

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST7
Core Size	8-Bit
Speed	8MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	32
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.5K × 8
Voltage - Supply (Vcc/Vdd)	3.8V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st72f321j7tae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	9.2	Functional description	70
		9.2.1 Input modes	70
		9.2.2 Output modes	71
		9.2.3 Alternate functions	71
	9.3	I/O port implementation	74
	9.4	Low power modes	75
	9.5	Interrupts	75
10	Watc	hdog timer (WDG)	77
	10.1	Introduction	77
	10.2	Main features	77
	10.3	Functional description	77
	10.4	How to program the watchdog timeout	78
	10.5	Low power modes	80
	10.6	Hardware watchdog option	80
	10.7	Using Halt mode with the WDG (WDGHALT option)	80
	10.8	Interrupts	80
	10.9	Register description	81
		10.9.1 Control register (WDGCR)	81
11	Main	10.9.1 Control register (WDGCR)	81 82
11	Main 11.1	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction	81 82 82
11	Main 11.1 11.2	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler	81 82 82 82
11	Main 11.1 11.2 11.3	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability	81 82 82 82 82
11	Main 11.1 11.2 11.3 11.4	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC)	81 82 82 82 82 82 82
11	Main 11.1 11.2 11.3 11.4 11.5	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper	81 82 82 82 82 82 82 82
11	Main 11.1 11.2 11.3 11.4 11.5 11.6	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes	81 82 82 82 82 82 82 82 83
11	Main 11.1 11.2 11.3 11.4 11.5 11.6 11.7	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes Interrupts	81 82 82 82 82 82 82 82 83 83
11	Main 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes Interrupts Main clock controller registers	81 82 82 82 82 82 82 82 83 83 83
11	Main 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes Interrupts 11.8.1 MCC control/status register (MCCSR)	81 82 82 82 82 82 82 83 83 83 83 83
11	Main 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes Interrupts 11.8.1 MCC control/status register (MCCSR) 11.8.2 MCC beep control register (MCCBCR)	81 82 82 82 82 82 82 83 83 83 83 84 84 85
11	Main 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes Interrupts Interrupts 11.8.1 MCC control/status register (MCCSR) 11.8.2 MCC beep control register (MCCBCR)	81 82 82 82 82 82 82 83 83 83 83 83 84 85 87
11	Main 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 PWM 12.1	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Introduction Programmable CPU clock prescaler Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes Interrupts Main clock controller registers 11.8.1 MCC control/status register (MCCSR) 11.8.2 MCC beep control register (MCCBCR) Introduction	81 82 82 82 82 82 82 83 83 83 83 83 84 85 87 87
11	Main 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 PWM 12.1 12.2	10.9.1 Control register (WDGCR) clock controller with real-time clock and beeper (MCC/RTC) Introduction Programmable CPU clock prescaler Clock-out capability Real-time clock timer (RTC) Beeper Low power modes Interrupts Main clock controller registers 11.8.1 MCC control/status register (MCCSR) 11.8.2 MCC beep control register (MCCBCR) auto-reload timer (ART) Introduction Functional description	81 82 82 82 82 82 82 82 83 83 83 83 84 85 87 87 88

Doc ID	13829	Rev	1
--------	-------	-----	---

Pin	No.			Le	evel	Port						Main		
P64	P44	Pin name	Type	ut	out		Inj	put		Out	tput	function (after	Alternate	function
LQFI	LQFI			Out		float	ndw	int	ana	OD	РР	reset)		
25	15	PF0/MCO/AIN8	I/O	CT		x	е	i1	x	х	x	Port F0	Main clock out (f _{OSC} /2)	ADC Analog Input 8
26	16	PF1 (HS)/BEEP	I/O	C_T	HS	Х	е	i1		Х	Х	Port F1	Beep signal	output
27	17	PF2 (HS)	I/O	C_T	HS	Х		ei1		х	Х	Port F2		
28	-	PF3/OCMP2_A/ AIN9	I/O	CT		x	x		x	х	x	Port F3	Timer A Output Compare 2	ADC Analog Input 9
29	18	PF4/OCMP1_A/ AIN10	I/O	CT		x	x		x	х	x	Port F4	Timer A Output Compare 1	ADC Analog Input 10
30	-	PF5/ICAP2_A/ AIN11	I/O	CT		x	x		x	x	x	Port F5	Timer A Input Capture 2	ADC Analog Input 11
31	19	PF6(HS)/ICAP1_A	I/O	C_T	HS	Х	Х			Х	Х	Port F6	Timer A Inpu	t Capture 1
32	20	PF7(HS)/ EXTCLK_A	I/O	CT	HS	x	х			х	х	Port F7	Port F7 Timer A External Clock Source	
33	21	V _{DD_0} ⁽¹⁾	S									Digital Ma	ain Supply Vol	tage
34	22	V _{SS_0} ⁽¹⁾	S									Digital Gr	ound Voltage	
35	23	PC0/OCMP2_B/ AIN12	I/O	CT		x	x		x	х	x	Port C0	Timer B Output Compare 2	ADC Analog Input 12
36	24	PC1/OCMP1_B/ AIN13	I/O	С _Т		x	x		x	х	x	Port C1	Timer B Output Compare 1	ADC Analog Input 13
37	25	PC2(HS)/ ICAP2_B	I/O	CT	HS	x	х			х	х	Port C2	Timer B Inpu	t Capture 2
38	26	PC3(HS)/ ICAP1_B	I/O	CT	HS	x	х			х	х	Port C3	Timer B Inpu	t Capture 1
39	27	PC4/MISO/ ICCDATA	I/O	CT		x	x			х	х	Port C4	SPI Master In / Slave Out Data	ICC Data Input
40	28	PC5/MOSI/AIN14	I/O	CT		x	x		х	х	x	Port C5	SPI Master Out / Slave In Data	ADC Analog Input 14

 Table 3.
 Device pin description (continued)

6 Supply, reset and clock management

6.1 Introduction

The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in *Figure 9*.

For more details, refer to the dedicated parametric section.

6.2 Main features

- Optional PLL for multiplying the frequency by 2 (not to be used with internal RC oscillator)
- Reset Sequence Manager (RSM)
- Multi-oscillator Clock Management (MO)
 - 5 crystal/ceramic resonator oscillators
 - 1 internal RC oscillator
 - System Integrity Management (SI)
 - Main supply low voltage detection (LVD)
 - Auxiliary voltage detector (AVD) with interrupt capability for monitoring the main supply or the EVD pin

Figure 9. Clock, reset and supply block diagram

57

7.5 Interrupt register description

7.5.1 CPU CC register interrupt bits

CPU CC					Rese	t value: 111	(1010 (xAh)
7	6	5	4	3	2	1	0
1	1	11	Н	10	N	Z	С
		RW	RW	RW	RW	RW	RW

Table 16. CPU CC register interrupt bits description

Bit	Name	Function			
5	11	Interrupt Software Priority 1			
3	10	Interrupt Software Priority 0			

These two bits indicate the current interrupt software priority (see *Table 17*) and are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx).

They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see *Table 19: Interrupt dedicated instruction set*).

If the timer clock is an external clock, the formula is:

$$\Delta OC i R = \Delta t * f_{EXT}$$

Where:

 Δt = Output compare period (in seconds)

f_{CPU} = External timer clock frequency (in hertz)

Clearing the output compare interrupt request (that is, clearing the OCF*i* bit) is done by:

- 1. Reading the SR register while the OCF*i* bit is set
- 2. An access (read or write) to the OCiLR register

The following procedure is recommended to prevent the OCF*i* bit from being set between the time it is read and the write to the OC*i*R register:

- Write to the OC*i*HR register (further compares are inhibited).
- Read the SR register (first step of the clearance of the OCF*i* bit, which may be already set).
- Write to the OC*i*LR register (enables the output compare function and clears the OCF*i* bit).
- Note: 1 After a processor write cycle to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written.
 - 2 If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set.
 - 3 In both internal and external clock modes, OCFi and OCMPi are set while the counter value equals the OCiR register value (see Figure 49 on page 107 for an example with f_{CPU}/2 and Figure 50 on page 107 for an example with f_{CPU}/4). This behavior is the same in OPM or PWM mode.
 - 4 The output compare functions can be used both for generating external events on the OCMPi pins even if the input capture mode is also used.
 - 5 The value in the 16-bit OCiR register and the OLVi bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout.

13.3.5 Forced compare output capability

When the FOLV*i* bit is set by software, the OLVL*i* bit is copied to the OCMP*i* pin. The OLV*i* bit has to be toggled in order to toggle the OCMP*i* pin when it is enabled (OC*i*E bit = 1). The OCF*i* bit is then not set by hardware, and thus no interrupt request is generated.

The FOLVL*i* bits have no effect in both one pulse mode and PWM mode.

Bit	Name	Function			
3	FOLV1	 Forced Output Compare 1 This bit is set and cleared by software. 0: No effect on the OCMP1 pin 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison 			
2	OLVL2	Output Level 2 This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse Mode and Pulse Width Modulation mode.			
1	IEDG1	 Input Edge 1 This bit determines which type of level transition on the ICAP1 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture. 			
0	OLVL1	Output Level 1 The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register.			

Table 59. CR	1 register descri	ption (continued)
--------------	-------------------	-------------------

13.7.2 Control register 2 (CR2)

Table 60.CR2 register description

Bit	Name	Function
7	OC1E	 Output Compare 1 Pin Enable This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode). Whatever the value of the OC1E bit, the Output Compare 1 function of the timer remains active. 0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O) 1: OCMP1 pin alternate function enabled
6	OC2E	 Output Compare 2 Pin Enable This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2 function of the timer remains active. 0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O) 1: OCMP2 pin alternate function enabled

Bit	Name	Function
5	OPM	 One Pulse Mode 0: One Pulse Mode is not active. 1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the generated pulse depends on the contents of the OC1R register.
4	PWM	 Pulse Width Modulation 0: PWM mode is not active. 1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the length of the pulse depends on the value of OC1R register; the period depends on the value of OC2R register.
3:2	CC[1:0]	<i>Clock Control</i> The timer clock mode depends on these bits (see <i>Table 61</i>).
1	IEDG2	 Input Edge 2 This bit determines which type of level transition on the ICAP2 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture.
0	EXEDG	 External Clock Edge This bit determines which type of level transition on the external clock pin EXTCLK will trigger the counter register. 0: A falling edge triggers the counter register. 1: A rising edge triggers the counter register.

Table 60. CR2 register description (continued)

Table 61.Timer clock selection

Timer clock	CC1	CC0
f _{CPU} / 4	0	0
f _{CPU} / 2	0	1
f _{CPU} / 8	1	0
External clock (where available) ⁽¹⁾	1	1

1. If the external clock pin is not available, programming the external clock configuration stops the counter.

13.7.3 Control/status register (CSR)

Figure 59. Data clock timing diagram

15.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register.

Character transmission

During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see *Figure 62*).

Procedure

- 1. Select the M bit to define the word length.
- 2. Select the desired baud rate using the SCIBRR and the SCIETPR registers.
- 3. Set the TE bit to assign the TDO pin to the alternate function and to send an idle frame as first transmission.
- 4. Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted.

Clearing the TDRE bit is always performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

The TDRE bit is set by hardware and it indicates:

- The TDR register is empty.
- The data transfer is beginning.
- The next data can be written in the SCIDR register without overwriting the previous data.

This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register.

When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission.

When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set.

When a frame transmission is complete (after the stop bit) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register.

Clearing the TC bit is performed by the following software sequence:

- 1. An access to the SCISR register
- 2. A write to the SCIDR register

Note: The TDRE and TC bits are cleared by the same software sequence.

Break characters

Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see *Figure 63*).

As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this

A receiver wakes up by Idle Line detection when the Receive line has recognized an Idle Frame. Then the RWU bit is reset by hardware but the IDLE bit is not set.

Receiver wakes up by Address Mark detection when it received a '1' as the most significant bit of a word, thus indicating that the message is an address. The reception of this particular word wakes up the receiver, resets the RWU bit and sets the RDRF bit, which allows the receiver to receive this word normally and to use it as an address word.

Caution: In Mute mode, do not write to the SCICR2 register. If the SCI is in Mute mode during the read operation (RWU = 1) and a address mark wake-up event occurs (RWU is reset) before the write operation, the RWU bit is set again by this write operation. Consequently the address byte is lost and the SCI is not woken up from Mute mode.

Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length defined by the M bit, the possible SCI frame formats are as listed in *Table 70*.

M bit	PCE bit	SCI frame
0	0	SB 8 bit data STB
0	1	SB 7-bit data PB STB
1	0	SB 9-bit data STB
1	1	SB 8-bit data PB STB

Table 70.Frame formats

Legend: SB = Start Bit, STB = Stop Bit, PB = Parity Bit

Note:

In case of wake-up by an address mark, the MSB bit of the data is taken into account and not the parity bit

Even parity: the parity bit is calculated to obtain an even number of '1's inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit is 0 if even parity is selected (PS bit = 0).

Odd parity: the parity bit is calculated to obtain an odd number of '1's inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

Example: data = 00110101; 4 bits set => parity bit is 1 if odd parity is selected (PS bit = 1).

Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit.

Reception mode: If the PCE bit is set then the interface checks if the received data byte has an even number of '1's if even parity is selected (PS = 0) or an odd number of '1's if odd parity is selected (PS = 1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PIE is set in the SCICR1 register.

SCI clock tolerance

During reception, each bit is sampled 16 times. The majority of the 8th, 9th and 10th samples is considered as the bit value. For a valid bit detection, all the three samples should have the same value otherwise the noise flag (NF) is set. For example: If the 8th, 9th and 10th samples are 0, 1 and 1 respectively, then the bit value is '1', but the Noise Flag bit is set because the three samples values are not the same.

Figure 65. Bit sampling in reception mode

15.5 Low power modes

Table 71. Effect of low power modes on SCI

Mode	Effect
Wait	No effect on SCI. SCI interrupts cause the device to exit from Wait mode.
Halt	SCI registers are frozen. In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited.

15.6 Interrupts

The SCI interrupt events are connected to the same interrupt vector.

These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction).

Table 72. SCI interrupt control/wake-up capability

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
Transmit Data Register Empty	TDRE	TIE	Yes	No
Transmission Complete	TC	TCIE	Yes	No
Received Data Ready to be Read	RDRF	DIE	Yes	No
Overrun Error Detected	OR		Yes	No

Bit	Name	Function
7:6	SCP[1:0]	 First SCI Prescaler These 2 prescaling bits allow several standard clock division ranges. 00: PR prescaling factor = 1 01: PR prescaling factor = 3 10: PR prescaling factor = 4 11: PR prescaling factor = 13
5:3	SCT[2:0]	SCI Transmitter rate divisor These 3 bits, in conjunction with the SCP1 and SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode. 000: TR dividing factor = 1 001: TR dividing factor = 2 010: TR dividing factor = 4 011: TR dividing factor = 8 100: TR dividing factor = 16 101: TR dividing factor = 32 110: TR dividing factor = 64 111: TR dividing factor = 128
2:0	SCR[2:0]	 SCI Receiver rate divisor These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode. 000: RR dividing factor = 1 001: RR dividing factor = 2 010: RR dividing factor = 4 011: RR dividing factor = 8 100: RR dividing factor = 16 101: RR dividing factor = 32 110: RR dividing factor = 64 111: RR dividing factor = 128

Table 76. SCIBRR register description

15.7.6 Extended receive prescaler division register (SCIERPR)

This register allows setting of the extended prescaler rate division factor for the receive circuit.

16.4 Functional description

Refer to the CR, SR1 and SR2 registers in Section 16.7 for the bit definitions.

By default the I²C interface operates in Slave mode (M/SL bit is cleared) except when it initiates a transmit or receive sequence.

First the interface frequency must be configured using the FRi bits in the OAR2 register.

16.4.1 Slave mode

As soon as a start condition is detected, the address is received from the SDA line and sent to the shift register; then it is compared with the address of the interface or the General Call address (if selected by software).

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0) and the two most significant bits of the address.

Header matched (10-bit mode only): The interface generates an acknowledge pulse if the ACK bit is set.

Address not matched: The interface ignores it and waits for another Start condition.

Address matched: The interface generates in sequence:

- an acknowledge pulse if the ACK bit is set
- EVF and ADSL bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register, **holding the SCL line low** (see *Figure 68: Transfer sequencing* EV1).

Next, in 7-bit mode read the DR register to determine from the least significant bit (Data Direction Bit) if the slave must enter Receiver or Transmitter mode.

In 10-bit mode, after receiving the address sequence the slave is always in receive mode. It will enter transmit mode on receiving a repeated Start condition followed by the header sequence with matching address bits and the least significant bit set (11110xx1).

Slave receiver

Following the address reception and after the SR1 register has been read, the slave receives bytes from the SDA line into the DR register via the internal shift register. After each byte the interface generates in sequence:

- an acknowledge pulse if the ACK bit is set
- EVF and BTF bits are set with an interrupt if the ITE bit is set.

Then the interface waits for a read of the SR1 register followed by a read of the DR register, **holding the SCL line low** (see *Figure 68: Transfer sequencing* EV2).

Slave transmitter

Following the address reception and after SR1 register has been read, the slave sends bytes from the DR register to the SDA line via the internal shift register.

The slave waits for a read of the SR1 register followed by a write in the DR register, **holding the SCL line low** (see *Figure 68: Transfer sequencing* EV3).

When the acknowledge pulse is received:

• The EVF and BTF bits are set by hardware with an interrupt if the ITE bit is set.

16.5 Low power modes

 Table 81.
 Effect of low power modes on I²C

Mode	Effect
Wait	No effect on I^2C interface. I^2C interrupts cause the device to exit from Wait mode.
Halt	I^2C registers are frozen. In Halt mode, the I^2C interface is inactive and does not acknowledge data on the bus. The I^2C interface resumes operation when the MCU is woken up by an interrupt with "exit from Halt mode" capability.

16.6 Interrupts

Figure 69. Interrupt control logic diagram

Table 82. I²C interrupt control/wake-up capability

Interrupt event	Event flag	Enable control bit	Exit from Wait	Exit from Halt
10-bit Address Sent Event (Master mode)	ADD10			
End of Byte Transfer Event	BTF			
Address Matched Event (Slave mode)	ADSEL			
Start Bit Generation Event (Master mode)	SB	ITE	Vaa	Ne
Acknowledge Failure Event	AF	116	165	NO
Stop Detection Event (Slave mode)	STOPF			
Arbitration Lost Event (Multimaster configuration)	ARLO			
Bus Error Event	BERR			

Note:

The I²C interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control bit is set and the I-bit in the CC register is reset (RIM instruction).

Bit	Name	Function
6	ADD10	 10-bit addressing in Master mode This bit is set by hardware when the master has sent the first byte in 10-bit address mode. It is cleared by software reading SR2 register followed by a write in the DR register of the second address byte. It is also cleared by hardware when the peripheral is disabled (PE = 0). 0: No ADD10 event occurred. 1: Master has sent first address byte (header)
5	TRA	 Transmitter/Receiver When BTF is set, TRA = 1 if a data byte has been transmitted. It is cleared automatically when BTF is cleared. It is also cleared by hardware after detection of Stop condition (STOPF = 1), loss of bus arbitration (ARLO = 1) or when the interface is disabled (PE = 0). 0: Data byte received (if BTF = 1) 1: Data byte transmitted
4	BUSY	 Bus busy This bit is set by hardware on detection of a Start condition and cleared by hardware on detection of a Stop condition. It indicates a communication in progress on the bus. The BUSY flag of the I2CSR1 register is cleared if a Bus Error occurs. 0: No communication on the bus 1: Communication ongoing on the bus Note: The BUSY flag is NOT updated when the interface is disabled (PE = 0). This can have consequences when operating in Multimaster mode; that is, a second active I²C master commencing a transfer with an unset BUSY bit can cause a conflict resulting in lost data. A software workaround consists of checking that the I²C is not busy before enabling the I²C Multimaster cell.
3	BTF	 Byte transfer finished This bit is set by hardware as soon as a byte is correctly received or transmitted with interrupt generation if ITE = 1. It is cleared by software reading SR1 register followed by a read or write of DR register. It is also cleared by hardware when the interface is disabled (PE = 0). Following a byte transmission, this bit is set after reception of the acknowledge clock pulse. In case an address byte is sent, this bit is set only after the EV6 event (see <i>Figure 68</i>). BTF is cleared by reading SR1 register followed by writing the next byte in DR register. Following a byte reception, this bit is set after transmission of the acknowledge clock pulse if ACK = 1. BTF is cleared by reading SR1 register followed by reading the byte from DR register. The SCL line is held low while BTF = 1. 0: Byte transfer not done 1: Byte transfer not done
2	ADSL	Address matched (Slave mode) This bit is set by hardware as soon as the received slave address matched with the OAR register content or a general call is recognized. An interrupt is generated if ITE = 1. It is cleared by software reading SR1 register or by hardware when the interface is disabled (PE = 0). The SCL line is held low while ADSL = 1. 0: Address mismatched or not received 1: Received address matched

Table 84.	SR1	register	descri	ption ((continued)	
	••••					

Bit	Name	Function					
6:0	CC[6:0]	7-bit clock divider These bits select the speed of the bus (f_{SCL}) depending on the I ² C mode. They are not cleared when the interface is disabled (PE = 0). Refer to Section 19: Electrical characteristics for the table of values. Note: The programmed f_{SCL} assumes no load on SCL and SDA lines.					

Table 86. CCR register description (continued)

16.7.5 I²C data register (DR)

DR					Rese	et value: 0000	0 0000 (00h)
7	6	5	4	3	2	1	0
D[7:0]							
			R	W			

Table 87. DR register description

Bit	Name	Function
7:0	D[7:0]	 8-bit Data Register These bits contain the byte to be received or transmitted on the bus. Transmitter mode: Byte transmission start automatically when the software writes in the DR register. Receiver mode: The first data byte is received automatically in the DR register using the least significant bit of the address. Then, the following data bytes are received one by one after reading the DR register.

16.7.6 I²C own address register (OAR1)

OAR1					Rese	et value: 000	0 0000 (00h)
7	6	5	4	3	2	1	0
ADD7	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0
RW	RW						

17 10-bit A/D converter (ADC)

17.1 Introduction

The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 16 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 16 different sources.

The result of the conversion is stored in a 10-bit data register. The A/D converter is controlled through a control/status register.

17.2 Main features

- 10-bit conversion
- Up to 16 channels with multiplexed input
- Linear successive approximation
- Data register (DR) which contains the results
- Conversion complete status flag
- On/off bit (to reduce consumption)

The block diagram is shown in *Figure 70*.

Figure 70. ADC block diagram

18 Instruction set

18.1 CPU addressing modes

The CPU features 17 different addressing modes which can be classified in seven main groups as listed in the following table:

Group	Example
Inherent	NOP
Immediate	LD A,#\$55
Direct	LD A,\$55
Indexed	LD A,(\$55,X)
Indirect	LD A,([\$55],X)
Relative	JRNE loop
Bit operation	BSET byte,#5

Table 96.Addressing modes

The CPU instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be divided in two submodes called long and short:

- Long addressing mode is more powerful because it can use the full 64 Kbyte address space; however, it uses more bytes and more CPU cycles.
- Short addressing mode is less powerful because it can generally only access page zero (0000h - 00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP).

The ST7 Assembler optimizes the use of long and short addressing modes.

Mode			Syntax	Destination	Pointer address (Hex.)	Pointer size (Hex.)	Length (bytes)
Inherent			nop				+ 0
Immediate			ld A,#\$55				+ 1
Short	Direct		ld A,\$10	00FF			+ 1
Long	Direct		ld A,\$1000	0000FFFF			+ 2
No Offset	Direct	Indexed	ld A,(X)	00FF			+ 0
Short	Direct	Indexed	ld A,(\$10,X)	001FE			+ 1
Long	Direct	Indexed	ld A,(\$1000,X)	0000FFFF			+ 2
Short	Indirect		ld A,[\$10]	00FF	00FF	byte	+ 2
Long	Indirect		ld A,[\$10.w]	0000FFFF	00FF	word	+ 2
Short	Indirect	Indexed	ld A,([\$10],X)	001FE	00FF	byte	+ 2

Table 97. CPU addressing mode overview

Bit	Name	Function			
OPT7	PKG1	Package selection bit 1 This option bit, with the PKG0 bit, selects the package (see <i>Table 143:</i> <i>Package selection (OPT7)</i>).			
OPT6	RSTC	RESET clock cycle selection This option bit selects the number of CPU cycles applied during the RESET phase and when exiting Halt mode. For resonator oscillato it is advised to select 4096 due to the long crystal stabilization time 0: Reset phase with 4096 CPU cycles 1: Reset phase with 256 CPU cycles			
OPT5:4	OSCTYPE[1:0]	Oscillator type These option bits select the ST7 main clock source type. 00: Clock source = Resonator oscillator 01: Reserved 10: Clock source = Internal RC oscillator 11: Clock source = External source			
OPT3:1	OSCRANGE[2:0]	Oscillator range When the resonator oscillator type is selected, these option bits select the resonator oscillator current source corresponding to the frequency range of the resonator used. Otherwise, these bits are used to select the normal operating frequency range. 000: Typ. frequency range = LP (1 ~ 2 MHz) 001: Typ. frequency range = MP (2 ~ 4 MHz) 010: Typ. frequency range = MS (4 ~ 8 MHz) 011: Typ. frequency range = HS (8 ~ 16 MHz)			
OPT0	PLLOFF	 PLL activation This option bit activates the PLL which allows multiplication by two of the main input clock frequency. The PLL must not be used with the internal RC oscillator or with external clock source. The PLL is guaranteed only with an input frequency between 2 and 4 MHz. 0: PLL x2 enabled 1: PLL x2 disabled Caution: The PLL can be enabled only if the OSCRANGE (OPT3:1) bits are configured to "MP 2 ~ 4 MHz". Otherwise, the device functionality is not guaranteed. 			

Table 142. Option byte 1 bit description

 Table 143.
 Package selection (OPT7)

Version	Selected package	PKG1	PKG0
(A)R	LQFP64	1	0
J	LQFP44	0	0

Note:

On the chip, each I/O port has up to eight pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption.

21.4 ST7 application notes

All relevant ST7 application notes can be found on www.st.com.

