR.MOSCSELS indicates when the switch sequence is done.

Setting PMC_IMR.MOSCSELS triggers an interrupt to the processor.

The 12 to 16 MHz crystal oscillator can be bypassed by setting the MOSCXTBY bit in the CKGR_MOR to accept an external main clock on XIN (refer to Section 20.5.4 "Bypassing the 12 to 16 MHz Crystal Oscillator").

Figure 20-4. Main Clock Source Selection

MOSCRCEN, MOSCXTEN, MOSCSEL and MOSCXTBY bits are located in the PMC Clock Generator Main Oscillator Register (CKGR_MOR).

After a VDDBU power-on reset, the default configuration is MOSCRCEN = 1, MOSCXTEN = 0 and MOSCSEL = 0, allowing the 12 MHz RC oscillator to start as Main clock.

Atmel

21.16.10 PMC Clock Generator PLLA Register

Name:	CKGR_PLLAR						
Address:	0xFFFFFC28						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	ONE	-	-	-	_	-
23	22	21	20	19	18	17	16
			MU	JLA			
15	14	13	12	11	10	9	8
	OUTA	PLLACOUNT					
7	6	5	4 DI	3 VA	2	1	0

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

Possible limitations on PLL input frequencies and multiplier factors should be checked before using the PMC.

• DIVA: Divider A

Value	Name	Description
0	0	Divider output is 0
1	BYPASS	Divider is bypassed
2–255	-	Divider output is the selected clock divided by DIVA.

PLLACOUNT: PLLA Counter

Specifies the number of slow clock cycles before the LOCKA bit is set in PMC_SR after CKGR_PLLAR is written.

OUTA: PLLA Clock Frequency Range

To optimize clock performance, this field must be programmed as specified in "PLL Characteristics" in the Electrical Characteristics section of the product datasheet.

• MULA: PLLA Multiplier

0: The PLLA is deactivated.

1–254: The PLLA Clock frequency is the PLLA input frequency multiplied by MULA + 1.

• ONE: Must Be Set to 1

Bit 29 must always be set to 1 when programming the CKGR_PLLAR.

22.5.15 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the PIO Write Protection Mode Register (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PIO Write Protection Status Register (PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:

- PIO Enable Register
- PIO Disable Register
- PIO Output Enable Register
- PIO Output Disable Register
- PIO Input Filter Enable Register
- PIO Input Filter Disable Register
- PIO Multi-driver Enable Register
- PIO Multi-driver Disable Register
- PIO Pull-Up Disable Register
- PIO Pull-Up Enable Register
- PIO Peripheral ABCD Select Register 1
- PIO Peripheral ABCD Select Register 2
- PIO Output Write Enable Register
- PIO Output Write Disable Register
- PIO Pad Pull-Down Disable Register
- PIO Pad Pull-Down Enable Register

27.5.4 Error Location Disable Register

Name:	PMERRLOC_ELDIS							
Address:	0xFFFFE60C							
Access:	Read-write							
Reset:	0x00000000							
31	30	29	28	27	26	25	24	
-	-	-	-	-	-	_	-	
23	22	21	20	19	18	17	16	
-	-	-	_	-	—	_	-	
15	14	13	12	11	10	9	8	
-	-	-	-	-	-	_	-	
7	6	5	4	3	2	1	0	
_	-	—	_	—	-	_	DIS	

• DIS: Disable Error Location Engine

28.12.2 Frozen Mode

When the external device asserts the NWAIT signal (active low), and after internal synchronization of this signal, the SMC state is frozen, i.e., SMC internal counters are frozen, and all control signals remain unchanged. When the resynchronized NWAIT signal is deasserted, the SMC completes the access, resuming the access from the point where it was stopped. See Figure 28-26. This mode must be selected when the external device uses the NWAIT signal to delay the access and to freeze the SMC.

The assertion of the NWAIT signal outside the expected period is ignored as illustrated in Figure 28-27.

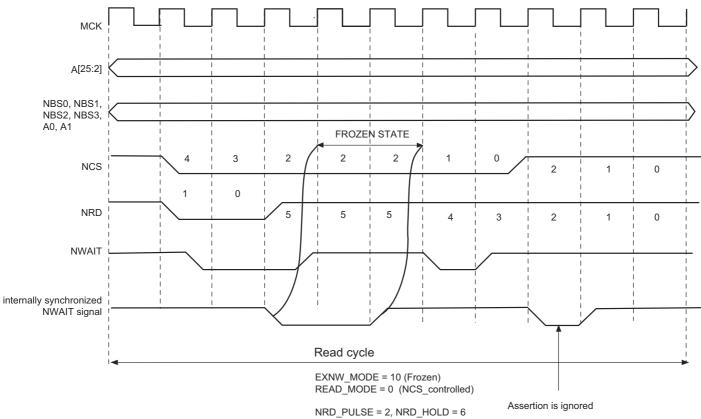


Figure 28-26. Write Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

EXNW_MODE = 10 (Frozen) WRITE_MODE = 1 (NWE_controlled)

NWE_PULSE = 5 NCS_WR_PULSE = 7

NRD_PULSE = 2, NRD_HOLD = 6 NCS_RD_PULSE =5, NCS_RD_HOLD =3

414 SAM9G25 [DATASHEET] Atmel-11032G-ATARM-SAM9G25-Datasheet_31-Aug-15

Atmel

30.8.21 DMAC Write Protection Mode Register

Name:	DMAC_WPMR						
Address:	0xFFFFEDE4 (0), 0xFFFFEFE	4 (1)				
Access:	Read/Write						
31	30	29	28	27	26	25	24
			WP	KEY			
23	22	21	20	19	18	17	16
			WP	KEY			
15	14	13	12	11	10	9	8
			WP	KEY			
7	6	5	4	3	2	1	0
_	_	_	_	_	_	_	WPEN

• WPEN: Write Protection Enable

0: Disables the Write Protection if WPKEY corresponds to 0x444D41 ("DMA" in ASCII).

1: Enables the Write Protection if WPKEY corresponds to 0x444D41 ("DMA" in ASCII).

See Section 30.6.7 "Register Write Protection" for the list of registers that can be write-protected.

• WPKEY: Write Protection Key

Value	Name	Description
0x444D41	PASSWD	Writing any other value in this field aborts the write operation of the WPEN bit.
08444041	PASSWD	Always reads as 0.

31.7.17 UDPHS Endpoint Clear Status Register (Control, Bulk, Interrupt Endpoints)

Name: UDPHS_EPTCLRSTAx [x=0..6]

Address: 0xF803C118 [0], 0xF803C138 [1], 0xF803C158 [2], 0xF803C178 [3], 0xF803C198 [4], 0xF803C1B8 [5], 0xF803C1D8 [6]

Access: Write-only

31	30	29	28	27	26	25	24
-	-	—	_	-	-	—	_
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
NAK_OUT	NAK_IN	STALL_SNT	RX_SETUP	-	TX_COMPLT	RXRDY_TXKL	-
7	6	5	4	3	2	1	0
-	TOGGLESQ	FRCESTALL	_	_	_	-	_

This register view is relevant only if EPT_TYPE = 0x0, 0x2 or 0x3 in "UDPHS Endpoint Configuration Register" .

For additional information, see "UDPHS Endpoint Status Register (Control, Bulk, Interrupt Endpoints)" .

• FRCESTALL: Stall Handshake Request Clear

0: No effect.

1: Clear the STALL request. The next packets from host will not be STALLed.

• TOGGLESQ: Data Toggle Clear

0: No effect.

1: Clear the PID data of the current bank

For OUT endpoints, the next received packet should be a DATA0.

For IN endpoints, the next packet will be sent with a DATA0 PID.

• RXRDY_TXKL: Received OUT Data Clear

0: No effect.

1: Clear the RXRDY_TXKL flag of UDPHS_EPTSTAx.

• TX_COMPLT: Transmitted IN Data Complete Clear

0: No effect.

1: Clear the TX_COMPLT flag of UDPHS_EPTSTAx.

• RX_SETUP: Received SETUP Clear

0: No effect.

1: Clear the RX_SETUP flags of UDPHS_EPTSTAx.

STALL_SNT: Stall Sent Clear

0: No effect.

1: Clear the STALL_SNT flags of UDPHS_EPTSTAx.

33.8.2 Data Transfer Operation

The High Speed MultiMedia Card allows several read/write operations (single block, multiple blocks, stream, etc.). These kinds of transfer can be selected setting the Transfer Type (TRTYP) field in the HSMCI Command Register (HSMCI_CMDR).

These operations can be done using the features of the DMA Controller.

In all cases, the block length (BLKLEN field) must be defined either in the HSMCI Mode Register (HSMCI_MR) or in the HSMCI Block Register (HSMCI_BLKR). This field determines the size of the data block.

Consequent to MMC Specification 3.1, two types of multiple block read (or write) transactions are defined (the host can use either one at any time):

• Open-ended/Infinite Multiple block read (or write):

The number of blocks for the read (or write) multiple block operation is not defined. The card will continuously transfer (or program) data blocks until a stop transmission command is received.

• Multiple block read (or write) with predefined block count (since version 3.1 and higher):

The card will transfer (or program) the requested number of data blocks and terminate the transaction. The stop command is not required at the end of this type of multiple block read (or write), unless terminated with an error. In order to start a multiple block read (or write) with predefined block count, the host must correctly program the HSMCI Block Register (HSMCI_BLKR). Otherwise the card will start an open-ended multiple block read. The BCNT field of the HSMCI_BLKR defines the number of blocks to transfer (from 1 to 65535 blocks). Programming the value 0 in the BCNT field corresponds to an infinite block transfer.

33.8.3 Read Operation

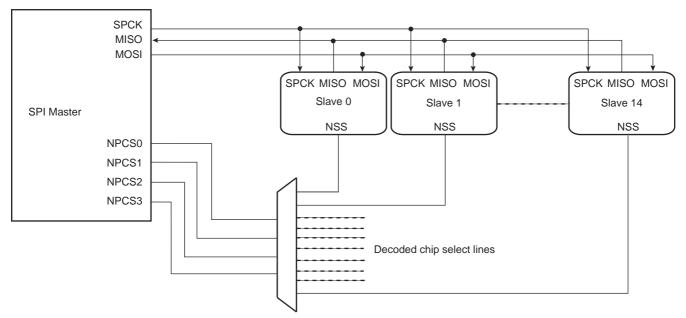
The following flowchart (Figure 33-8) shows how to read a single block with or without use of DMAC facilities. In this example, a polling method is used to wait for the end of read. Similarly, the user can configure the HSMCI Interrupt Enable Register (HSMCI_IER) to trigger an interrupt at the end of read.

PCS and LASTXFER fields in the MSBs. However, the SPI still controls the number of bits (8 to 16) to be transferred through MISO and MOSI lines with the chip select configuration registers. This is not the optimal means in terms of memory size for the buffers, but it provides a very effective means to exchange data with several peripherals without any intervention of the processor.

34.7.3.7 Peripheral Chip Select Decoding

The user can program the SPI to operate with up to 15 slave peripherals by decoding the four chip select lines, NPCS0 to NPCS3 with an external decoder/demultiplexer (refer to Figure 34-10). This can be enabled by setting the PCSDEC bit in the SPI_MR.

When operating without decoding, the SPI makes sure that in any case only one chip select line is activated, i.e., one NPCS line driven low at a time. If two bits are defined low in a PCS field, only the lowest numbered chip select is driven low.


When operating with decoding, the SPI directly outputs the value defined by the PCS field on the NPCS lines of either SPI_MR or SPI_TDR (depending on PS).

As the SPI sets a default value of 0xF on the chip select lines (i.e., all chip select lines at 1) when not processing any transfer, only 15 peripherals can be decoded.

The SPI has four chip select registers (SPI_CSR0...SPI_CSR3). As a result, when external decoding is activated, each NPCS chip select defines the characteristics of up to four peripherals. As an example, SPI_CRS0 defines the characteristics of the externally decoded peripherals 0 to 3, corresponding to the PCS values 0x0 to 0x3. Consequently, the user has to make sure to connect compatible peripherals on the decoded chip select lines 0 to 3, 4 to 7, 8 to 11 and 12 to 14. Figure 34-10 shows this type of implementation.

If the CSAAT bit is used, with or without the DMAC, the Mode Fault detection for NPCS0 line must be disabled. This is not needed for all other chip select lines since Mode Fault detection is only on NPCS0.

Figure 34-10. Chip Select Decoding Application Block Diagram: Single Master/Multiple Slave Implementation

External 1-of-n Decoder/Demultiplexer

34.7.3.8 Peripheral Deselection without DMA

During a transfer of more than one unit of data on a chip select without the DMA, the SPI_TDR is loaded by the processor, the TDRE flag rises as soon as the content of the SPI_TDR is transferred into the internal Shift register. When this flag is detected high, the SPI_TDR can be reloaded. If this reload by the processor occurs before the

35.6.12 External Event/Trigger Conditions

An external event can be programmed to be detected on one of the clock sources (XC0, XC1, XC2) or TIOB. The external event selected can then be used as a trigger.

The EEVT parameter in TC_CMR selects the external trigger. The EEVTEDG parameter defines the trigger edge for each of the possible external triggers (rising, falling or both). If EEVTEDG is cleared (none), no external event is defined.

If TIOB is defined as an external event signal (EEVT = 0), TIOB is no longer used as an output and the compare register B is not used to generate waveforms and subsequently no IRQs. In this case the TC channel can only generate a waveform on TIOA.

When an external event is defined, it can be used as a trigger by setting bit ENETRG in the TC_CMR.

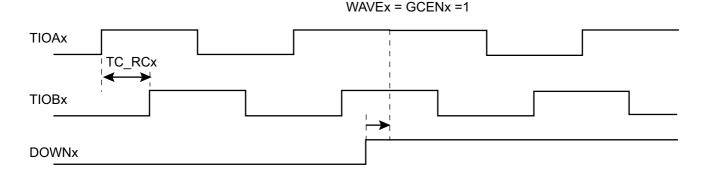
As in Capture mode, the SYNC signal and the software trigger are also available as triggers. RC Compare can also be used as a trigger depending on the parameter WAVSEL.

35.6.13 Output Controller

The output controller defines the output level changes on TIOA and TIOB following an event. TIOB control is used only if TIOB is defined as output (not as an external event).

The following events control TIOA and TIOB: software trigger, external event and RC compare. RA compare controls TIOA and RB compare controls TIOB. Each of these events can be programmed to set, clear or toggle the output as defined in the corresponding parameter in TC_CMR.

35.6.14 2-bit Gray Up/Down Counter for Stepper Motor


Each channel can be independently configured to generate a 2-bit gray count waveform on corresponding TIOA, TIOB outputs by means of the GCEN bit in TC_SMMRx.

Up or Down count can be defined by writing bit DOWN in TC_SMMRx.

It is mandatory to configure the channel in Waveform mode in the TC_CMR.

The period of the counters can be programmed in TC_RCx.

Figure 35-15. 2-bit Gray Up/Down Counter

35.7.1 TC Channel Control Register

Name: TC_CCRx [x=0..2]

Address: 0xF8008000 (0)[0], 0xF8008040 (0)[1], 0xF8008080 (0)[2], 0xF800C000 (1)[0], 0xF800C040 (1)[1], 0xF800C080 (1)[2]

Access: Write-only

31	30	29	28	27	26	25	24
-	-	_	_	_	-	-	_
23	22	21	20	19	18	17	16
-	-	-	-	-	-	-	-
15	14	13	12	11	10	9	8
-	-	-	-	-	-	-	-
7	6	5	4	3	2	1	0
—	-	-	-	-	SWTRG	CLKDIS	CLKEN

• CLKEN: Counter Clock Enable Command

0: No effect.

1: Enables the clock if CLKDIS is not 1.

• CLKDIS: Counter Clock Disable Command

0: No effect.

1: Disables the clock.

• SWTRG: Software Trigger Command

0: No effect.

1: A software trigger is performed: the counter is reset and the clock is started.

37.8 Two-wire Interface (TWI) User Interface

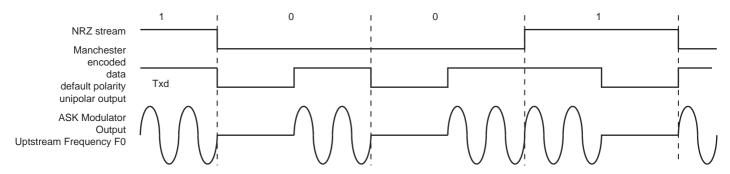

Offset	Register	Name	Access	Reset
0x00	Control Register	TWI_CR	Write-only	_
0x04	Master Mode Register	TWI_MMR	Read/Write	0x0000000
0x08	Slave Mode Register	TWI_SMR	Read/Write	0x0000000
0x0C	Internal Address Register	TWI_IADR	Read/Write	0x0000000
0x10	Clock Waveform Generator Register	TWI_CWGR	Read/Write	0x0000000
0x14-0x1C	Reserved	-	_	_
0x20	Status Register	TWI_SR	Read-only	0x0000F009
0x24	Interrupt Enable Register	TWI_IER	Write-only	_
0x28	Interrupt Disable Register	TWI_IDR	Write-only	_
0x2C	Interrupt Mask Register	TWI_IMR	Read-only	0x0000000
0x30	Receive Holding Register	TWI_RHR	Read-only	0x0000000
0x34	Transmit Holding Register	TWI_THR	Write-only	_
0x38-0xE0	Reserved	-	_	_
0xE4	Write Protection Mode Register	TWI_WPMR	Read/Write	0x0000000
0xE8	Write Protection Status Register	TWI_WPSR	Read-only	0x0000000
0xEC-0xFC	Reserved	-	_	-

Table 37-7. Register Mapping

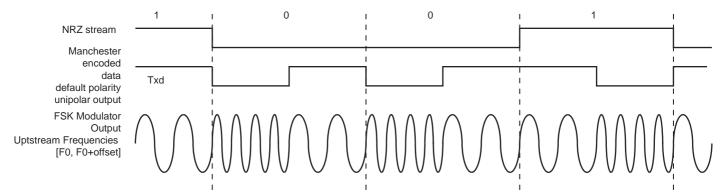
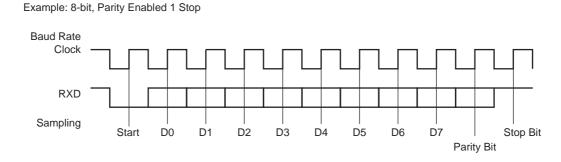

Note: All unlisted offset values are considered as "reserved".

Figure 38-17. ASK Modulator Output

Figure 38-18. FSK Modulator Output

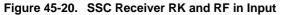

38.6.3.6 Synchronous Receiver

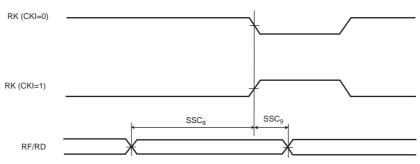
In Synchronous mode (SYNC = 1), the receiver samples the RXD signal on each rising edge of the baud rate clock. If a low level is detected, it is considered as a start. All data bits, the parity bit and the stop bits are sampled and the receiver waits for the next start bit. Synchronous mode operations provide a high-speed transfer capability.

Configuration fields and bits are the same as in Asynchronous mode.

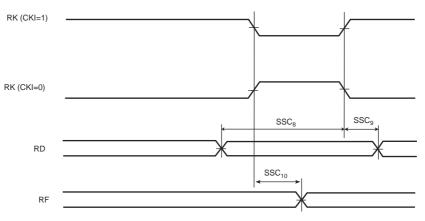
Figure 38-19 illustrates a character reception in Synchronous mode.

38.6.3.7 Receiver Operations

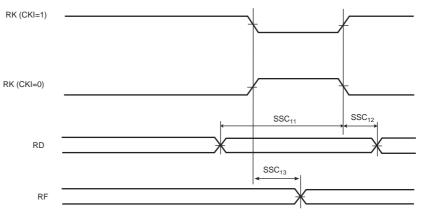

When a character reception is completed, it is transferred to the Receive Holding register (US_RHR) and the RXRDY bit in US_CSR rises. If a character is completed while the RXRDY is set, the OVRE (Overrun Error) bit is set. The last character is transferred into US_RHR and overwrites the previous one. The OVRE bit is cleared by writing a 1 to the RSTSTA (Reset Status) bit in the US_CR.


Atmel

44.6.16 Spe	44.6.16 Specific Address 1 Bottom Register									
Name:	EMAC_SA1B									
Address:	0xF802C098									
Access:	Read-write									
31	30	29	28	27	26	25	24			
			AD	DR						
23	22	21	20	19	18	17	16			
			AD	DR						
15	14	13	12	11	10	9	8			
	ADDR									
7	6	5	4	3	2	1	0			
			AD	DR						


ADDR: Specific Address 1 Bottom

Least significant bits of the destination address. Bit zero indicates whether the address is multicast or unicast and corresponds to the least significant bit of the first byte received.



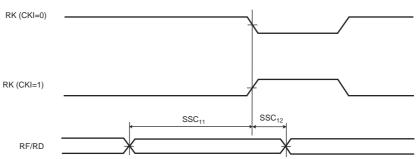
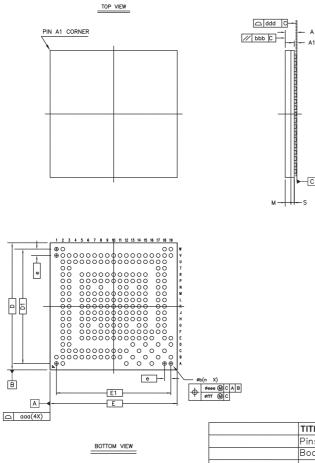

Figure 45-21. SSC Receiver, RK in Input and RF in Output

Figure 45-22. SSC Receiver, RK and RF in Output



46.2.2 247-ball VFBGA package

			Common Dimensions			
		Symbol	MIN.	NOM.	MAX.	
Package :		VFBGA				
Body Size:	E	10.000 10.000				
Ball Pitch :		e	0.500			
Total Thickness :		A	1			
Mold Thickness :		м	0.450 Ref.			
Substrate Thickness :		s	0.260 Ref.			
Ball Diameter :			0.300			
Stand Off :	A1	0.160	-	0.260		
Ball Width :		b	0.270 - 0			
Package Edge Tolerance :		000	0.100			
Mold Flatness :		bbb	0.100			
Coplanarity:		ddd	0.080			
Ball Offset (Package) :		eee	eee 0.150			
Ball Offset (Ball) :		fff	iff 0.080			
Ball Count :		n	247			
Edge Ball Center to Center :	X	E1 D1		9.00		

	TITLE	Low profile	Fine Pitc	h Ball Grid Array	GPC:	СВQ
BOTTOM VIEW	Pins:	247		Drawing No.:	R-VFB	GA247_A
	Body:	10x10x1.0	mm	REV.:	В	
	Ball Pitch:	0.5	mm	Date:	8/7/2	012
	Ball Diameter:	0.3	mm	Jedec Code:	Not Je	dec

Table 46-11. Package Information

BGA Substrate Ball Land	0.25 mm +/- 0.05
Solder Mask Opening	0.275 mm +/- 0.05

Table 46-12. Device and 247-ball BGA Package Maximum Weight

177	mg

Table 46-13. 247-ball BGA Package Characteristics

Moisture Sensitivity Level	3
----------------------------	---

Table 46-14. Package Reference

JEDEC Drawing Reference	none
JESD97 Classification	e8

Table 46-10. Ball Information

Ball Pitch	0.5 mm +/- 0.05
Ball Diameter	0.3 mm +/- 0.05